1.10. «Молния» над землей

«Молния» — первый спутник связи, созданный под руководством Королева. Его подготовили к летным испытаниям летом 1964 года, однако впервые он успешно вышел на орбиту и заработал только в апреле 1965 года, когда нашему Главному оставалось жить лишь немногим более полугода.

Спутник связи оказался очень удачным по всем своим компонентам. Не удивительно, что «Молния» (кодовый индекс 11Ф67) стала третьим королёвским долгожителем: наряду с двумя другими «семерками», ракетой-носителем и кораблем «Союз», она продолжает летать над Землей и по-прежнему служит россиянам, разбросанным на огромной территории.

В истории создания первого спутника связи, в дальнейшем развитии этого направления космической техники, важнейшего для основной массы людей, много примечательного и поучительного.

***

Хотя космическая связь не входила в число фаворитов нашего Главного конструктора, он понимал значение этого перспективного направления. Более того, именно Королев в свойственной ему решительной и деловой манере выбрал кратчайший и наиболее эффективный путь создания космической связи с учетом особенностей и географического положения нашей страны.

Получив от радистов и проектантов предложение разработать и запустить в космос два экспериментальных спутника с ограниченной задачей проверить возможность радиосвязи через космос, он не утвердил этот план, а потребовал создания настоящего спутника связи, способного передавать информацию, полезную народному хозяйству: телефонную, телеграфную и телевизионную. Несмотря на большие пробелы в знаниях по технике космической связи, полное отсутствие прототипов, новые конструктивные предложения увидели свет уже в 1962 году. На основе этих предложений и был создан первый отечественный спутник связи.

Сейчас, когда смотришь на эскиз «Молнии» более чем 30-летней давности глазами опытного человека, честное слово, кажется удивительным, как удалось за несколько месяцев сделать такую законченную, совершенную разработку. Поражает все: от вытянутой над Северным полушарием сугубо эллиптической 12-часовой орбиты, как будто специально приспособленной для нашей огромной территории с ее предполярными районами, до рациональной и эффективной конфигурации спутника, принципов действия его основных систем. Заслуга в этом принадлежит, прежде в сего, небольшой группе проектантов-энтузиастов, которыми руководил самобытный инженер и талантливый конструктор В.Н. Дудников (к сожалению, рано ушедший из жизни): В.Г. Осипову, Б.В. Королеву, А.И. Буянову и другим товарищам, а также управленцам и радистам, баллистикам и прибористам.



Орбита спутника связи «Молния»
Параметры орбиты (апогей около 40 тыс. км расположен над Северным полушарием, 12-часовой период обращения и др.) обеспечивали связь в течение 8-9 ч

Конфигурация «Молнии», система ее управления, орбита и схема полета прекрасно соответствовали выполняемой задаче. Спутник ориентировался продольной осью на Солнце так, чтобы панели солнечных батарей постоянно освещались, а трехосной ориентацией управлял силовой гироскоп. Радиосвязь поддерживалась через управляемые остронаправленные антенны, расположенные на выдвинутых раскрывающихся штангах.



Владислав Николаевич Дудников

В архитектуре космических аппаратов отражается специфика полета спутника на орбите, особенности его систем, прежде всего тех, элементы которых обращены наружу. К ним относятся солнечные батареи, радиаторы системы терморегулирования, радиоантенны и оптические приборы. Современные спутники связи, спроектированные для полета на геостационарных орбитах, — это уже другая архитектура, ее можно охарактеризовать одним словом — «кубизм». Внешняя форма — не плоды фантазии космических художников, прямые грани стационарных спутников связи, пожалуй, более оправданны, чем подобные формы на Земле. На орбитах физические законы часто работают сильнее, а формы диктуются инженерными соображениями. Однако новая архитектура пришла в космос спустя годы. Бывая на ВДНХ в павильоне «Космос», на других выставках, отечественных и зарубежных, я прежде всего смотрел на форму, на компоновку. Вот этот хорош, а этот как растрепанная, неряшливая девица, от него толку не жди. У «Молнии», с ее вытянутым корпусом, обрамленным шестилепестковой «ромашкой» солнечных батарей и двумя щупальцами штанг с подвижными параболами антенн, — законченный космический вид. Сегодня эти формы выглядят несколько старомодными, но они не столько отдают дань времени и моде, сколько отражают железную логику их создателей, блестяще выполнивших поставленную перед ними задачу.

*
**

Раскрывающиеся элементы конструкции детально разрабатывались в общеконструкторском, тогда огромном отделе № 15. Его костяк составляли конструкторы, влившиеся в наше предприятие в составе ЦАКБ сталинского «пушкаря» В. Грабина. Эти профессионалы высокого класса быстро освоили космическую тематику. Среди конструкторов было много талантливых инженеров: помню уникальных разработчиков Е.И. Старостина и М.Д. Иванова.

Космические конструкции приходится сначала загонять под обтекатель ракеты-носителя, а уже потом, на орбите, разворачивать все, что должно выдвигаться и торчать наружу, прежде всего — панели солнечных батарей и антенны. Первая орбитальная операция, которая обычно выполняется сразу после отделения космического аппарата от последней ступени ракеты, — раскрытие таких элементов конструкции. Чтобы эта операция прошла успешно, конструкторы и испытатели проявляют немало выдумки и находчивости. Каждый раз на полигоне их тщательно проверяют, а в Центре управления полетом (ЦУПе) после пуска ждут сообщений с орбиты: «Произошло полное раскрытие элементов конструкции корабля», — и сразу — вздох облегчения.

Размах панелей, образующих «ромашку» «Молнии», равен 8 м с лишним. На Земле панели укладывали так, чтобы они облегали корпус спутника. Над панелями, тоже в сложенном состоянии, находились штанги со свернутыми параболами антенн. После выхода на орбиту срабатывали пирозамки, и «ромашка» раскрывалась под действием пружин, после чего освобождались штанги с антеннами. Это типичные космические конструкции и типичные начальные операции на орбите.

Пословица «Скоро сказка сказывается, да не скоро дело делается» хорошо применима к современной технике. Чтобы в космосе все сработало надежно, приходится много повозиться на Земле: сначала испытывается каждый узел, каждый механизм в отдельности, а потом вся система целиком. Непросто, однако, заставить на Земле раскрыться многометровые панели и штанги, предназначенные для работы на орбите: при испытаниях требуется воспроизвести условия коварного космоса с его невесомостью, Солнцем — с одной стороны, и черной бездной Вселенной — с другой.



«Молния» — первый советский спутник связи

Я решил рассказать об этом не для красного словца. Так получилось, что второй спутник связи «Молния» (первый в июне 1964 года не вышел на орбиту из-за аварии ракеты-носителя), запущенный три месяца спустя, был потерян из-за того, что штанги не раскрылись.

Связи не было, а ведь именно ради этого создавался весь сложнейший наземно-космический комплекс. Так первая «Молния» не «засверкала» над Землей.

Когда стали разматывать клубок возможных причин, то в конце концов разобрались и поняли, что произошло там, высоко над Землей, куда, к сожалению, уже было не дотянуться.

Схема запуска «Молнии» на эллиптическую орбиту была непривычной. Большая часть космических аппаратов выводится на орбиту на ракете-носителе, активный полет которой продолжается около десяти минут. Тепленький, не потерявший земное тепло спутник сразу отделяется, разворачивается, «расправляя плечи». В зимнее время на старте даже действует специальная установка, которая гонит нагретый воздух под обтекатель ракеты, не давая земному посланцу преждевременно охладиться перед дальней дорогой. «Молния» попадала на свою эллиптическую орбиту в два этапа: сначала три ступени ракеты выводили ее на низкую промежуточную орбиту, а затем, примерно через полчаса, на высоте около 600 км над Южным полушарием, где-то над мысом Горн запускалась четвертая ступень, которая поднимала апогей орбиты почти до 40 тыс. км, уже над нашим Северным полушарием. «Южные» условия запуска не помогали, наоборот, северная «Молния» успевала остыть, а когда ее снова увидели, то поняли, что батареи и штанги не раскрылись. И ничего уже нельзя было сделать: они открывались пружинными механизмами одноразового действия.

Так и летала эта «Молния» с полуоткрытыми солнечными батареями (СБ) и антеннами в течение нескольких месяцев, не способная выполнить основную задачу: транслировать сигналы связи. У конструкторов и испытателей ОКБ-1 наступил очередной аврал: нужно было отыскать причину, а затем устранить ее до следующего пуска. В общей сложности на это ушло почти восемь месяцев, так получилось, что сначала было не до них: проектов тогда было много.

Когда воспроизвели новые орбитальные условия в барокамере, обнаружили, что замерзли электрические кабели, обмотанные «не той» изоляцией, а силы пружин не хватило. В те годы хорошо отлаженной методики отработки механизмов раскрытия и развертывания еще не существовало.

Сотрудников нашего отдела привлекли к возникшей проблеме не только в качестве консультантов. Как часто бывало при серьезных отказах, дело не ограничилось усовершенствованием дефектного узла, шарниров штанг, отягощенных электрическими кабелями. К пружинному механизму решили добавить электропривод, который мы разработали спешно, в аварийном порядке. Идея заключалась в том, что в случае возрастания сопротивления привод не только мог повернуть застывший шарнир; существенное преимущество модифицированной конструкции состояло в возможности многократного включения. При замерзании можно было повторно включить привод, предварительно подставив замерзшую сторону Солнцу. Подобные конструкции, способные гибко выполнять свои функции, мы стремились использовать во многих проектах в последующие годы.

Опыт давался непросто, часто болезненно, но входил в нас крепко и надолго. Через много лет мне самому пришлось заниматься созданием и раскрывающихся СБ, и механизма остронаправленных антенн.

Третья «Молния», запущенная в апреле 1965 года, раскрылась нормально и успешно транслировала телепередачи с Красной площади о первомайских торжествах.

