вернёмся на старт?

Статьи в иностранных журналах, газетах (март - декабрь 2026 г.)


  1. К. Э. Янг и др., Обзор лунной науки и операций Artemis II (K. E. Young et al., Artemis II Lunar Science and Operations Overview) (на англ.) 57th Lunar and Planetary Science Conference, The Woodlands, Texas, March 16-20, 2026, Abstract no. 1681 в pdf - 286 кб
    "[Введение] Миссия Artemis II, запуск которой запланирован на начало 2026 года, позволит впервые за 54 года провести наблюдения Луны с экипажем, открыв новую эру исследований Луны с экипажами. (...) Во время полета у экипажа будет несколько часов для наблюдения и получения изображений Луны. Научная группа по изучению Луны Artemis II (LST) разработала 10 научных задач по изучению Луны и четыре задачи по возможности проведения исследований (...) (таблица 1). [Основные этапы лунной научной миссии "Артемида II"] Поскольку LST не может составить окончательный список целей для облета, экипажу будет предложено наблюдать и документировать их до окончания запуска, экипажу предоставляется время до начала облета Луны для ознакомления с планом наведения на Луну, в котором отображаются график и цели их облета. (...) [Данные Artemis II Lunar Science] экипаж будет собирать три типа данных: (1) описания лунных объектов, записанные в виде аудиофайлов с помощью портативных вычислительных устройств (PCDS); (2) изображения, полученные с помощью портативной зеркальной фотокамеры Nikon D5, оснащенной зум-объективом диаметром 80-400 мм.; и (3) аннотации, записанные с помощью файлов OneNote на их PCD-дисках (аналогично полевому блокноту геолога). Экипаж прошел обширную подготовку для проведения этих наблюдений (...) [Структура поддержки научных операций на Луне Artemis II] Artemis II станет первой миссией, в ходе которой научный сотрудник будет находиться за пультом управления полетом (FCR, или главный зал в ЦУПЕ; рис. 2). Научный сотрудник - это новая должность диспетчера полетов, ответственного за научные и геологические задачи каждой миссии "Артемида" на Луне. Научным сотрудникам Artemis II оказывает поддержку LST, которые будут работать в двух вспомогательных помещениях. Зал научной оценки (SER) - это основное подсобное помещение для изучения Луны и геологии, которым руководят руководитель SER и его заместитель, а также специалисты по лунным исследованиям, визуализации и лунным данным, планировщики наблюдений, специалисты по научной документации и многие другие. Голос, передаваемый из SER офицеру по науке и другим лицам, передается через SERCOM (коммуникатор SER). SER, комната управления полетами в главном здании ЦУПА [Центр управления полетами] в АО [Космический центр НАСА имени Джонсона] (корпус 30), была спроектирована для миссий Artemis и будущих миссий на Марс (рис. 3). (...) Центр управления научными миссиями (SMOR) поддерживает SER посредством проведение предварительной обработки данных и передача в SER собранных данных для анализа. (...) [Планы после миссии] В течение шести месяцев после миссии общественности будут доступны четыре материала: (1) Отчет о лунных исследованиях после миссии, обобщающий предварительные научные результаты; (2) Отчет об операциях Artemis II Lunar Science, в котором кратко описываются структура, процессы и инструменты, используемые LST во время операций; (3) Руководство пользователя данными Artemis II Lunar Science, предназначенное для предоставления сообществу знаний, необходимых для доступа к данным из архива данных и их использования; (4) Все данные Artemis II Lunar Science. II Научные данные о Луне, заархивированные через Планетарную информационную систему."
  2. А. Н. Дойч и др., Научный план исследования Артемиды II (A. N. Deutsch et al., The Artemis II Scientific Targeting Plan) (на англ.) 57th Lunar and Planetary Science Conference, The Woodlands, Texas, March 16-20, 2026, Abstract no. 1602 в pdf - 188 кб
    "[Введение] Artemis II - это 10-дневный полет на Луну с экипажем (...) С этой уникальной точки обзора экипаж астронавтов Artemis II соберет новые данные и будет работать с лунной научной командой Artemis II (LST) на Земле, чтобы облегчить научные исследования. График полета будет включать в себя несколько непрерывных часов, которые экипаж должен посвятить составлению плана визуализации и наблюдения за конкретной траекторией полета - плана наведения на Луну (LTP), разработанного LST. Здесь мы сообщаем о научных целях Artemis II, утвержденных Управлением научных миссий НАСА (SMD), и обсуждаем, как A2LST создает LTP для проведения широкомасштабных научных исследований. (...) [Научные цели Artemis II] Матрица научной прослеживаемости Artemis II (STM) определяется несколькими научными целями, которые разделены на десять тем (таблица 1). Темам был присвоен ранг приоритета от 1 до 3, где 1 указывает на наивысший приоритет (...) [Научные данные Artemis II] В ходе миссии экипаж будет собирать три типа научных данных для поддержки выполнения LTP: словесные описания, изображения и аннотации. Устные описания. Съемочная группа запишет аудиозапись своих наблюдений, в основном состоящую из геологических описаний (например, геометрия объекта, сохранность, цветовой тон, яркость, структура, текстура, контакты, взаимосвязи), интерпретаций и впечатлений. (...) Изображения. Съемочная группа также получит изображения целей LTP с помощью портативной зеркальной камеры Nikon D5, оснащенной объективом 80-400 мм. Кроме того, камеры космического аппарата Orion позволят получать видео и изображения, которые помогут в научных исследованиях. Аннотации. Наконец, экипаж может делать зарисовки и другие полевые заметки на своих портативных вычислительных устройствах (PCDS). [Создание плана наведения на Луну] LTP предоставляет экипажу несколько часов непрерывной научной работы, предназначенной для достижения баланса между широким охватом STM (по крайней мере, с одной целью для решения каждой задачи, зависящей от траектории) и глубиной STM (с несколькими целями для выделения приоритетных тем). В настоящее время LST разрабатывает LTP, включающий в себя мероприятия в виде ~ десятиминутных блоков наблюдения, где каждый блок сосредоточен вокруг заданной цели или группы целей. (...) LST подготовил альманах из более чем 150 объектов, включающий широкий спектр объектов для изучения Луны (например, ударные структуры, аномалии альбедо, тектонические особенности, вулканические особенности). Эти особенности широко распространены по всей Луне, хотя в большей степени сосредоточены на дальней стороне, где экипаж космического корабля "Орион" номинально будет находиться во время своей научной деятельности. (...) В альманах также включены цели, не связанные с Луной (например, Земля и дальний космос). (...) Первоначальный список целей LTP разработан LST Scrum и состоит из пяти тематических лидеров (экспертов по различным научным темам). (...) Проект LTP представляет собой затем они были рассмотрены, обсуждены, пересмотрены по мере необходимости и одобрены всем LST. Этот процесс, описанный здесь, происходит перед запуском, для траектории первого дня данного стартового окна. Даже смещение графика запуска на один земной день может привести к существенным изменениям видимости и геометрии Луны, наблюдаемой с орбиты Ориона. Таким образом, после запуска, когда будет известна окончательная траектория, геометрия обзора "Ориона" на Луну будет пересчитана, и LST разработает обновленный LTP (...) [Представление научного плана наведения] После запуска и после одобрения LST и необходимыми членами группы управления полетом, LTP передается на PCDS экипажа. (...) После получения LTP с указанием конкретной траектории у экипажа есть запланированное время, чтобы просмотреть его и задать вопросы по голосовой связи Orion в Центр управления полетами (ЦУП) Космического центра имени Джонсона НАСА. (...) [Выполнение и ожидаемые результаты плана научных исследований] Во время научных мероприятий по облету Луны LST заслушает некоторые первоначальные отчеты экипажа. (...) LST немедленно приступит к анализу данных в рамках подготовки к конференции лунной научной команды "Орион-Земля", которая состоится в ближайшее время. на следующий день. (...) В качестве последней возможности расспросить экипаж об их опыте перед возвращением на Землю, эта конференция является важнейшим элементом лунного научного плана. После завершения миссии данные будут заархивированы в Планетарной информационной системе."