*
**

Рассказывая о первом происшествии уже на орбите, я забежал вперед. Надо вернуться к проектному этапу.



Евгений Николаевич Токарь

«Молния» содержала целый ряд электромеханических систем. Не могу не остановиться подробнее на оригинальной и эффективной системе силовой гиростабилизации. Концепцию гироскопического маховика предложил и спроектировал сотрудник Раушенбаха, тогда — кандидат физико-математических наук Е.Н. Токарь. Я часто сталкивался с этим очень талантливым человеком. Система гиростабилизации была, пожалуй, его самой крупной и яркой практической разработкой. Вскоре он защитил докторскую диссертацию, посвященную гироскопическим устройствам для космической техники, а позднее стал больше заниматься теорией и преподавательской деятельностью и почти отошел от практических дел. Четверть века спустя мы с главным управленцем В.Н. Бранцем, тоже активным участником создания системы управления «Молнии», работая над солнечным парусным кораблем, пытались привлечь Токаря к проектированию, но по-настоящему увлечь его не смогли. А жаль, концепция парусника базировалась на использовании гироскопических эффектов для управления ориентацией необычной тонкопленочной конструкции огромных размеров. Опыт и талант создателя гиростабилизатора «Молнии» могли бы принести огромную пользу.



Илья Абрамович Вевюрко

Поначалу Калашников толкал наш отдел к тому, чтобы взять детальную разработку гиростабилизатора на себя. Однако вскоре мы поняли, что ни у нас, ни у нашего производства нет необходимых для этого условий. К тому же мы только приступили к проекту стыковочного механизма для кораблей «Союз». Несмотря на всю мою жадность к новой интересной работе, техническое задание на гиростабилизатор ушло на сторону. Системой стал заниматься ВНИИ электромеханики под руководством Н.Н. Шереметьевского. Лабораторию, которой поручили эту тему, возглавлял другой очень талантливый инженер и ученый И.А. Вевюрко. О нем тоже надо рассказать подробнее.

Вевюрко был инженером-электромехаником широкого диапазона и человеком величайшей преданности делу. За свою творческую жизнь он создал несколько принципиально новых прецизионных систем, в том числе и этот гироскопический стабилизатор. Блестящая концепция, предложенная Токарем, нашла не менее выдающихся исполнителей, хотя, пожалуй, последнее слово не отражает того вклада, который в несли Вевюрко и его товарищи в конструкцию силового гиростабилизатора. Это была по-настоящему уникальная разработка: маховик мог отклоняться в упруго-вязком подвесе, поддерживая ориентацию всего спутника продольной осью на Солнце, подставляя его лучам «ромашку», лепестки солнечный панелей; кроме того, скорость в ращения маховика могла изменяться, за счет чего спутник поворачивался вокруг продольной оси так, чтобы антенны смотрели на Землю. Все работало как часы, по командам от солнечных и земных датчиков. Насколько мне известно, за долгие 30 лет эксплуатации «Молнии» не зафиксировано ни одного существенного отказа силового гиростабилизатора.

Честь и хвала создателям этой системы!

*
**

Согласно общепринятому мнению, в длительном полете первой отказывает электромеханика, а уже потом электроника. Для нашего спутника связи статистика в полете в целом печальна: среднее время наработки до отказа (СВНдО) составляло в сего 2,5 года. Так вот, на практике основная вина ложилась в основном на электронные приборы. Нужно сказать, что с самого начала перед разработчиками «Молнии» ставилась сравнительно скромная задача: обеспечить работоспособность спутника связи в течение примерно двух лет. Тогда, в начале 60-х, такой срок казался немалым. Несмотря на большой опыт и хорошую базу, пришлось изрядно потрудиться, чтобы увеличить ресурс работы и повысить надежность многих систем. Однако прошли годы, а средний срок эксплуатации советских спутников связи лишь на немного превысил 2-летний период, тогда как для передовых зарубежных компаний космической связи он перешел 10-летний рубеж.

Невысокая надежность компенсировалась большим числом спутников: в среднем, на орбиту ежегодно запускалось по пять «Молний». Всего с 1965 по 1984 год запустили 102 «Молнии», причем 10 — только в 1975 году! Солидная доля этих спутников обслуживала Министерство обороны и так называемые спецканалы — связь для высших партийных и административных органов.

Интересно, подсчитывалась ли стоимость этого космического сервиса и оценивалась ли его эффективность?

*
**

Новой принципиальной задачей для нашего отдела стало создание следящего привода для основной антенны ретранслятора «Молнии». Мне пришлось руководить этой разработкой.

Трансляция видеосигнала и звукового сопровождения, то есть прием сигнала на борт, усиление и обратное излучение на Землю, производилась через параболические остронаправленные антенны. Корпус спутника постоянно ориентировался на Солнце так, чтобы панели СБ освещались и генерировали электроэнергию, а специальная система дополнительно вращала антенны таким образом, чтобы их ось направлялась на Землю. Только в этом случае обеспечивалась ретрансляция достаточно мощного радиосигнала.

Уже в принципиальной схеме нашего привода многое получилось необычным. Требовалось обеспечить не только слежение с малой скоростью, но и быстрый поиск Земли; в результате появились два контура управления и дополнительные элементы. Совсем уж экзотическим стало требование сбалансированности вращающихся частей: говоря техническим языком, чтобы исключить рывки при трогании и остановке привода, требовалось «обнулить» суммарный момент количества движения вращающихся деталей. Это было важно для того, чтобы антенна, расположенная на длинной штанге, в свою очередь, не дергалась и не вносила искажений в передачу ТВ-сигнала и другой информации. В конструкцию привода ввели небольшой маховик, который компенсировал избыток кинетического момента.

Два других специфических требования предъявлялись к следящему приводу антенны: высокая точность наведения и длительный ресурс работы. То, что привод находился в открытом космосе, в глубоком вакууме, усложняло задачу; до этого времени мы еще не создавали подобных конструкций. Возникло сразу несколько серьезных проблем, которые удалось довольно быстро решить.

Как и большая часть остальной аппаратуры спутника, привода работали от источника постоянного тока. В те годы еще не существовало бесщеточных электродвигателей. Не имея альтернативы, мы решили базироваться на старой доброй «серии Д» завода «Машиноаппарат». Чтобы оставаться на этой технической базе, необходимо было увеличить ресурс двигателей с нескольких десятков часов до нескольких тысяч. Даже в случае успеха не приходилось рассчитывать на то, что щетки так долго проработают в глубоком вакууме. Вспомнив, как несколько лет назад мне удалось решить проблему электропотребления насосов для перекачки теплоносителя космического корабля «Восток», я предложил снизить скорость в ращения будущего электродвигателя в несколько раз. Это позволяло убить двух зайцев: во-первых, уменьшался суммарный пробег щеток, то есть сокращался своеобразный километраж; во-вторых, резко уменьшались динамические нагрузки на щетки, которые определялись в основном биением коллектора за счет неточности ряда деталей и возрастали пропорционально скорости вращения, да еще — в квадрате. Первые экспериментальные результаты, как и пять лет назад, превзошли в се оптимистические прогнозы, их тоже можно было возводить в квадрат.

Второй шаг заключался в том, что мы решили загерметизировать весь привод, создать нормальный воздушный климат для всех трущихся элементов, включая щетки электродвигателя; для всех подвижных деталей, кроме одной — уплотнителя выходного вала, первого космического сальника. Трудно было рассчитывать на то, что в коварном космосе сальник почти непрерывно проработает несколько лет и сохранит герметичность; а если он потечет, то щетки все-таки износятся. Решили воспользоваться древнейшим способом повышения надежности — дублированием: поставили дополнительный уплотняющий барьер. Чтобы застраховаться, прибегли к еще одной электромеханической, точнее — магнитной хитрости. Совместно с машиноаппаратчиками сконструировали специальную магнитную муфту. Две ее части — в едущая и ведомая, разделенные тонким немагнитным экраном, — могли вращаться синхронно, передавая крутящий момент. Преимуществом такой муфты перед сальником стало отсутствие в ней трущихся «со злобой» (по выражению Вильницкого), то есть под нагрузкой, деталей. Все щетки, все другие быстровращающиеся элементы остались за вторым магнитным барьером.

Позднее на заводе «Машиноаппарат» создали целую серию магнитных муфт, и даже электродвигателей со встроенными муфтами такого типа. Эта электромеханика с магнитными компонентами до сих пор функционирует на космических орбитах, спутниках связи и других космических аппаратах.

Привод разрабатывали наши лучшие конструкторы, среди них В. Кульчак и Р. Максимова; много сил отдал этому делу наш ветеран В. Корчинский, тоже пришедший к нам из ЦАКБ, от Грабина. Электрическую схему привода «вязала» лаборатория О. Розенберга, в которой также испытывался привод на Земле.

Следящий привод антенны действительно получился хорошим: исправно, без сбоев он отслеживал Землю с орбиты, не отказал, не подвел за 30 лет эксплуатации спутника связи. За это время в космосе побывало в общей сложности несколько сотен этих приводов.

*
**

Остановлюсь еще на двух направлениях, к которым имел отношение наш отдел.

Первое из них было связано с системой терморегулирования, сокращенно — СТР, для которой мы традиционно разрабатывали электромеханические узлы: привода, регуляторы и насосы, часто называемые у нас гидроблоками. Тоже традиционно, начиная с «Востоков», СТР базировалась на жидкостном контуре теплоносителя, с помощью которого тепло отбиралось от энергопотребляющих приборов и узлов и сбрасывалось в космос через наружный радиатор. Эта эффективная система очень подходила для космических кораблей, составленных из нескольких отсеков, включая покрытый теплозащитой СА. СТР перекочевала на беспилотные космические аппараты, в том числе на «Молнию». Причина такого постоянства, в частности, связана с тем, что все приборные отсеки аппаратов выполнялись герметичными. Так, конечно, было спокойнее: степень риска в привычной для приборов рабочей среде уменьшалась. Однако проводимая техническая политика надолго затормозила создание приборов, способных функционировать в вакууме. Порой разработчик просто не знал возможности своего изделия: испытания в вакууме не проводились, и он не мог дать никаких заключений о работоспособности прибора или отдельного компонента. Это обстоятельство дополнительно затормозило развитие советской космической электроники и средств связи, которые так и не смогли выйти на передовые позиции, если не сказать хуже.

До самого последнего времени советские (и российские) спутники связи летали в герметичном исполнении, а аппаратура охлаждалась при помощи теплоносителя. Лишь с созданием спутников нового поколения «Ямал» появилась новая электроника и новая СТР, но это уже новое время и другой рассказ.

Второе направление, связанное с необходимостью увеличить продолжительность жизни аппаратуры, заставило приступить к созданию компонентов с длительным ресурсом, в том числе электродвигателей. За разработку бесщеточных двигателей постоянного тока взялся ВНИИ электромеханики, где под руководством И. Вевюрко и Е. Михайлова была создана уникальная серия электродвигателей с электронным коммутатором на базе датчика Холла, заменившим традиционные щетки. Сочетая разные направления современной механики, электротехники и электроники, талантливые инженеры продвинули эту область техники и подняли ее в те годы на очень высокую ступень.

*
**

Несмотря на некоторые издержки и недостатки с созданием «Молнии», с вводом ее в эксплуатацию в очень короткие сроки советская космическая связь сразу вышла на самые передовые позиции. Сложилась благоприятная ситуация, для того чтобы развивать эту отрасль в глобальном масштабе. Однако процесс шел медленно, со многими обычными для нас советскими перекосами, в первую очередь в части коммерческого использования космического экспорта. Здесь дела шли откровенно плохо по многим причинам, прежде всего из-за непонимания руководителями страны экономической перспективы нового вида связи. Пересиливало стремление закрыть, засекретить наши достижения, не допускать в этот мир «лазутчиков империализма». Были и другие причины субъективного характера.

В последующие годы техника космической связи в Америке, а затем и в Европе, в первую очередь за счет геостационарных комсатов* ушла далеко вперед. В то же время никто не воспроизвел «Молнию», с ее оригинальной, самобытной концепцией спутника связи, способного обслуживать районы высоких и приполярных широт, практически невидимых с геостационарной орбиты.


* Comsat (communication satellite) — спутник связи.

Уже в 1965 году началось изготовление спутника связи на Красноярском специализированном предприятии с условным названием КБ точной механики. Еще один королёвский ведущий конструктор-ракетчик М.Ф. Решетнев стал сначала главным конструктором «Молнии», а позднее — Генеральным конструктором спутниковых систем связи.

С одной стороны, решение о передаче связной темы было правильным. Расширялась география космической техники, к ее развитию привлекались новые силы. К тому же, Сибирь, после Дальнего Востока, оказалась самой заинтересованной в средствах космической связи. Но в принятом решении имелся существенный изъян: от этой важнейшей темы по существу отстранили наше головное КБ, в том числе уникальную группу проектантов В. Дудникова — тех, кто зачинал «Молнию», успешно довел ее до ума и дал путевку в жизнь, а за ними стояли конструкторы и создатели многих систем. Специалистам красноярского КБ под руководством Решетнева, которые сами не участвовали в разработке первой «Молнии», потребовалось немало времени, чтобы начать собственные проекты.

Многие осуждали и осуждают Королева за этот поступок, считая его стратегически неправильным. Однако надо учитывать планы и действия нашего Главного и обстановку в РКТ в целом в середине 60-х. Прежде всего он расчищал дорогу пилотируемой космонавтике, в развитие которой верил безгранично. Он, похоже, действительно надеялся, что в космос будут посылать даже по профсоюзным путевкам. В конце века это стали называть космическим туризмом, да еще с коммерческим уклоном.

Еще раз не могу не сказать: единственное, за что можно упрекнуть Королева, так это за то, что его вовремя не сделали Генеральным конструктором. Думаю также, что Королев скорректировал бы эти планы, оставив за собой принципиально новые связные разработки и общую техническую политику. Теперь известно только то, что его преемники не сделали этого. Группу Дудникова постепенно стали бросать на самые разные проекты; после смерти лидера коллектив распался, хотя отдельные его члены еще долгие годы занимались связным и просто космическим делом.

Потерянного не вернуть. Больше всего жаль специалистов ОКБ-1, в творческой жизни которых связная тема была главной и которые могли бы еще очень многое сделать для развития связи в нашей стране за все эти годы. Безусловно, техника советской космической связи развивалась бы более стремительно, могла бы сохранить передовые позиции и продвинуться вперед, если бы наше КБ непосредственно работало над созданием новых спутников связи, в частности — осваивало геостационарную орбиту.

Есть о чем пожалеть, однако прошлого, как известно, не вернешь. Жаль Славу Дудникова. «Молния» над Землей — это памятник ему и его товарищам.

*
**

Спустя 25 лет королёвское КБ под руководством Ю.П. Семенова и под новым названием РКК «Энергия» вернулось к связной теме. Пришло время, когда многим стало ясно, какую роль играет космическая связь для стран и народов, для человеческой цивилизации в целом. В самом конце перестройки мне тоже пришлось прикоснуться к этой теме на проектном уровне. Базируясь на разработках КГК — крупногабаритных конструкций, в первую очередь многометровых разворачивающихся антеннах, — мы предложили создать большие связные платформы. Однако эта тема не нашла поддержки и была закрыта, видимо, для таких больших конструкций еще не пришло время. Позднее в РКК «Энергия» разработали и запустили на геостационарную орбиту спутник связи классической размерности «Ямал», о котором уже упоминалось. Это произошло в новые времена, на рубеже веков, в 1999 году.


1.11. Искусственная тяжесть


Невесомость — самая разительная особенность космического полета. Она больше в сего действует на человека в космосе, и не только на него. Невесомость очень трудно воспроизвести в земных условиях, а когда это удается, то лишь на короткий отрезок времени.

В течение всей своей инженерной карьеры мне не раз пришлось заниматься воспроизведением на Земле невесомости, точнее — псевдоневесомости, заставляя парить модели и макеты космических аппаратов. Такое моделирование требовалось для отработки стыковки, манипулирования, других орбитальных операций. Лишь однажды мне пришлось работать над тем, чтобы воспроизвести «весомость» в космосе, создать искусственную тяжесть на орбите. С трагическим уходом из жизни нашего Главного конструктора постепенно многое стало меняться. Этот беспрецедентный проект, который не удалось повторить никому до сих пор, стал лебединой песней нашей совместной работы с С.П. Королевым. К большому сожалению, сделать это не удалось. Работа оборвалась на заключительном этапе, когда все было подготовлено к полету; оборвалась неожиданно и резко, как будто кто-то перерезал трос, на котором крутился космический корабль, вращавшийся на орбите.

*
**

Б.В. Раушенбах, соратник Королева, рассказал о том, как возникла идея создания искусственной тяжести на космическом корабле. В конце зимы 1963 года Главного конструктора, расчищавшего дорожку от снега у своего домика на Останкинской улице (теперь — улица Академика Королева), можно сказать, осенило. Не дождавшись понедельника, он позвонил по телефону Раушенбаху, который жил неподалеку, и вскоре они вместе стали «расчищать дорогу» в космос для длительных полетов.

Идея, как чаще всего бывает, оказалась простой; она и должна быть простой, иначе на практике может ничего не получиться.

Как известно, на каруселях и других вращающихся аттракционах создается весьма продолжительная искусственная тяжесть за счет центробежных сил. Поэтому профессиональная карусель — центрифуга — стала одним из действенных инструментов для отбора и тренировки космонавтов, на ней проверяют способность выдерживать повышенную тяжесть. Большие перегрузки неизбежно действуют во время подъема в космос, на пути к невесомости, в полете на ракете. Создать искусственную карусель на орбите Королев задумал не случайно.

Уже следующий за Гагариным полет в космос принес большую неожиданность. В течение суток второй космонавт планеты Герман Титов испытывал в невесомости, мягко говоря, большой дискомфорт. Полет Титова наверняка повлиял на решение Королева начать разработку искусственной тяжести. После полета Титова внесли также существенные коррективы в методы как отбора, так и тренировок кандидатов в космонавты. Тем не менее летом 1963 года еще большие проблемы возникли в трехсуточном полете Валентины Терешковой. Однако истоки ее проблем находились больше в психологической, чем в физической сфере, а также были связаны с ее профессиональной подготовкой (она была лишь парашютисткой, а не инженером, окончившим МАИ, как ее соперница В. Пономарева). После того как ее благополучно вернули на Землю, Главный конструктор даже дал зарок больше не пускать женщин на орбиту, тем более — в одиночку, хотя, безусловно, Валентина Владимировна была смелой женщиной. Первая в мире женщина-космонавт, оказавшаяся также очень честолюбивым человеком, не была, конечно, заинтересована в том, чтобы кто-то слетал лучше нее. В ту пору в отряде космонавтов все еще проходили подготовку несколько женщин. Помню, что лекции, посвященные искусственной тяжести, девушки, которых Гагарин называл почему-то мамзельками, слушали очень внимательно. Однако вскоре они исчезли с «космического горизонта». Первым запрет на появление женщин в космосе нарушил через двадцать с лишним лет Глушко. Надо сказать, он выбрал для этого почти профессиональную летчицу Светлану Савицкую, которой оказалась не страшна не только невесомость: она первая из женщин вышла в открытый космос.