  3. Вольф. Восстановление и интеграция радиолокационных изображений Venera 15 и 16 для долгосрочных исследований изменений поверхности Венеры (Wolf, Recovering and Integrating Venera 15 and 16 Radar Imagery for Long-Term Venus Surface Change Studies) (на англ.) 57th Lunar and Planetary Science Conference, The Woodlands, Texas, March 16-20, 2026, Abstract no. 1869 в pdf - 146 кб
    [Введение] В ходе советских миссий "Венера" были получены первые снимки поверхности Венеры, однако большая часть этих материалов остается недоступной, не оцифрованной или плохо документированной. Эти наборы данных представляют собой уникальный исторический материал, который более чем на десять лет предшествует миссии НАСА "Магеллан". Восстановление изображений с "Венеры" дает возможность расширить временные рамки исследований поверхности Венеры, что позволяет проводить сравнения между миссиями и технологиями. При объединении с данными радара с синтезированной апертурой (SAR) более высокого разрешения Magellan снимки Venera могут помочь идентифицировать долгосрочные изменения поверхности, уточнить интерпретации геологии Венеры и помочь в планировании предстоящих миссий (...) [Методы] В этом проекте используются файлы изображений миссии Venera, полученные из неопубликованного набора цифровых данных. переведено и составлено в Массачусетском технологическом институте. Набор данных был представлен в виде ZIP-архива, содержащего множество файлов (...) Архив включает в себя широкий спектр типов файлов, многие из которых не имеют документации или четких соглашений об именовании, что делает неясным, представляет ли набор данных полную реконструкцию оригинальных продуктов миссии. Для изучения изображений я использую VeneraView, специализированное приложение, разработанное для визуализации данных радара Venera. (...) Как только будут идентифицированы пригодные для использования изображения "Венеры", они будут преобразованы в современные форматы (...) Эта межпланетная интеграция [с наборами данных SAR Magellan] поможет определить, могут ли снимки "Венеры" служить значимым временным ориентиром для долгосрочных исследований изменений поверхности. [Ожидаемые результаты] Ожидается, что этот проект позволит получить более четкое представление о структуре, полноте и научной полезности переведенного Массачусетским технологическим институтом набора данных Venera. Я планирую определить подмножество изображений Venera 15 и 16, которые могут быть надежно отображены, интерпретированы и привязаны к географической привязке. (...) Ожидается, что анализ выявит степень совпадения данных, полученных с помощью "Венеры" и "Магеллана", включая любые регионы, где могут проводиться наблюдения за разные периоды времени. (...) В случае успеха эта работа может продемонстрировать, что снимки, сделанные с помощью "Венеры", несмотря на их возраст и качество, могут расширить временные рамки для мониторинга поверхности Венеры и внести свой вклад в определение регионов-кандидатов для проведения анализа будущих изменений. [Заключение] Восстановление и оценка переведенного Массачусетским технологическим институтом набора данных Venera дает возможность переоценить одну из самых ранних радиолокационных работ по получению изображений Венеры с использованием современных аналитических инструментов. (...) Определив, какие изображения Venera 15 и 16 могут быть надежно отображены, привязаны к географической привязке и сопоставлены с данными SAR Magellan, этот проект прояснит, могут ли эти устаревшие изображения существенно расширить временные рамки для исследований поверхности Венеры. (...) эта работа демонстрирует научную ценность пересмотра исторических наборов планетарных данных и подчеркивает важность сохранения и повторного анализа результатов предыдущих миссий в рамках современных исследовательских структур".