Невесомость сильно влияет на организм человека, на его физическую природу. В первых кратковременных полетах это действие ограничивалось в основном большим или меньшим расстройством вестибулярного аппарата. Когда начались длительные полеты в космос, узнали гораздо больше о специфике этого воздействия: о постепенной перестройке сердечно-сосудистой системы, атрофии мышц, особенно нижней половины тела, а также изменении обмена веществ в костях, о так называемом вымывании кальция. Космическая медицина и инженерия разработали комплекс мер и средств для уменьшения этого воздействия. Без этих мероприятий длительные полеты в космос практически невозможны.

Рассказывая об искусственной тяжести, я посчитал уместным коснуться также некоторых других аспектов, связанных с космическими полетами, по крайней мере в недавнем прошлом. Космонавт, попав в невесомость, освобождался от оков земной тяжести, а после возвращения с орбиты оставался в каком-то смысле внеземным, космическим человеком. Он продолжал пребывать, образно говоря, в условиях земной, искусственной невесомости, свободной от многих уз, которые связывали его до полета. После возвращения на грешную землю временный «небожитель» сохранял за собой часть свободы, приобретенной в космосе. Социальные цепи общества уже не действовали на него так сильно, как до полета.

Человек противоречив, его природа, физическая и социальная, двойственна. Об этом написано очень много, начиная с самого Дарвина, но, пожалуй, лучше всего — в книге известного зоолога Д. Морриса «Голая обезьяна». Человеку приходится постоянно сдерживать свои изначальные обезьяньи инстинкты, а они складывались многими тысячелетиями, когда наши предки жили полигамными стаями на деревьях, задолго до того как начали формироваться социальные нормы нашей цивилизации. Когда тормоза этих норм отпускают, древняя природа «голой обезьяны» начинает действовать во всю мощь.

Я, конечно, не являюсь ни профессиональным психологом, ни социологом и затрагиваю весьма деликатную тему, связанную с известными личностями. Все-таки мне хотелось поделиться своими многолетними «космическими» наблюдениями. Пусть не обижаются на меня космонавты и астронавты, я много раз на себе испытывал нашу общую человеческую природу, и ее обезьянью и социальную составляющую. Я полагаюсь также на многолетнее взаимопонимание и дружбу с героями космоса, россиянами и американцами.

История первых космонавтов, как, впрочем, и американских астронавтов, особенно интересна и примечательна, в том числе в связи с затронутой темой.



Первый набор советских космонавтов

Изначально кандидатов в первый «гагаринский» отряд отбирали по секретной директиве Главкома в частях ВВС, с тем чтобы отправить их в Москву в отряд спецназначения. Критерием отбора были безупречное здоровье, возраст (около 30 лет) и небольшой рост. Это происходило в августе 1959 года, то есть уже тогда, когда «великолепную семерку» астронавтов открыто объявили и обсуждали всей Америкой. В Советском Союзе об этом мало кому было известно. В условиях нашей полной секретности ни сами кандидаты, ни их командиры фактически не понимали, какие полеты им предстояли, и уж, конечно, не представляли, что их ожидало после полета. В то же время мотивы их откомандирования из глубинки «наверх», в Москву, включая самого Гагарина, могли быть самыми неожиданными. Очень хороших отдавать всегда бывало жалко, если, конечно, не какие-то чрезвычайные обстоятельства; это относилось, вообще говоря, не только к летчикам. Во время заключительной фазы отбора уже в Москве решающим критерием становились мандатные показатели, а также личная готовность лететь в неизведанное. Отряд космонавтов получился довольно большим, примерно в три раза больше американского.

До первого полета врачи, психологи, у нас и за океаном, строили самые невероятные предположения о том, как может реагировать человеческий организм, включая психику, на космические условия. Это обстоятельство тоже оказало влияние на подготовку к первому полету, особенно — в Америке.



Героический Гагарин

Запуск первого корабля «Восток» перевернул представление не только о самом полете на орбиту, но и о статусе космонавтов после их возвращения на грешную землю, в объятья популярности и славы. Вместе со взлетом на высокую орбиту престиж космонавтов поднимался на столь же большую высоту, а после приземления оставался где-то там, наверху — за облаками. Все эта космическая трансформация проявилась особенно ярко на самом Гагарине. Слава первого человека Вселенной оказалась вообще ни с чем не сравнимой. Взлетев на орбиту простым советским лейтенантом и лишь кандидатом в члены партии, через полтора часа он приземлился не только майором и членом КПСС, но и всемирно известным героем. Ни один человек на Земле, ни до, ни после, не приобрел в одночасье такой всемирной славы. Она открыла Гагарину, а за ним и другим космонавтам, простым 20-летним парням из моего поколения детей войны, совершенно фантастический мир огромных возможностей. До полета наши космонавты, как все советские люди, были зажаты со всех сторон жесткими экономическими рамками и нормами коммунистической морали, которые выходили порой за все разумные пределы. Недаром Королев сразу же после в стречи на Земле предупреждал Гагарина еще об одном испытании славой, можно сказать, дополнительной «космической тяжестью».



Николай Каманин — генерал первых советских космонавтов

Надо отдать должное Юрию Алексеевичу: в своем кругу и в общении он оставался простым и обаятельным человеком, а главное, сохранил преданность своим товарищам и своему делу. С другой стороны, совсем молодой и привлекательный парень постоянно попадал в объятья мужчин и женщин, которые искренне, по-человечески готовы были отправиться с ним в любой дальний и опасный полет, им тоже хотелось прикоснуться, так сказать, к космической невесомости на Земле и хотя бы на время освободиться от повседневных земных уз.

«Каждый будет как Гагарин, каждый будет как Титов» — пелось в одной популярной песенке того времени; кто-то из первого отряда 20-летних пытался даже до полета вырваться из-под почти палочной дисциплины генерала Николая Каманина, Героя Советского Союза № 2, человека совсем другого поколения и воспитания. Некоторым это стоило карьеры, и даже больше. После полета в космос справиться с отклонениями от «генеральской линии» было гораздо сложнее, не под силу даже боевому генералу. Королев называл молодых космонавтов ореликами: «Орлята учатся летать...»; а социальная зрелость приходила, похоже, где-то после 30-ти, и то — не ко всем...

О первых космонавтах, об их полетах и о том, как повлияла на них космическая и земная невесомость, можно прочитать в неожиданных дневниках Каманина, опубликованных после его смерти.



В. В. Терешкова после приземления

Что касается Терешковой, то она как честолюбивый человек всю свою послеполетную жизнь стремилась доказать, что в космосе все делала правильно и хорошо. Гагаринское «Поехали!» она сменила на свое — «Небо, сними шляпу!», и это, похоже, стало ее девизом на всю оставшуюся жизнь. Валентина Владимировна действительно стала и главной советской женщиной, и даже кандидатом технических наук, и первой женщиной-генералом (но это уже при Ельцине). Условия искусственной «невесомости» на Земле, отсутствие многих оков, благоприятствовали этим достижениям.

Дополнительно к тому, о чем говорилось в рассказах 1.6 и 1.7, представляет интерес остановиться на особенностях американского опыта.

Как уже упоминалось, космические программы США были несекретными с самого начала. Первых астронавтов не только объявили открыто; первая семерка стала «великолепной» за два года до первого полета. Будущие «небожители» сразу привлекли широкое внимание, ведь заочное соревнование с Советами в то время нарастало. Бурная американская пресса сделала их чуть ли не национальными героями, выставляя еще нелетавших астронавтов напоказ. Их представляли этакими современными рыцарями, которые не побоялись не только полететь в такой далекий и неизведанный космос, но и бросить вызов этим дерзким Советам, осмелившимся обгонять саму Америку. Нам это могло бы даже польстить, однако тогда мы почти ничего не слышали о такой широкой кампании, связанной с нашей работой.

Популярность имеет в Америке особое значение. Понятно, что наиболее известными из них становились те, кто умел лучше преподнести себя публике, кто умел выступать. В частности, поэтому некоторые насавцы считали, что звание астронавта надо присваивать только после полета.

Также рассказывалось, что американцы запустили в космос пару человекообразных обезьян по имени Хэм и Энос, и это, похоже, не случайно. Хэм слетал даже раньше Гагарина, в конце января 1961 года, правда, лишь по баллистической траектории. Полет Эноса предшествовал орбитальному полету Дж. Глена. Таким образом они решили прежде всего проверить, как воздействует космос на физическую, обезьянью природу. Хэм и Энос оказались стойкими человекообразными, а полученные результаты внушали уверенность в том, что с человеком, по крайней мере, с его обезьяньей природой, не должно произойти ничего страшного. Однако это был одиночный опыт, и первые космические доктора, как упоминалось, сначала требовали статистических данных, а статистику можно собрать лишь на людях. Они показали, что для полета в космос требуются тщательный отбор, интенсивные предполетные тренировки и, в ряде случаев, — период адаптации в начале полета.

В целом можно сказать, что космический полет не смог изменить обезьянью моноприроду шимпанзе. С проблемами человеческого организма в космосе столкнулись позже, когда полеты стали длиться десятки и сотни суток. О том, как реагировала психика человека и как могла измениться другая, социальная природа «голой обезьяны» после полета, мало кто вначале думал.

В ту первую группу астронавтов, как упоминалось, тоже попали разные люди, с разными профессиональными и человеческими качествами, «семерка» оказалась очень неровной, в целом, не такой великолепной, как принято считать. Можно увидеть, что и здесь, в Новом Свете, двойственная природа человека проявилась вовсю; космос, вернее, соревнование за превосходство в космосе, оказал сильное воздействие на пилотов, неожиданно попавших сразу в элитную группу. Надо заметить, что астронавты были в среднем лет на десять старше космонавтов, а в 20-летнем возрасте наша обезьянья природа проявляется гораздо сильнее. Новые условия подействовали на астронавтов по-разному в зависимости от личности, от основных мотиваций и от устойчивости. Надо отметить, что западная цивилизация была более сбалансированной, а люди — более дисциплинированными, не говоря уже об экономических устоях развитых стран. С другой стороны, личная свобода не была такой ограниченной и держалась на реальных правах и большей независимости гражданина от государства, а не на ограничениях, часто — сверх всякой меры, как в нашей стране. Что касается экономических условий астронавтов, то они тоже существенно улучшились вскоре после зачисления в отряд, главным образом, за счет контракта с журналом «Лайф», который, приобретя эксклюзивные права, стал раскручивать астронавтов и их семьи. Тем не менее популярность и дополнительная свобода как результат короткого прыжка за облака и возвращения в земную невесомость не могли проявиться так разительно, как у нас.