  4. А. Т. Базилевский, Дж. У. Хед. Состав венерианских равнин: пересмотр на основе снимков, полученных с посадочного модуля "Венера" (A. T. Basilevsky, J. W. Head, Composition of Venusian Plains: Reconsideration on the Basis of Venera Lander Images) (на англ.) 57th Lunar and Planetary Science Conference, The Woodlands, Texas, March 16-20, 2026, Abstract no. 1056 в pdf - 1,43 Мб
    "[Введение] Для будущих миссий по исследованию Венеры, которые будут запущены в следующем десятилетии, предстоит решить еще много вопросов. Для улучшения формулировки целей и задач миссии, а также методов и стратегий исследования важно пересмотреть некоторые ключевые моменты, касающиеся наших знаний о Венере. В этом материале мы пересматриваем проблему измерения состава венерианских равнин, доминирующего типа рельефа на этой планете. На основании их связи с небольшими и крупными вулканическими сооружениями и рифтовыми зонами, их общей гладкости и часто лопастевидной, похожей на лавовые потоки текстуры и морфологии, считается, что равнинные образования на Венере возникли в результате экструзивного базальтового вулканизма. Эта точка зрения подтверждается результатами анализов поверхностного материала, сделанных несколькими советскими посадочными аппаратами, которые показали, что он, в основном, базальтовый. Мы начнем с обзора изображений посадочного модуля "Венера", полученных во время миссий "Венера-9", "Венера-10", "Венера-13" и "Венера-14" (рис. 1). [Описание] На рисунке 1 показан пластинчатый и, по-видимому, мелкослойный поверхностный материал, который является механически слабым и, следовательно, вероятно, пористым, как показано несколькими методами. Был сделан вывод (...), что этот слоистый материал является результатом выпадения атмосферных осадков, образующих наблюдаемые в настоящее время и более ранние радарно-темные параболы, как видно на изображениях радара с синтезированной апертурой Magellan (рис. 2). (...) Также известно, что высокотемпературная, агрессивная атмосфера Венеры может изменять и выщелачивать базальтовые породообразующие минералы, что потенциально может привести к увеличению поверхностной пористости породы, снижению плотности и изменению цвета/альбедо. О том, что такие процессы могут происходить, свидетельствуют небольшие перевернутые камни в нижней левой части панорамы "Венера-14" (рис. 1). Здесь видно, что пластинчатые породы, вероятно, смещенные и перевернутые в результате удара спускаемого аппарата, намного ярче по сравнению с более темными прилегающими поверхностями, из которых они были извлечены. Хотя места приземления для этих миссий четко указаны в единицах измерения региональных вулканических равнин, рисунки 3 и 4 иллюстрируют неопределенность в точном составе материала поверхности, измеренном на площадках Venera 8, 9, 10, 13 и 14 (...) В будущих миссиях на Венеру, которые планируют измерить состав и другие свойства местных вулканов. кроме того, необходимо выбирать места посадки в районах, не охваченных современными и предыдущими радарными темными параболами, и использовать буровое оборудование, позволяющее отбирать пробы с глубин в несколько метров".
  5. Э. Сефтон-Нэш и др. Обновление миссии ЭкзоМарс/Розалинд Франклин (RFM) (E. Sefton-Nash et al., ExoMars/Rosalind Franklin Mission (RFM) Update) (на англ.) 57th Lunar and Planetary Science Conference, The Woodlands, Texas, March 16-20, 2026, Abstract no. 1449 в pdf - 1,49 Мб
    [Введение] Миссия Европейского космического агентства "Экзомарс" была задумана для того, чтобы ответить на один вопрос: была ли когда-нибудь жизнь на Марсе? Все проектные решения были направлены и продолжают направляться на достижение этой единственной научной цели. (...) Создание для научной группы наилучших условий для поиска физических и химических биосигналов привело к: (1) необходимости в буровой установке глубиной 2 метра; (2) выбор приборов для определения полезной нагрузки; (3) требования к месту посадки, которые привели к выбору Oxia Planum, и (4) стратегия исследования поверхности, которая определяет, как марсоход и приборы будут использоваться совместно для достижения целей миссии. (...) Запуск RFM запланирован на вторую половину 2028 года, и он приземлится в Oxia Planum в 2030 году. [Полезная нагрузка Pasteur] В основе возможностей марсохода Rosalind Franklin для определения характеристик и анализа лежит набор дополнительных научных приборов, входящих в состав полезной нагрузки Pasteur. В макроскопическом масштабе исследовательская система PanCam с ее широкоугольной мультиспектральной стереокамерой (WAC) и узкоугольной камерой высокого разрешения (HRC), работающая совместно с навигационными камерами NavCam и LocCam, представляет собой глаза марсохода. Недавно разработанный инфракрасный спектрометр Enfys, использующий аналитические возможности прибора ISEM, позволит выявить минералогические признаки в выбранных местах. Прибор CLUPI служит в качестве ручного объектива геолога, позволяя детально изучить литологию поверхности. Георадар WISDOM поможет выявить подземные структуры и обследовать потенциальные места бурения. Ma_Miss оснащен головкой ИК-спектрометра, расположенной рядом с наконечником сверла, и позволит реконструировать минералогическую стратиграфию в пробуренных скважинах. В аналитической лаборатории марсохода (ALD) видимый/ИК-спектрометр MicroMega imaging, Рамановский лазерный спектрометр, RLS и анализатор органических молекул Mars (MOMA) (который сочетает газохроматографию и лазерную десорбцию с масс-спектрометром с линейной ионной ловушкой) совместно работают над определением минералогии и органического состава измельченного материала. [Деятельность научной группы] (...) Пересмотренный график миссии предоставляет широкие возможности для дальнейшей научной подготовки, в том числе для изучения посадочной площадки Oxia Planum и ее аналогов, посредством интерпретации орбитальных данных, лабораторных работ в полевых условиях и численного моделирования. (...) специальная группа соавторов готовит проект. Стратегический научный план (SSP) миссии, который прослеживает научные цели миссии вплоть до конкретных вопросов, связанных с гипотезами, которые могут быть проверены с помощью научных приборов, входящих в состав полезной нагрузки Pasteur. [Новый посадочный модуль] В настоящее время разрабатывается европейский модуль для спуска и посадки (EDLM), который доставит марсоход Rosalind Franklin на Oxia Planum. Модуль содержит пакеты датчиков, которые будут поддерживать EDL и характеристики окружающей среды на поверхности в течение всего времени, пока платформа будет работать после приземления. Среди них комплект COMARS+ (комбинированный комплект аэротермических и радиометрических датчиков, установленный на теплозащитном экране), который содержит датчики давления, теплового потока и радиометрии; набор из четырех камер с видимой длиной волны для визуализации процесса спуска; и установленный на посадочном модуле платформенный прибор для определения характеристик атмосферы (PACIS), который содержит датчики атмосферного давления и температуры, а также микрофон. Телеметрия, получаемая с помощью радиолокационного доплеровского высотомера (RDA) и инерциального измерительного устройства (IMU), вместе со вспомогательной информацией и данными из вышеуказанных пакетов, помогают команде ExoMars по исследованию и анализу атмосферы Марса (AMELIA), которая обновляется для миссии 2028 года. [Продолжение подготовки к операциям] В настоящее время предпринимаются целенаправленные усилия по техническому обслуживанию и обновлению по мере необходимости систем в Центре управления операциями марсохода (ROCC, Турин, Италия), который включает в себя специальный марсианский тренажер (MTS). (...) Специальная программа управления научными знаниями (SKP) продолжает оказывать поддержку ключевым специалистам в области науки и техники. Инструментальные бригады. SKP гарантирует, что ценные знания и опыт команды, накопленные в ходе подготовки к миссии opportunity 2022, будут сохранены и развиты".
  6. Т. Маршалл Юбэнкс и др., "Межзвездная цель возможностей: наблюдения космического аппарата за межзвездным объектом 3I/ATLAS" (T. Marshall Eubanks et al., An Interstellar Target of Opportunity: Spacecraft Observations of the Interstellar Object 3I/ATLAS) (на англ.) 57th Lunar and Planetary Science Conference, The Woodlands, Texas, March 16-20, 2026, Abstract no. 1786 в pdf - 246 кб
    "[Введение] Обнаружение межзвездных объектов (ISOs), проходящих через Солнечную систему, позволяет непосредственно исследовать материал из других звездных систем. ISO 3I/ATLAS, открытый 1 июля 2025 года, имел скорость приближения на бесконечности 57,9778 км/с, что позволяет предположить, что он мог возникнуть за миллиарды лет до формирования Солнечной системы, возможно, из звезды с низким содержанием металлов в толстом диске галактики. На рисунке 1 показано прохождение 3I/ATLAS через Солнечную систему во время ее перигелия. (...) [Кампания по наблюдению с помощью космического аппарата 3I/ATLAS] (...) На сегодняшний день по меньшей мере 24 космических аппарата наблюдали за 3I/ATLAS, а наблюдения с космического аппарата Juno, вращающегося вокруг Юпитера, все еще возможны в марте 2026 года. Эти наблюдения в инфракрасном, визуальном, ультрафиолетовом и рентгеновском диапазонах были проведены с 10 межпланетных космических аппаратов, 8 солнечных зондов и обсерваторий и 6 астрономических космических аппаратов. (...) Даже ограниченные данные, доступные в настоящее время, позволили обеспечить постоянный мониторинг звездной величины 3I/ATLAS и существенное улучшение ее орбиты. [Отслеживание 3I/ATLAS по перигелию] На рисунке 2 показаны оптические звездные величины для 3I/ATLAS из различных источников (...) Предсказания величины кометы, m, могут быть получены с помощью простого уравнения скорости дрейфа звездной величины (...) При ее наибольшем приближении к 0,3258 а.е. 16 марта, В 2026 году прогнозируемая магнитуда комы 3I/ATLAS составит 13,3 при прогнозируемом диаметре комы 48’, которую, возможно, сможет наблюдать "Юнона". (...) [Негравитационные ускорения] Определение негравитационных ускорений ISO предоставляет важную научную информацию о размере и составе ядра тела. (...) обе группы согласны с тем, что 3I/ATLAS обладает значительным негравитационным ускорением, включая значительную составляющую A3 вне плоскости орбиты. Эти результаты указывают на то, что 3I/ATLAS значительно менее массивен, чем предполагалось первоначально (...) Наблюдения с помощью межпланетных космических аппаратов, несомненно, могут значительно улучшить определение орбиты ISO и должны быть продолжены, когда это возможно, в будущих ISOS. [Выводы] Кропотливая работа по планированию и сбору данных наблюдений с космических аппаратов 3I/ATLAS, цель которой - предоставить возможности международному научному сообществу в области планетологии и космонавтики, в настоящее время в основном завершена, но анализ этих данных только начался. Данные, полученные за последние 6 месяцев и которые будут получены в ближайшие несколько месяцев, несомненно, произведут революцию в изучении ISO. По мере продолжения этой работы необходимо также изучить, как следует относиться к будущим проходам ISO и какие миссии по перехвату ISO следует предлагать и разрабатывать".
  7. А. Х. Д. Кеппел, К. Драйер. Оценка научной продуктивности космических миссий НАСА по затратам (A. H. D. Koeppel, C. Dreier, Assessing Scientific Productivity of NASA's Space Missions By Cost) (на англ.) 57th Lunar and Planetary Science Conference, The Woodlands, Texas, March 16-20, 2026, Abstract no. 1606 в pdf - 799 кб
    "[Введение] На протяжении десятилетий НАСА боролось за сокращение расходов на научные миссии и увеличение продолжительности проектов. В обзоре за десятилетие и в уставе Конгресса говорится, что частые и недорогостоящие научные миссии являются краеугольным камнем сбалансированного портфеля программ. Программные эксперименты продолжаются. С конца 2000-х годов в рамках программ НАСА CubeSat, SIMPLEx и Commercial Lunar Payload Services (CLPS) были проведены десятки очень недорогих миссий во всех научных подразделениях. (...) Учитывая столь широкий интерес к небольшим научным миссиям и вероятный переход к таким проектам в ближайшем будущем, учитывая бюджетные ограничения, мы начали комплексную работу по количественной оценке научной продуктивности и воздействия космических научных миссий НАСА, уделяя особое внимание затратам. В этом резюме мы обсуждаем первоначальные результаты нашего анализа 90 научных миссий, запущенных с 1994 года и начавших научную деятельность к 2023 году. [Методология] Мы сосредоточили наш анализ на двух вопросах: могут ли многие недорогостоящие миссии оказать такое же научное воздействие, как и одна крупная миссия? И сокращают ли недорогостоящие миссии "время на науку"? (...) Библиометрия, или подсчет журнальных статей и их соответствующего количества цитирований, является распространенным и общепринятым показателем научной продуктивности и влияния, несмотря на наличие множества искажений в данных, относящихся к научной дисциплине, надежности цитирования и размеру подполя, и это лишь некоторые из них. В первую очередь мы сосредоточились на "науке с высокой отдачей", которая определяется как опубликованные статьи с более чем 100 цитированиями - показатель, отслеживаемый системой астрофизических данных НАСА (ADS). (...) Библиометрические данные были получены из объявлений с помощью запросов, предназначенных для поиска рецензируемых публикаций с использованием данных данной научной миссии. Они были объединены со списками публикаций, о которых сообщали сами участники миссии, на общедоступных веб-сайтах. Мы исключили статьи, опубликованные до начала научных исследований, а также материалы о калибровке, приборостроении и обзоре миссии. (...) Во всех расходах на миссию используются заявленные затраты на жизненный цикл (LCC) на момент запуска (которые учитывают разработку, запуск и основные операции миссии) и скорректированы с учетом инфляции до уровня 2024 