В целом после возвращения с орбиты первые астронавты, как и космонавты, резко увеличивали свою популярность и усиливали свои особые позиции, попадая в особые условия, то, что я назвал искусственной невесомостью.

Приемный конус, снятый с LM «Аполлона-14» (командир — А. Шепард) и возвращенный на Землю, со следами четырех неудачных попыток стыковки и одной успешной, которые выполняли при полете «Аполлона-14» после его разгона к Луне. Еще один след — шестой — относится к успешной стыковке с первой попытки на окололунной орбите после взлета LM с Луны

Первый американец, совершивший прыжок в космос в мае 1961 года, стал национальным героем сразу после приводнения. Алан Шепард, хотя и отстал от нашего Гагарина, сделал головокружительную карьеру, став в конце концов и адмиралом, и миллионером, и многим кем еще. Как и Гагарину, надо ему отдать должное: он был по-настоящему смелым и везде настоящим, когда надо — неотразимо улыбчивым, а когда надо — очень серьезным и даже язвительным и циничным. Он был хорошим летчиком, а стал выдающимся астронавтом, хорошо поработал и наземным «кэпкомом»* на связи с другими астронавтами, и по-адмиральски командовал целым отрядом (а это было совсем не просто), был и бизнесменом, одним словом, он раскрылся как многогранная личность. В 70-е годы в Хьюстоне нам рассказывали, что никто не ездил быстрее, чем он, на «фривейях»**, а полиция не могла за ним угнаться. Ему удалось справиться с серьезным недугом, и он, вернув себе летный статус, сумел слетать на Луну в качестве командира «Аполлона-14», и это — сразу после аварии на «Аполлоне-13». Ведь это его экипаж уже на трассе полета к Луне только с четвертой попытки состыковал свой «Аполлон» с ЛМ (лунным модулем), из-за того что заели защелки стыковочного механизма; несмотря на то что впереди им предстояла еще одна стыковка на лунной орбите после взлета с ночного светила, он не побоялся повторения такого серьезного отказа.


* Капком (Capcom — capsule communicator) — на связи с капсулой, начиная с программы «Меркурий», так стали называть оператора связи с космическими экипажами

** Freeway — свободная (от пересечений на одном уровне) дорога

Другой американец, первым из астронавтов облетевший вокруг Земли в начале 1962 года, после полета решил посвятить себя политической карьере, став, правда, не без трудностей, первым астронавтом-сенатором. О нем, о его летных и других качествах подробно написал К. Крафт, которому пришлось конфликтовать с Дж. Гленом еще до начала космической эры, когда тот служил простым майором в морской авиации. Нет, пожалуй, не простым: не став ассом, он научился рекламировать свои достижения и развил большую склонность «выступать». Попав в астронавты, еще до полета в космос он старался держаться поближе к начальству, особенно к тем, кто не очень разбирался в технике. В то же время надо отдать должное Глену, он был и остался смелым человеком, и тогда — на заре космической эры, и 40 лет спустя, когда после многолетних сидений в вашингтонском Капитолии уже в 77-летнем возрасте решился слетать на орбиту на «Спейс Шаттле». Уместно отметить, что не все покорители космоса были по природе такими смелыми.

Что касается парламентской деятельности, можно сказать, что наши космонавты тоже преуспели на этом поприще: страна Советов очень охотно делала их и делегатами, и депутатами. Эта традиция не очень изменилась и тогда, когда волна демократии захлестнула нашу многострадальную страну.



С. Анохин (справа) и Л. Жаворонков (оператор управления полетом)

Из приведенных примеров видно, как послеполетная, искусственная невесомость способствовала раскрытию талантов космонавтов и астронавтов на Земле, конечно, с учетом их индивидуальных качеств. Наибольшего успеха достигали, на мой взгляд, те, кто находил гармонию в вечном противоречии нашей натуры.

В дополнение к уже рассказанному читатель сможет далее прочитать о том, как космонавты совершенствовали свою подготовку (под руководством заслуженного летчика-испытателя С.Н. Анохина), о том, как они вели себя в условиях космической и искусственной невесомости.

*
**

Надо сказать, что создание искусственной тяжести рассматривалось многими корифеями теоретической космонавтики, начиная с нашего Циолковского и немца Оберта. Уже в средине 50-х фон Браун, работая в Америке над ракетами, спроектировал космическую станцию с вращающимся «колесом», по периферии которого создавалась перегрузка.

В 1963 году Королев думал о полетах на Луну и даже к Марсу: в ОКБ-1 уже разрабатывались проекты межпланетных кораблей. И уж, конечно, не случайно будущая система искусственной тяжести рассчитывалась на одну шестую земной — такую же, как на Луне.

Размеры корабля слишком малы, чтобы вращать его для создания центробежной силы; требовался противовес, система связанных между собой тел, вращающихся в космосе. Для орбитального корабля сыскался идеальный противовес — последняя ступень ракеты-носителя. Ступень выходит на орбиту и отделяется, отбрасывается от него как ненужная, уже бесполезная пустая «бочка». Ее-то и «подобрал» Королев для своего эксперимента. Первые оценки показали, что необходимы большие, почти космические размеры карусели. Дело в том, что перегрузка пропорциональна расстоянию от центра вращения и скорости вращения в квадрате. Из «карусельной практики» и из опыта состоявшихся и несостоявшихся космонавтов известны те неприятные ощущения, которые испытывает человек на вращающейся платформе.



Исходная конфигурация системы искусственной тяжести — ИТ (до перецепки)

Я тоже не забыл опыта своей юности. В конце 40-х годов в парке Горького в Москве работали аттракционы, на одном из них в виде вращающегося конического диска помещали любителей острых ощущений. Диск постепенно раскручивался, набирая скорость. После «схода с орбиты» космонавты 40-х годов приземлялись, врезаясь в полужесткий барьер и испытывая солидные перегрузки: техника мягкой посадки в то время еще не была разработана. Наиболее стойкие и честолюбивые стремились удержаться на диске как можно дольше. Поздно вечером в последней попытке мы остались вдвоем в самом центре набравшего обороты диска. «Держись крепче!» — крикнул партнер. В этот момент мне уже было не до рекордов: скорее бы «приземлиться». Как выяснилось много лет спустя, «виновато» было ускорение Кориолиса, которое разболтало мой вестибулярный аппарат. Не крути головой — главное средство против укачивания.

Когда стали разрабатывать систему искусственной тяжести, космическая медицина уже поднялась на высокий научный уровень. Скорость, с которой можно безболезненно вращать космонавта на орбите, определили как раз по ускорению Кориолиса, задавшись относительной скоростью перемещения космонавта в корабле, в се — строго по законам классической механики. В итоге нам, инженерам-создателям системы, досталась от специалистов по космической медицине угловая скорость в два оборота в минуту. Чтобы достичь лунной перегрузки, то есть центробежного ускорения в 1,5 м/с2, требовался трос длиной в 300 м. Однако это было еще не все. Сразу раскрутить «карусель» до такой скорости не удавалось, и вообще разведение корабля с последней ступенью оказалось наиболее тонким и опасным этапом образования вращающейся системы. Подготовили следующий космический сценарий.



Окончательная конфигурация ИТ (после перецепки). Сила искусственной тяжести прижимает космонавтов к креслу

После выхода на орбиту «Восход» отделялся от ракеты-носителя, оставаясь связанным с ним тросом. Пустая, без топлива и окислителя последняя ступень РН «Восток» — ракетный блок И, как его называли в ОКБ-1, — весила около 3 т. Через несколько секунд после расхождения метров на пять включались два пороховых реактивных двигателя, которые сообщали дополнительный импульс блоку И, увеличивая скорость расхождения (радиальную скорость) до 10 м/с. Сматывая трос с барабана лебедки, ракетный блок удалялся от корабля, пока расстояние не увеличилось до 1000 м. Ни мало ни много, а для эксперимента требовался 1 км троса. Погасив скорость расхождения, лебедка выдавала сигнал на включение еще одной пары пороховых реактивных двигателей, на этот раз — чтобы закрутить систему, по терминологии классической механики — сообщить блоку И тангенциальную скорость. Система из двух связанных тросом тел начинала вращаться относительно общего центра масс со скоростью в 2 оборота в минуту, а центр масс, в свою очередь, продолжал вращаться по орбите вокруг Земли. Под действием центробежной силы трос натягивался с силой 20 кг, создавая перегрузку в 1/300 земной. Следующим шагом становилась так называемая перецепка. Чтобы искусственная сила тяжести действовала на сидящего в кресле космонавта правильно, чтобы она прижимала его к креслу, а не вынуждала висеть на привязных ремнях, требовалось отцепить нижнюю точку крепления на приборно-агрегатном отсеке «Восхода»; корабль перевертывался и после нескольких колебаний оставался висеть вверх ногами, зато это положение вполне устраивало космонавтов.

Уже из столь краткого описания видно, что система получилась совсем не простой. Анализ показывал, что ракетный блок и корабль начинали колебаться за счет начальных возмущений, а трос, как натянутая струна, мог колебаться по собственному, как известно, совсем уж не простому закону. С этими колебаниями надо было бороться, не давать им выйти из-под контроля. С этой целью на блоке И устанавливалась дополнительная реактивная система управления (РСУ), которая так же, как РСУ на корабле «Восход», демпфировала угловые колебания блока относительно троса. Еще более тонкие явления, которые тоже вытекали из законов классической механики и определялись так называемыми градиентами гравитационных сил, при анализе у нас игнорировались. До них в те годы по-настоящему еще не добрались, а эти чисто космические силы орбитального полета могли существенно повлиять на неземную космическую механику, которая рассчитывалась по земным законам. К тому же, в нашем стальном, а значит электропроводящем, тросе, летящем в магнитном поле Земли, неизбежно возникли бы уникальные электромагнитные явления.