финансового года с использованием нового стартового индекса НАСА. Мы сгруппировали миссии по их скорректированному LCC в следующие категории: менее 100 миллионов долларов США, 100-450 миллионов долларов США, 450 миллионов долларов США - 1 миллиард долларов США, 1-2,5 миллиарда долларов США и более 2,5 миллиардов долларов США. Для этого первоначального исследования мы сосредоточили наш анализ на планетологии, гелиофизике и астрофизике. (...) [Результаты] Наши результаты показывают, что данные, собранные миссиями с очень низкими затратами (менее 100 миллионов долларов США), приводят к небольшому количеству публикаций с высокой отдачей, если таковые вообще имеются (рис. 1), и что более дорогостоящие миссии, как правило, приводят к появлению более значимых статей. Эти данные также отражают высокую чувствительность к неудачам миссий в разбивке по подразделениям и затратам (рис. 2). Число неудач в миссиях наиболее велико в миссиях с очень низкой стоимостью и уменьшается по мере их удорожания. Примечательно, что каждая миссия по изучению планет стоимостью менее 100 миллионов долларов провалилась. (...) В CLPS также наблюдался высокий уровень неудач. А первая успешная посадка произошла только в январе 2025 года — слишком недавно, чтобы оценить научное влияние подхода коммерческого партнерства на изучение Луны. Мы также отмечаем, что "время для науки", измеряемое продолжительностью от начала разработки до даты публикации первого высокоэффективного документа миссии, не является линейным (рис. 3). На публикацию результатов, получивших высокую оценку, в миссиях с очень низкой стоимостью могут уйти годы, что в значительной степени сводит на нет их преимущество в быстрой разработке. Очень дорогостоящие миссии быстро дают важные результаты, как только начинаются операции, но их разработка затягивается. (...) Ни одна научная миссия из нашего набора для оценки не принесла значительных результатов менее чем за три года с момента разработки. [Выводы] Недорогостоящие миссии, как правило, не приводят к публикациям с высокой цитируемостью и сталкиваются со значительным процентом неудач, особенно в случае межпланетных космических аппаратов. (...) Приоритезация только проектов флагманского уровня также, вероятно, приведет к снижению научной продуктивности. Проекты среднего уровня затрат, особенно те, которые генерируют наборы данных, похожие на опросы, с использованием новых инструментов для достижения недостаточно изученной цели (например, MGS, Kepler, LRO), обеспечивают высокую отдачу от "эффективной научной работы на доллар" при небольших затратах времени на научную работу. Но даже для самых быстрых научных проектов требуется не менее трех лет, чтобы пройти путь от начала проекта до публикации впечатляющих результатов. Если нынешнее руководство стремится к достижению выдающихся научных результатов в ближайшем будущем, наиболее стратегическим шагом было бы ускорить выполнение миссий среднего уровня, которые уже находятся в разработке. Если не произойдет кардинальных изменений в качестве, надежности и возможностях недорогостоящих миссий и приборов, увеличение числа таких проектов вряд ли компенсирует научные результаты более дорогостоящих проектов, которые в настоящее время находятся на грани отмены".
  8. У. Б. Гарри и др., Обновление миссии LRO и расширенная научная миссия 6 (W. B. Garry et al., Lunar Reconnaissance Orbiter Mission Update and Extended Science Mission 6) (на англ.) 57th Lunar and Planetary Science Conference, The Woodlands, Texas, March 16-20, 2026, Abstract no. 1623 в pdf - 316 кб
    "[Введение] Миссия НАСА "Лунный разведывательный орбитальный аппарат" (LRO) приступила к выполнению расширенной научной миссии 6 (ESM6). Запущенные 18 июня 2009 года семь научных приборов (рис. 1) на космическом аппарате LRO поддерживают множество научных кампаний на орбите и предоставляют важнейшие данные для планирования наземных миссий и операций. ESM6 послужит дорожной картой LRO для научных групп по изучению полезной нагрузки в период с октября 2025 по сентябрь 2028 года, на пороге 20-летнего периода наблюдений. (...) [Обзор ESM6] Следующая расширенная миссия рассчитана на трехлетнее научное исследование, которое будет сосредоточено на пяти темах: (1) Летучие вещества и полюса (V); (2) Реголит и воздействия (R&I); (3) Лунная среда (E); (4) Внутренние процессы - вулканическая активность (VA); тектоника и сейсмичность (T); (5) Поддержка миссии (MS). Научные цели ESM6: В рамках проекта LRO было определено 17 различных научных целей, на которых будут сосредоточены исследования в течение этого продолжительного периода миссии. Научные вопросы для каждой цели приведены в таблице 1. (...) Текущая поддержка миссий: LRO продолжит оказывать поддержку коммерческим, международным миссиям и миссиям НАСА с помощью новых изображений и информационных продуктов для определения характеристик посадочных площадок, а также изображений приземлившихся космических аппаратов. Данные LRO сыграли решающую роль в определении характеристик потенциальных районов посадки для выбора посадочных эллипсов для доставки CLPS [коммерческих лунных служб по обслуживанию полезной нагрузки]. С помощью узкоугольной камеры LRO Camera (LROC-NAC) были сняты три модели CLPS, поставленные двумя коммерческими компаниями: BlueGhost Mission 1 от Firefly Aerospace (рис. 2) и IM-1 и IM-2 от Intuitive Machine. [Публикация данных LRO] Каждые три месяца наши приборы архивируют свои данные в системе планетарных данных НАСА (PDS). Наша последняя публикация данных, LRO PDS Delivery #64, была опубликована в архиве 15 декабря 2025 года. (...) [Специальный выпуск LRO] Команды специалистов LRO Instruments и ученые опубликовали более 30 статей в открытом доступе в специальном выпуске журнала Planetary Science Journal "Результаты и исследование лунной поверхности". Наука с помощью лунного разведывательного орбитального аппарата.' [Ресурсы] Обзор миссии и прибора можно найти на специальном веб-сайте НАСА, посвященном миссии. [Ниже приведен список веб-сайтов.]"