На следующем этапе развертывания требовалось увеличить перегрузку до лунного значения, то есть до 1/6 земной. Помог еще один закон классической механики, называемый принципом сохранения кинетического момента. Если стягивать два вращающихся тела, то, подчиняясь этому закону, скорость вращения начинает возрастать, как у вращающегося на льду фигуриста, складывающего руки. Лебедка стягивала трос с километрового расстояния до 300 м, увеличивая скорость вращения до требуемой величины — 7 град/с; при этом сила возрастала с 20 кг до 1000 кг. В результате на корабле «Восход» с массой около 6 т действовала перегрузка, равная лунной тяжести.

После окончания эксперимента трос предполагалось отстрелить от корабля, иначе спуск на Землю в объятия естественной тяжести становился невозможным.



В.Д. Благов — здесь он пока проектант, с вполне конструктивным подходом, но довольно скоро станет самым знаменитым ЗРП — заместитель руководителя полетами в космос

Вот такая длинная и непростая процедура космической «раскрутки» была задумана к середине 1964 года. Систему в целом разрабатывали под руководством В.Д. Благова, тогда еще начальника группы проектного отдела, а теоретическую механику космической карусели рассчитывали специалисты Раушенбаха: главный теоретик вращающихся систем Е.Н. Токарь, о котором я говорил в связи с гироскопическими приборами, и В.Н. Бранец. Много лет спустя, в начале 90-х, с Владимиром Николаевичем нам предстояло работать вместе над рядом проектов, в том числе над созданием солнечного парусника.



В. Н. Бранец. Он здесь тоже совсем молодой, и у него все еще впереди, все его большие и сложные системы

Также много лет спустя мы стали разрабатывать эксперимент с многокилометровым тросом. Только тогда мне пришлось познакомиться с теми уникальными физическими явлениями, которые возникают в этих сугубо космических системах. Конечно, в середине 60-х мы были молодыми и только познавали космос. И все-таки странно, что тогда никто из нас, даже будущий академик Раушенбах, не обратил должного внимания ни на особенности орбитальной механики троса, ни на 100-вольтовое напряжение, которое генерируется в тросовом проводнике, летящем в магнитном поле Земли со скоростью почти 8 км/с. Странно, потому что как раз в эти годы на Западе начали разрабатывать теорию этого уникального явления. Безусловно, определенную роль сыграла закрытость нашей космической техники, оторванность наших специалистов от мировой космонавтики, ведь в это время на Западе появились первые публикации, посвященные теории электродинамических систем в космосе.

Тогда нашему отделу досталась практическая механика, наиболее трудоемкая часть системы: лебедка, демпферы продольных и поперечных колебаний, механизм перецепки. Все они не имели прототипов. Наряду со стыковочным механизмом это задание оказалось для нас в те годы, пожалуй, самым сложным и комплексным. Проектировать и испытывать эту систему пришлось параллельно со стыковкой и другими, менее объемными, зато многочисленными заданиями.

Во второй половине 1964 и в начале 1965 года мы сконструировали все эти и другие компоненты системы искусственной тяжести. Тогда мы действительно очень спешили. Помню, как В.Ф. Кульчак, одна из самых работящих и упорных наших конструкторов, не выдержав очередного раунда изменений, чуть не бросила мне на стол почти готовые чертежи. Завод «Машиноаппарат» приступил к созданию прецизионных магнитных и электромагнитных тормозов. В мае 1965 года небольшая группа конструкторов с нашим материаловедом Л.М. Маленковой выехала в Ленинград, где на сталепрокатном заводе, заложенном еще в петровские времена, для нас изготавливали специальный космический трос. Чтобы сделать его легче, трос выполнили двухступенчатым, в соответствии с законом изменения перегрузки на орбите.

На нашем заводе, в только что построенном школьном (В те годы для снижения стоимости и ускорения строительства нередко использовались проекты массового общегражданского назначения.) здании цеха № 452 изготавливались все электромеханические узлы. Начальник цеха И.М. Зверев, его заместители А.В. Волков, с которым мы играли в футбол за ЦАКБ еще в мои студенческие годы, и Н.И. Иванов, старший мастер А. Жагров и многие другие их многочисленные соратники и товарищи, искусные станочники и сборщики, преданные делу, почти как в войну делали чудеса.

Вскоре уже в металле стали видны контуры километровой лебедки в виде первых корпусных деталей, размеры которых были необычными для этого цеха, привыкшего к небольшим приводам и механизмам.

Почему-то в те месяцы мне вспомнились слова поэта-фронтовика Д. Самойлова: «Война гуляет по России, а мы такие молодые...»

В августе я вместе с В. Мухановым, близким «товарищем по оружию», выехал в Самару (тогда — Куйбышев), где в то время изготавливался ракетный блок И. Нужно было окончательно согласовать установку лебедки, демпфирующего механизма, а также приборов и других компонентов РСУ в переходнике, к которому крепился «Восход». Стояла прекрасная летняя погода, целый день мы торчали на заводе и в КБ. Нам, молодым, хотелось не только в космос, на Земле тоже было множество интересных инженерных и общечеловеческих орбит. Мы остановились в гостинице «Волга», в самом центре города, а не на «Безымянке», как обычно, в районе, расположенном поближе к заводу. В это же время в гостинице разместился оркестр известного всей стране Леонида Утесова. Он показался нам тогда совсем старым, зато вокруг него крутилось столько симпатичных молодых людей и девушек. Нам было интересно с ними познакомиться...

Осень — пора уборки урожая. Наш «урожай» в том году оказался богатым. Все компоненты и узлы были изготовлены, и мы приступили к отработке. И все-таки мы опаздывали, не успевая угнаться за планами нашего Главного конструктора.

Несмотря на всю секретность, за океаном, конечно, прослышали о наших планах создать искусственную тяжесть в космосе. Американцам очень не хотелось в очередной раз уступать нам «впервые в мире», и они сделали реальную попытку воспроизвести нашу схему на орбите на кораблях «Джемини». Фактически, как упоминалось, выполнить эту операцию им не удалось.

*
**

Поздней осенью 1965 года Королев пришел к нам, чтобы оценить техническое и организационное состояние дел с системой искусственной тяжести. Все казалось необычным в тот поздний вечер. С тех пор прошло столько лет, но многие детали сохранились в моей памяти по сей день. Примечательным было даже ожидание. Королев ценил свое время и приучил к этому свое окружение, о чем хорошо знали его помощники и секретари его заместителей. Поэтому подготовка пошла быстро. Были собраны все нужные специалисты из разных подразделений и необходимые документы. Это была научная организация труда в действии — НОТ, которая развилась и утвердилась почти стихийно, за счет деловой обстановки, целеустремленности и требовательности Главного конструктора, эффективности его указаний. Помню, как секретарь просила говорить погромче: слух Сергея Павловича начал сдавать.

Запомнился внешний вид Королева, его движения, в которых чувствовались размах и энергия этого необыкновенного человека; помню даже, как он снял пиджак и остался в спортивной рубашке темнобордового цвета, без галстука. Не забуду его пытливый, проникающий взгляд. Еще в приемной Королев напутствовал кого-то, уезжавшего в очередной раз на ракетный полигон. Помню, что говорил он о необходимости проявлять осторожность, заботиться о безопасности людей.

Мы собрались в кабинете Раушенбаха, воспользовавшись тем, что его хозяин был в командировке. Многочисленные вопросы и реплики Главного показывали понимание им общей задачи и умение не упустить важных деталей. Его цепкая память удерживала многие подробности конструкций уже летавших и создаваемых кораблей, их основных систем. Это особенно проявилось, когда предмет обсуждения касался надежности работы и безопасности космонавтов, о чем докладывал один из ведущих проектантов В. Молодцов. Почему-то был затронут и вопрос о созданных нашим отделом термодатчиках, по сигналу которых разделялись отсеки «Востоков» и «Восходов» в случае, если пиротехника не срабатывала по программе. Не помню почему, но Королев быстро вскипел: «У вас уже есть выговор за это!» (По Королеву: у кого не было выговора, тот по-настоящему не работал, потому и не отмечен руководством.)

Я обратил внимание на умение Королева не углубляться в излишние подробности или несущественные в данный момент детали, способность увязывать особенности проекта с возможностями производства и заданными сроками изготовления. В то же время он не скрывал своего возмущения преувеличением сложностей частных проблем, проявляя при этом знание психологии людей. В тот вечер почему-то досталось нашему знаменитому теоретику Токарю, может быть, за его уже тогда изрядно полысевшую голову.

Королев похвалил разработанную нами конструкцию, одобрительно похлопав по солидной кипе альбомов только что выпущенных рабочих чертежей. «Молодец, Вильницкий», — сказал он. Тогда мне показалось, что знакомство с этими чертежами, над которыми мы работали так долго и так мучительно, было слишком поверхностным. Позднее, много раз возвращаясь к этой примечательной и важной для меня встрече, я стал понимать, что такой подход необходим любому главному конструктору. Он должен быстро оценивать, отличать хорошее от плохого, осуществимое от нереального, учитывая возможные сроки исполнения задуманного на данном уровне техники и технологии производства.

Королев предложил всем присутствовавшим высказаться. Такой прием был характерен для нашего Главного. Однако, если Королев считал это нужным, то мог без колебаний нарушить демократию, прервав обсуждение. Как человек, твердо уверенный в правоте своих основных идей и планов, он нередко осаживал выступавших. Это я наблюдал и раньше на других совещаниях. Когда предложения уводили в сторону, Главный мог резко оборвать, даже высмеять человека. Он делал это сознательно, для пользы дела, для пропаганды своих идей, для воспитания соратников и подчиненных.

В тот поздний вечер был свободный обмен мнениями в духе Королева. Спустя какое-то время мне удалось уловить суть возникших сложностей, возможный путь в ыхода из тупика. Смысл моего предложения сводился к изменению последовательности запуска «Восходов», чтобы пропустить вперед длительный полет и за счет этого выиграть время. Королеву понравилось выступление, оно нашло в нем отклик, так как, по-видимому, не противоречило основным планам. «Так, Сыромятников, интересно, видите, как важно посоветоваться с народом, наверно, мы так и поступим», — были его реплики.

Конечно, не только удачное выступление имело значение. Гораздо важнее было одобрение нашей деятельности Королевым в более широком смысле. Оно отчетливо проявилось на этом совещании. Главный, как нередко сейчас говорят, положил на меня глаз, проникся проблемами нашей техники. После этой встречи наверняка можно было рассчитывать на его поддержку. Это очень многое значило для ускорения развития космических механизмов, нашего направления в целом, ведь как раз в это в ремя на подходе был наш первый стыковочный механизм.

В начале 1966 года Королев лег в больницу, а я уехал в Азов. Из больницы он не вернулся.

Сначала мы не знали, чем закончится наша искусственная и связанная с ней естественная тяжесть. В начале марта мы еще провожали «Восход-3», предназначенный для длительного полета, на полигон. Я его так и запомнил висящим на кране в нашем, тогда новом «малом» КИСе на 2-м производстве. Тогда мне казалось, что вскоре мы будем провожать «Восход-4» с демпфером, механизмом перецепки и узлом отстрела троса.

Наверно, это был оптимизм социалистического реализма.

В течение 1966 года возникали проблемы, связанные с планами длительного полета на «Восходе». Ряд технических и политических соображений также говорили не в пользу старых кораблей. В конце концов наш новый главный конструктор В.П. Мишин приказал прекратить работы над всеми «Восходами». По его указанию проектанты некоторое время рассматривали возможность создать искусственную тяжесть на базе нового корабля «Союз». Вскоре стало ясно, что там реализовать это гораздо труднее, чем на «Восходе», несмотря на то что РСУ (ракетная система управления) нового корабля позволяла более эффективно выполнить многие операции. Мы пытались протестовать и спасти хотя бы один «Восход» с искусственной тяжестью, но нас никто не слушал. Вскоре другие земные, естественные и искусственные тяжести захлестнули нового главного и многих из нас.

Еще долго космические лебедки и другие узлы никем до сих пор не воспроизведенной системы хранились в приборном производстве, досаждая всем своими большими размерами, пока их не сдали... на металлолом к какому-то очередному празднику.

От всего проекта остались одни воспоминания, горечь и мой рассказ.


1.12. К ЛУНЕ И НА ЛУНУ?

Ей — черепки разбитого ковша,
Тебе — мое вино, моя душа.
У. Шекспир. Сонет 74

Первый лунник сконструировали в ОКБ-1 уже в 1958 году, а запустили в январе следующего года. С тех пор Королев и его соратники держали Луну на постоянном прицеле. Автоматические аппараты облетели Луну, сфотографировали загадочную обратную сторону и наконец совершили мягкую посадку — прилунились (правда, это уже после смерти Сергея Павловича). Теперь черед был за человеком. Подготовка полета на Луну сильно подогревалась соревнованием с американцами, тем, что позднее назвали лунной гонкой. Как оказалось, пилотируемая лунная программа стала самой неудачной для Советского Союза. Надо сказать, что она получилась для нас какой-то странной, эта лунная гонка.

За каких-то 5-10 лет до запуска спутника, в годы нашей юности полет в космос казался таким далеким, почти несбыточным. Теперь, после полета Гагарина, распевая нехитрые бравурные песни типа «...первым будет на Луне мой Вася и...», мы искренне верили, что так оно и произойдет: ведь все, что замышлял наш Главный конструктор, неизбежно сбывалось и быстро свершалось. Однако наш лунный проект стал печальной историей с самого его зачатия в начале 60-х. Если разбираться объективно, опираясь на документы (даже ограничиваясь лишь опубликованными — не очень многочисленными), то можно увидеть, что основная вина лежит не на ОКБ-1 с его Главным конструктором. Разгар работ наступил после кончины Королева. В конце 60-х начались аварийные пуски лунной ракеты Н1, а завершился проект после продолжительной болезни насильственной смертью в 1974 году.

Если исходить только из достигнутого результата, то огромные средства, равно как и усилия наиболее квалифицированного инженерно-производственного персонала, пошли прахом. Теперь мне кажется, что было что-то фатальное в том варианте проекта, который были вынуждены принять. Слишком длинным, многоступенчатым получился наш ракетный поезд. Все начальные буквы русского алфавита ушли на обозначение ракетных блоков семиступенчатого комплекса: «Аз», «Буки», «Веди» выводили головной блок на околоземную орбиту; «Глаголь» разгонял его к Луне, «Добро» переводил корабли на лунную орбиту и тормозил только лунную кабину для спуска на Луну; для мягкой посадки и последующего взлета нужен был блок «Есмь», и, наконец, уход с лунной орбиты завершал блок «Ижица». Несмотря на все ухищрения и находчивость авторов проекта, попавших в трудные условия, собственно лунные корабли получились тоже не совсем полноценными в том смысле, что на Луну мог бы спуститься только один космонавт.


Из «царь-пушки» на Луну?
РД 1-й ступени Сатурна-5
При всем при том эта гигантская техническая гамма включала сотни тысяч деталей и узлов. Все должно было сработать пунктуально, безотказно и вовремя, и это трудно себе представить.

Как стало ясно гораздо позже, провал нашей программы был фактически предрешен тогда, когда после нескольких лет тяжелой и непродуктивной борьбы пришлось остановиться на этом ущербном варианте, причем условия и обстоятельства его реализации также оказались неблагоприятными, не адекватными уникальной задаче. В то же время за океаном совершили чудо: полет человека на Луну стал, пожалуй, самым большим научно-техническим достижением космического века. К сожалению, и там не обошлось без жертв и без печальных итогов.

Кто-то может сказать, что 30 с лишним лет спустя легко говорить умные слова. В самом начале, похоже, и мы, и американцы проектировали ракету и весь лунный «поезд» почти на ощупь. Не так, конечно, как у Жюля Верна — «из пушки на Луну», но все же... Парадоксально, но существенная разница заключалась в том, что наша хваленая плановая экономика, раздираемая субъективными противоречиями, давала большие сбои; при Хрущеве она, похоже, действительно стала волюнтаристской, в то время как стихийная капиталистическая система с нарастающей силой демонстрировала способность мобилизоваться и, несмотря на многочисленные объективные и субъективные трудности и даже катастрофы, весьма скоординировано продвигалась вперед к поставленной цели.


Схема полета лунного «поезда» в проекте Н1-Л3

Мне не пришлось быть среди тех, кто выбирал концепцию ракетно-космического комплекса Н1-Л3, я лишь разрабатывал механизмы, агрегаты и системы для лунного орбитального корабля (ЛОКа), лунного корабля (ЛК), который мы чаще называли лунной кабиной, а также привода и рулевые машины для ракетных блоков многоступенчатого комплекса. Многие из нас, молодых инженеров и руководителей среднего звена, как командиры маршевых рот и боевые комбаты военных лет, побывали в самом пекле космических баталий. Мы не всегда понимали стратегию «Ставки и Генерального штаба» (они и сами ею по-настоящему не владели), а из-за секретности получалось так, что чаще всего многого не знали; зато мы познавали дело изнутри, получая прямые указания сверху и проводя их в жизнь, доводя их до всех бойцов огромного космического фронта. Крах программы привел в конце концов к смене руководства нашей головной организации. Мы же, технари, несмотря на провал всей кампании, сохранили боевые порядки и даже окрепли, набравшись опыта и закалившись в трудной борьбе. Опять же, парадоксально, но в историческом плане технический опыт, добытый в ходе лунной гонки, оказался для становления отечественных молодых специалистов не менее полезным, чем для американцев, которые постепенно растеряли свой уникальный опыт.

За последние годы выпущено несколько обстоятельных, достаточно откровенных публикаций; в числе их авторов — те, кто руководил этими проектами: В. Мишин и Б. Черток. Особое место занимает основанная на подлинных документах книга «Королев и его дело», составителем которой стал Г.С. Ветров; в ней отображаются «светы и тени в истории советской космонавтики». К сожалению, многие архивы, по-прежнему хранящие секреты нашего прошлого, в том числе РКТ, в целом все еще закрыты. Вот, наверно, почему наша история такая же непредсказуемая, как и наше будущее. Зато у наших историков никогда не иссякнут ни потенциальные первоисточники, ни стимулы, ни источники вдохновения.

Я должен также упомянуть удивительную книгу о нашей лунной программе Азифа Сиддаки «Вызов Аполлону» (Challenge to Apollo), выпущенную в 2000 году, к сожалению, только на английском языке. Этому уникальному американцу пакистанского происхождения, с 17-летнего возраста погрузившемуся в историю нашей РКТ и работавшему над этой историей в течение последующих 17 лет, похоже, удалось проникнуть во многие наши тайны, в том числе — нашего менталитета.

И хотя мои коллеги могут не согласиться с моими оценками происшедшего, я все же решил выразить свое отношение к событиям тех далеких лет с позиций сегодняшнего опыта и знаний и, конечно, рассказать о том, с чем я был связан и над чем пришлось работать самому. При этом я старался использовать также информацию, которую мне привелось узнать от российских и американских коллег.