  9. М. Охтаке и др., Определение изменчивых характеристик на месте в районе Южного полюса Луны: научные цели, инструменты и статус миссии по исследованию Луны на Луне, совместно запланированной ISRO и JAXA (M. Ohtake et al., In-situ Volatile Characterization at the Lunar South Polar Region: Science Objectives, Instruments, and Status of the Lunar Polar Exploration Mission Jointly Planned By ISRO and JAXA) (на англ.) 57th Lunar and Planetary Science Conference, The Woodlands, Texas, March 16-20, 2026, Abstract no. 1377 в pdf - 955 кб
    "[Введение] Многочисленные наборы данных дистанционного зондирования Луны позволяют предположить, что в полярной области Луны может быть широко распространен водяной лед. (...) Для изучения воды в полярной области Луны Японское агентство аэрокосмических исследований (JAXA) в сотрудничестве с Индийской организацией космических исследований (ISRO) планирует лунную полярную исследовательскую миссию (LUPEX) (Чандраян-5). [Цели миссии] Цель миссии - получить информацию о количестве и распределении воды, измерить химический состав и обилие других летучих веществ, охарактеризовать минералогический состав и физические свойства материалов на поверхности Луны, а также исследовать структуру недр в полярной области Луны, чтобы оценить возможность использования воды в качестве ресурса в будущих миссиях и получить информацию о том, как использовать воду в качестве источника энергии, оценить доступность и необходимый процесс очистки для дальнейшего использования ресурсов insitu (ISRU). Мы планируем приземлиться в полярной области Луны и непосредственно исследовать воду, проводя измерения на месте. [Приборы и концепция эксплуатации] ISRO и JAXA планируют разработать посадочный модуль и марсоход соответственно. Марсоход весит 420 кг (включая полезную нагрузку; масса [будет определена позднее]) и на нем будет установлено множество приборов (таблица 1). [Кратко описаны семь приборов (а)- (г).] После приземления LUPEX проведет операцию в два этапа (рис. 1). На этапе 1 марсоход проведет грубое наблюдение, чтобы определить места возможного присутствия воды. Комбинируя данные приборов от (а) до (е), мы собираемся выбрать места бурения и целевые глубины, на которых на этапе 2 будут проведены точные наблюдения с использованием приборов от (f-1) до (g). Затем марсоход проведет бурение и возьмет пробы подповерхностного реголита с заданных глубин. Марсоход может пробурить поверхностный реголит на глубину до 1,5 м. Образец реголита будет помещен в контейнер для образцов. [Далее подробно описано обращение с образцом.] [Статус] В настоящее время проводится оценка и валидация конструкции марсохода с использованием инженерных моделей. (...) Параллельно проводятся фундаментальные исследования для повышения количественной точности обнаружения водяного льда на основе данных наблюдений с помощью ALIS [прибора (a)] в условиях, соответствующих полярной среде Луны".
  10. Люк Уокер и др., Миссия FLIP к Монс-Мутону: обновление проекта (Luke Walker et al., The FLIP Mission to Mons Mouton: Project Update) (на англ.) 57th Lunar and Planetary Science Conference, The Woodlands, Texas, March 16-20, 2026, Abstract no. 1874 в pdf - 317 кб
    "[Введение] Миссия FLEX Innovation Platform (FLIP) - это уникальная экспедиция в район Монс-Мутон на южном полюсе Луны, запуск которой запланирован на середину 2026 года. Компания Venturi Astrolab Inc. (Astrolab) задумала эту миссию в ответ на отмену проекта VIPER в 2024 году и менее чем за 20 месяцев спроектировала, построила и подготовила аппарат для проведения предварительных квалификационных испытаний. FLIP будет выполнять несколько важнейших функций для будущего исследования южного полюса Луны: (1) научные исследования для изучения лунной среды; (2) разработка ключевых технологий для будущих луноходов, включая лунный вездеход НАСА (LTV); и (3) определение характеристик мобильности, восприятия и тепловых систем в сложных условиях южного полюса Луны. (...) [Сборка и испытания транспортного средства] НАСА отменило VIPER в 2024 году из-за увеличение затрат, задержки запуска и риски роста затрат в будущем, но сохранили посадочный модуль Astrobotic Griffin как часть программы коммерческих лунных полезных служб (CLPS). Компания Astrolab заключила контракт с компанией Astrobotic на приобретение свободного места на Гриффине и приступила к проектированию транспортного средства. FLIP - это четырехколесный вездеход с бортовым поворотом, ограниченный геометрией и стартовой массой (480 кг), изначально разработанный для VIPER. В состав FLIP входят компоненты мобильности, разработанные и подобранные по размеру для более крупного автомобиля FLEX, в том числе инновационные теплопроводные гибкие шины от стратегического партнера Astrolab, компании Venturi Space, и колесный привод высокой мощности. Остальные системы были отобраны с учетом их применимости к будущим автомобилям и возможности приобретения в ограниченные сроки разработки. В настоящее время машина проходит сборку, интеграцию и тестирование систем (AI&T), включая интеграцию и тестирование полезной нагрузки. (...) [Полезная нагрузка и научные исследования] На FLIP размещено тринадцать полезных устройств, включая научные приборы, связанные с четырьмя отдельными центрами НАСА, а также коммерческие и информационно-пропагандистские возможности. FLIP проведет важные исследования в области пыли, восприятия, лунной среды и состава реголита. (...) [Концепция эксплуатации] В рамках перспективной миссии Astrolab разрабатывает концепцию эксплуатации FLIP для обеспечения гибкости во времени посадки, доступности связи и перехода в спящий режим на Луне. Операции с полезной нагрузкой и научные исследования будут интегрированы с полетами по Луне".
  11. Д. Тарнас и др., Oasis-1: Первая коммерческая миссия Blue Origin по исследованию Луны (J. D. Tarnas et al., Oasis-1: Blue Origin’s First Commercial Lunar Prospecting Mission) (на англ.) 57th Lunar and Planetary Science Conference, The Woodlands, Texas, March 16-20, 2026, Abstract no. 1321 в pdf - 338 кб
    "[Введение] Oasis-1 – это миссия, состоящая из двух небольших спутников, предназначенных для создания самых подробных на сегодняшний день карт лунных ресурсов, позволяющих получить новые научные данные о летучих веществах Луны, магнетизме земной коры, выделении радиогенного тепла и видах, происходящих от солнечного ветра, на Луне, с особым упором на Южный полюс. Посадочный модуль Blue Origin MK1, выведенный на полярную орбиту размером 10 х 50 км с периапсисом вблизи Южного полюса, сочетает в себе низковысотную нейтронную и гамма-спектроскопию (...), магнитометрию и мультиспектральную съемку методом "push-broom" для достижения пространственного разрешения, в девять раз превышающего существующие глобальные наборы данных. После 90-дневного этапа глобального картографирования на коротком вторичном этапе будут проведены измерения по маршруту во время контролируемого схода с орбиты, что позволит получить карты водных объектов с разрешением в сотни метров на пиксель в целевых областях с постоянной тенью (PSR). Oasis-1 использует многоуровневую стратегию сбора данных: коммерчески значимые высокоточные карты ресурсов будут предлагаться по лицензированию, в то время как некоторые некоммерческие наборы данных могут быть опубликованы публично, чтобы ускорить изучение Луны, моделирование и планирование миссии. Интегрированные с существующими общедоступными наборами данных (...), продукты Oasis-1 улучшат наше понимание полярных резервуаров летучих веществ в доступных для добычи масштабах, распределения радиогенных элементов, природы намагниченности земной коры и поверхностных характеристик гелия-3, а также снизят риски при выборе места посадки и маршрутов для предстоящей наземной мобильности полеты транспортных средств, включая астронавтов, марсоходы, бункеры и баллистически развернутые приборы. [Архитектура и оборудование миссии] Два идентичных низколетящих малых спутника будут работать на лунной полярной орбите размером 10 х 50 км с периапсисом вблизи Южного полюса. После 90-дневного основного этапа в ходе 10-дневного контролируемого схода с орбиты будут проведены измерения на сверхнизких высотах вдоль трассы над богатыми водой объектами, выявленными в ходе глобального картографирования. Каждый SmallSat оснащен тремя приборами: (1) гибридным гамма- и нейтронным спектрометром (GRNS) для количественного определения содержания водяного льда и радионуклидов (и аналогичных редкоземельных элементов) на глубине ~1 м.; (2) магнитометр с выдвижной штангой для картографирования магнитных аномалий земной коры (и потенциальных индикаторов для металлов/элементов платиновой группы); (3) мультиспектральный спектрометр для измерения концентрации гелия-3 на поверхности. (...) Нейтронная спектроскопия - единственный метод дистанционного зондирования, который позволяет однозначно определить количество воды на глубину ~1 м. Поскольку нейтронные спектрометры не являются оптическими приборами, а также из-за проблем, связанных с прошлыми попытками интерпретировать данные коллимированных нейтронных спектрометров, охватывающих Луну, полет на низкой высоте является наиболее надежным способом увеличить пространственное разрешение этих приборов. Такое пространственное разрешение позволяет проводить картирование подповерхностного водяного льда в масштабе, пригодном для добычи полезных ископаемых. (...) [Lunar science, поддерживаемая интегрированными наборами данных] Поиск полярных резервуаров летучих веществ в масштабах, подходящих для добычи полезных ископаемых (до 15 км/пиксель), позволяет определять содержание воды в отдельных PSR. Затем эти данные могут быть объединены с геологическими картами, данными прошлых лунных миссий и моделями освещенности/температуры для количественной оценки взаимосвязи между концентрацией летучих веществ и возрастом поверхности, геоморфологией, плотностью земной коры, термической историей, составом и т.д. Это позволит оценить гипотезы о доставке, транспортировке, хранении и потере летучих веществ на Луне. Это также позволит выбрать наилучшие места посадки для получения максимальной научной отдачи от исследований летучих веществ на Луне на месте. (...) [Кампания "Оазис"] Фаза 1 – Орбитальная разведка: С низкой лунной орбиты дистанционное зондирование для определения наилучших мест на поверхности Луны для сбора водяного льда, элементов платиновой группы, гелия-3 и редкоземельных элементов. Этап 2 – Проверка наземных ресурсов: Использование инструментальные системы передвижения на поверхности Луны в обследованных местах для получения достоверных орбитальных данных и определения оптимальных методов сбора ресурсов. Этап 3 – Операции по добыче: Постройка установки по добыче потенциальных ресурсов и преобразование её в пригодные для использования продукты, включая топливо, криоохладители, сырье для термоядерных реакторов, электроды, топливные элементы и батареи. Oasis-1 знаменует собой первый шаг в этой кампании, которая позволит получить научные данные о Луне в беспрецедентных объемах с помощью геологоразведочных работ. (...) [Заключение] Oasis-1 внесет существенные изменения в научное картографирование лунных ресурсов и планет, создав первые карты воды, гелия-3, радионуклидов, редкоземельных элементов и магнитных аномалий с разрешением и глубиной, которые имеют непосредственное отношение как к науке, так и к использованию ресурсов".
  12. Джеймс Б. Гарвин и др. Миссия DAVINCI в атмосферу и на поверхность Венеры: научные данные за 2026 год (James B. Garvin et al., DAVINCI Mission to Venus' Atmosphere and Surface: Science Update 2026) (на англ.) 57th Lunar and Planetary Science Conference, The Woodlands, Texas, March 16-20, 2026, Abstract no. 1685 в pdf - 150 кб
    "[Введение] С начала 2026 года миссия DAVINCI по исследованию инертных газов, химии и визуализации в глубоких слоях атмосферы Венеры (Deep Atmosphere of Venus) готовится к запуску на Венеру в 2031 году, а в апреле 2034 года начнется научная кампания "Вход-спуск". (...) [Справочная информация] DAVINCI была выбрана для реализации в июне 2021 года, разработка ведется в соответствии с утвержденным графиком в рамках программы НАСА "Дискавери". (...) [Результаты/прогресс по состоянию на начало 2026 года] За прошедший год [2025] DAVINCI достигла значительных результатов по всем элементам миссии. Все приборы успешно прошли обязательную проверку системных требований (SRR) и характеристик оборудования (EPR) (...) Компания Descent Sphere (DS), разработанная GSFC [Центром космических полетов имени Годдарда], достигла значительных успехов в области аппаратного обеспечения, завершив прецизионную обработку для обоих полушарий и инженерных разработок среднего кольца (EDU), которые в настоящее время проходят испытания на герметичность. (...) Испытательный стенд перестраиваемого лазерного спектрометра Venus (VTLS) в Лаборатории реактивного движения JPL (Jet Propulsion Laboratory) в настоящее время используется для оценки ключевых концепций эксплуатации, поддерживая мероприятия по обеспечению готовности приборов. Многочисленные полевые кампании успешно подтвердили возможности DAVINCI в области визуализации спуска и составления топографических карт, включая полевую кампанию по визуализации спуска с помощью беспилотных летательных аппаратов (дронов) на юго-западе Исландии (...) [Выводы] DAVINCI продолжает продвигаться к запуску на Венеру в декабре 2031 года благодаря постоянным усилиям проектной группы и постоянной поддержке со стороны штаб-квартиры НАСА, PMPO (Управления программы планетарных миссий) (NASA MSFC (Центр космических полетов имени Маршалла)) и научного сообщества".
  13. Аланна Митчелл. «Лунный выстрел» (Alanna Mitchell, Moonshot) (на англ.) «Canadian Geographic», том 145, №03-04 (март - апрель), 2026 г., стр. 32-42 в pdf - 20,0 Мб
    "Как же тогда передать уникальность канадского астронавта Джереми Хансена, который должен принять участие в девятидневной миссии НАСА "Артемида II" по облету Луны в этом году [2026]? Отметить, что он будет первым канадцем, покинувшим орбиту Земли, а также единственным неамериканцем, который сделает это, или что, сделав это, он достигнет того, чего достигли только 24 других человека за всю историю человечества, - значит в общих чертах обрисовать его историю. (...) если в эпоху "Аполлона" одна страна — Соединенные Штаты — доказывала свою силу, добравшись до Луны и вернувшись обратно, то программа "Артемида" предполагает совместное создание людьми поселения на Луне. И, в конечном счете, Марс. (...) Потенциальные опасности, связанные с миссией Хансена, ошеломляют. Ни один человек никогда не запускал эту конкретную ракету, известную как Space Launch System, и не летал на крошечном космическом корабле Orion, который находится на ее вершине. Ни одному экипажу еще не приходилось врываться в этой маленькой капсуле обратно в атмосферу Земли и сбрасывать, используя трение атмосферы нашей планеты и частично зарекомендовавшую себя теплозащиту, огромное количество энергии, накопленной кораблем за время полета, прежде чем раскрыть парашюты, которые замедляют капсулу настолько, чтобы она могла безопасно приземлиться в Тихий океан недалеко от Сан-Диего. Как выразился [канадский астронавт Крис Хэдфилд в отставке], это "длинный перечень недоказанных рисков". (...) Одна из самых известных историй о происхождении Хансена заключается в том, что, когда он был ребенком и рос на ферме близ Эйлса-Крейг, Онтарио, он открыл первый том из энциклопедии, а под буквой "А" - фотография астронавта Нила Армстронга, стоящего на Луне. (...) это изображение пробудило в Хансене страсть на всю жизнь, и вскоре после этого он превратил свой домик на дереве в космический корабль. (...) Мечта привела его к поступлению в Королевские канадские воздушные кадеты, национальную молодежную программу, которая поощряет подростков развивать лидерские качества во время изучения авиации, что, в свою очередь, привело его к подготовке офицеров Королевских канадских военно-воздушных сил. (...) После того, как Хансен получил свое первое высшее образование в 1999 году в Королевском военно-воздушном военном колледже, специализируясь на космических науках, он получил степень магистра физики, что свидетельствовало о его исключительности даже в этой элитной группе. "Это доступно очень немногим", - говорит генерал-лейтенант Эрик Кенни, недавно ушедший в отставку с поста командующего Королевскими военно-воздушными силами Канады и много лет руководивший карьерой Хансена. (...) В конечном итоге Хансен завершил свою летную подготовку в Мус-Джо, Саскачеван (...) К тому времени, когда он был выбран для подготовки астронавтов в 2009 году, Хансен в течение шести лет летал на CF-18 в качестве пилота истребителя. (...) За этим последовали еще два года учебы, переезд в Хьюстон и Космический центр Джонсона вместе с женой-врачом Кэтрин и их тремя детьми школьного возраста, многочисленные полеты на Земле и работа в качестве первого канадца, которому поручили подготовку астронавтов НАСА. Но ни одного полета в космос. Наконец, в апреле 2023 года он получил одобрение на "Артемиду II". (...) "Я пережил целую гамму эмоций - от страха и неуверенности до радости и возбуждения", - говорит Хансен. - Но на чем я всегда останавливаюсь, так это на благодарности и на том, что я очень польщен предоставленной возможностью. Я прекрасно понимаю, что просто оказался в нужное время в нужном месте". (...) Всего 14 канадцев получили квалификацию астронавтов, начиная с первых шести в 1983 году. Десять из них с тех пор вышли на пенсию или умерли. Хансен - один из оставшихся четырех. (...) "Артемида I", запуск которой продолжался более 25 дней в конце 2022 года, вывела "Орион" вокруг Луны без экипажа. Но теплозащитный экран, который мог бы защитить любой экипаж от гибели, при возвращении в атмосферу местами обуглился. НАСА заявляет, что проблема устранена. Этот полет проверит это утверждение. (...) Инженеры НАСА хотят, чтобы "Орион" стал космической рабочей лошадкой, чем-то вроде надежного полутонного грузовика, который сможет доставлять людей и материалы на еще не собранную орбитальную станцию, временно известную как "Врата". Цель Gateway - помочь людям, живущим на поверхности Луны. Он также станет стартовой площадкой для будущих миссий на Марс. Именно в Gateway появится Canadarm3, третье поколение знаменитого канадского робота-манипулятора. Он предназначен для перемещения из одной части внешней оболочки Gateway в другую для проведения ремонтных работ и технического обслуживания, проведения научных экспериментов, помощи при выходе в открытый космос и других функциях. Это визитная карточка Канады в освоении космоса, и она имеет решающее значение для успеха Gateway. (...) Будучи единственным канадцем, который когда-либо совершал путешествие такого масштаба, Хансен несет на себе бремя национальных ожиданий в дополнение ко всем глобальным. (...) "Знаешь, - говорит мне Хансен, - если мы сможем облететь на канадском аппарате вокруг Луны в 2026 году, представь, что мы сможем сделать в последующие годы". (...) Ранее он сказал мне, что страстно верит в то, что конечной целью человечества должно стать превращение в государство для полного сотрудничества. В таком состоянии человечество может процветать, объединяясь для решения любых угроз, с которыми мы сталкиваемся, используя больше интеллектуальных ресурсов, больше идей, больше промышленности, больше научных кругов. Без этого мы просто не сможем продвинуться так далеко. "Я по-прежнему всем сердцем верю, что сотрудничество по всему миру должно быть нашей заявленной целью". (...) Я знаю, что он боится. В одном из предыдущих разговоров он сказал мне, что самые тяжелые моменты для него, вероятно, наступают за день до запуска и в тот момент, когда он обнимает на прощание свою жену и детей, которые уже достигли университетского возраста. Но это не то, на чем он сосредоточен. (...) Хансен сосредоточен на том, что означает поиск. Это символ. Каким бы трудным это ни было, сколько бы времени это ни занимало, каким бы неопределенным ни был результат, процесс совместной работы - это то, что подталкивает нас к величию".
Интернет статьи 2000 - 2012 гг.

Статьи в иностраных журналах и газетах, (февраль 2026.)