Я решил весьма подробно рассказать о лунных проектах, нашем и американском, еще и потому, что соревнование между нашими странами, так называемая лунная гонка, подвело итог развитию космонавтики и астронавтики на важнейшем этапе их становления. Пожалуй, этот этап оказался самым значительным, и не только в достижении конечной цели — Луны, но и в развитии ракет-носителей и космических кораблей. Эти итоги сильнейшим образом повлияли на дальнейшее развитие космической техники, на всю нашу последующую деятельность.

*
* *

Прежде чем вернуться к лунным проектам, стоит сказать несколько слов о некоторых исторических аспектах развития космонавтики.

Освоение космоса могло пойти по другому пути, не такими бурными темпами, как это произошло на самом деле. Как и в другие поворотные моменты человеческой истории, эволюция определялась общими условиями и могла резко ускоряться обстоятельствами и ключевыми личностями. Уместно напомнить известные факты и привести мало известные.

Ростки идей полететь за пределы Земли появились в первой половине XX века в трудах корифеев космонавтики, начиная с К.Э. Циолковского. В 20-30-е годы экспериментаторы ракетного полета в СССР, Германии и США делали первые шаги. В годы войны Гитлер поддержал фон Брауна, который со своими соратниками создал первую баллистическую ракету военного применения «Фау-2». Ракета стала классической, в том числе для будущих космических ракет-носителей. После войны в СССР по указанию Сталина ученые и инженеры под руководством Королева, начав с «Фау-2», стали осваивать и шаг за шагом совершенствовать баллистические ракеты, создавать и наращивать всю наземную ракетную инфраструктуру.

В конце 50 -— начале 60-х произошло несколько драматических событий и начались процессы, которые привели к коренному изменению темпов развития ракетно-космической техники. Это — и запуск королёвской «семерки», и сразу следом за ней спутника, и наращивание ракетно-космических программ, и воинствующий коммунизм Хрущева. Это — и наша система секретности, которая превращала космические достижения в сенсации мирового масштаба. Это — и реакция на спутник и другие события западной прессы, а вслед за ней — американских государственных и общественных институтов, что привело к мобилизации научно-инженерного потенциала в США. Это — и уникальная «Группа, озадаченная космосом», ставшая идеологическим ядром НАСА, Центра пилотируемых полетов в Хьюстоне, сумевшая в кратчайшие сроки совершить невероятный рывок, начав практически с нуля. И, конечно, это — полет Юрия Гагарина, и страстная реакция на это событие американского президента Дж. Кеннеди. И, даже, это — очень болезненная для американцев неудача с высадкой десанта на Кубу, предпринятая в том же апреле 1961 года. И, наконец, это — та открытость, отсутствие секретности в освещении космических полетов и их подготовки, которую приняло американское руководство, начиная с первого полета Алана Шепарда, и бурная реакция на это событие, которая компенсировала неполноценность «не совсем космического», неорбитального полета первого астронавта.

Соверши американцы суборбитальный полет Шепарда в марте, до Гагарина (а его задержали, по их словам, перестраховщики и бюрократы), реакция Кеннеди могла быть не столь экстремистской.


Президент Дж. Кеннеди и директор Центра в Хьюстоне Р. Гилрут
Поверив своим «гилрутам» и «шепардам», желая отомстить Советам за все космические и земные обиды, нанесенные престижу его страны, самый молодой президент США поставил перед своим народом почти невыполнимую, как казалось тогда, задачу. Позднее стали известны слова руководителя группы Р. Гилрута о том, что будь их президент постарше, он никогда не призвал бы их на такое уникальное свершение, граничившее поначалу с авантюрой. Действительно, послать человека на Луну и вернуть его благополучно обратно специалистам, с которыми он советовался и которые делали лишь свои первые суборбитальные «прыжки», казалось совершенно нереальным, почти неосуществимым.

Узнав от своих экспертов о первых эскизных проработках облета Луны, Кеннеди сразу выдвинул идею прилунения; он продолжал стоять на этом до тех пор, пока не услышал от своих подданных неуверенное «д-да...». На встречный вопрос, что для этого необходимо, Р. Гилрут и Дж. Лоу, который представлял на той встрече штаб-квартиру НАСА и которому наряду с Гилрутом предстояло сыграть выдающуюся роль в осуществлении высадки человека на Луну, а позднее — в нашей совместной программе «Союз» -«Аполлон», ответили очень мудро: время, поддержка президента и мандат Конгресса. Посоветовавшись, они назвали срок — 10 лет. Этот исторический разговор состоялся всего через несколько дней после первого суборбитального полета Шепарда...

А уже 25 мая Кеннеди выступил перед обеими палатами Конгресса, где объявил о том, что он «верит, что эта нация должна принять на себя обязательство высадить человека на Луну и вернуть его благополучно на Землю до истечения десятилетия». Для первых космических специалистов, по их же словам, то историческое заявление стало настоящим шоком; ведь они в те месяцы только-только готовили повторный суборбитальный и первый орбитальный полеты на относительно примитивной капсуле «Меркурий», которую и космическим кораблем-то назвать было нельзя, а самая мощная американская МБР «Атлас», в спешке приспособленная для орбитального полета, могла вывести на низкую околоземную орбиту неполных полторы тонны.

Как известно, инженеры обычно преувеличивают свои возможности на год вперед и по-крупному недооценивают то, что способны совершить в течение десятилетия. В данном случае человек из большой политики оказался очень прозорливым, нужно отдать должное самому молодому президенту США: интуиция его не подвела. Несмотря ни на какие сложности и препятствия, американцы высадились на Луне через 8 с небольшим лет.

С другой стороны, сами американцы позднее признали, что стратегически уникальный лунный рывок им обошелся слишком дорого. Дело было даже не в колоссальных, беспрецедентных затратах, не в тех 25 млрд долларов, расстроился последовательный процесс освоения космического пространства. Такое нарушение эволюции проявилось многосторонне, прежде всего в том самом невероятном рывке в космос, за которым был неизбежен спад. Космическая техника 60-х обогнала время, а после этого уже стало трудно чем-то удивить людей и удовлетворить американских налогоплательщиков. Недаром много лет спустя любители сенсаций в новой России выдвинули лунный антитезис и стали оспаривать, казалось, неопровержимые факты: они стали приводить «доказательства» того, что люди никогда не были на Луне. Чего действительно не сделали американцы в те годы, так это не сохранили свою инфраструктуру для дальнейшего последовательного освоения ближнего и дальнего космоса.

В конце концов самым печальным оказалось то, что уникальная «Группа, озадаченная космосом», хотя и создала все, что летало и продолжает летать за пределами Земли, от простейшей космической капсулы «Меркурий» до сложнейшего «Спейс Шаттла», не сумела по-настоящему передать свое наследие следующему поколению. Но это не их вина. Другое время — другие песни.

*
* *

Любой полет в космос начинается с ракеты.

Сложность уникального проекта объяснялась тем, что изначально было совершенно не ясно, какая ракета требовалась для полета на Луну. Ясно было одно: чтобы долететь до Луны и вернуться обратно, требовалось не две-три ступени, как для полета на околоземную орбиту, а целый «ракетный поезд». Грузоподъемность ракеты определялась прежде всего весом корабля, которого тоже не было и в помине. Кроме того, схема полета на Луну и обратно имела много вариантов, а вес также зависел от многих факторов, в первую очередь от совершенства ракетных двигателей и эффективности топлива всего «поезда».

Еще в начале века теоретики космонавтики рассматривали разные схемы, в том числе варианты стыковки, сборки «лунного поезда» как на околоземной, так и на окололунной орбите. Однако это была лишь игра в кубики, пусть очень научные, но все же кубики. Пришла пора сыграть в настоящую космическую игру.

Уместно начать с американцев.

Хотя им тоже было не просто, они довольно быстро, практически за один-два года выбрали и концепцию проекта в целом, и параметры основных компонентов лунного комплекса. Уже в середине 1962 года проектанты НАСА приняли схему полета со стыковкой на лунной орбите, тем самым открыв дорогу к созданию и своей «лунной» ракеты «Сатурн-5», и лунных кораблей. Этому в первую очередь способствовали тотальная мобилизация сил, средств и мозгов.

Первое поколение специалистов НАСА сформировалось из тех самых уникальных авиационных и ракетно-космических инженеров, о которых уже рассказывалось. К лунной программе присоединились очень много талантливых и творческих ученых страны, как это могло произойти в Америке. Модули кораблей и ступени ракеты, а также огромный наземный комплекс, создавали самые продвинутые авиационные фирмы, еще не растерявшие опыт и патриотический дух войны. К этому времени часть из них прошла также практику создания первых ракет и, конечно, осуществления первой пилотируемой программы «Меркурий».

Поставив перед нацией уникальную задачу, президент Кеннеди обеспечил также беспрецедентные условия для работы. Уже в 70-е годы американские коллеги рассказывали мне о «золотом веке», когда НАСА по первому требованию получало практически любые средства и все, что имелось в стране и за ее пределами. Например, лишь около двух лет заняло сооружение уникального космического Центра в Хьюстоне, который вошел в строй уже в начале 1964 года. В это же время во Флориде, на мысе Канаверал, построили огромный стартовый комплекс, а в Хантсвилле (Алабама) возвели сооружения для испытаний будущих ракет-носителей «Сатурн». На государственные средства, щедро выделенные на программу, развернулись головные авиационно-космические корпорации в Калифорнии, Нью-Йорке и других штатах. Их бесчисленные субподрядчики и самые продвинутые лаборатории во главе с Массачусетским технологическим институтом приступили к разработке теоретических и технических основ и всех необходимых компонентов. Уместно отметить, что на начальном этапе проекта подрядчики и субподрядчики НАСА отбирались на конкурсных началах. Кстати, фирма «Норт Америкен», головная фирма, ответственная за создание корабля «Аполлон», получила этот заказ после жесткой конкурентной борьбы. Возможно, это было политическое решение, поскольку в то время фирма практически не имела космического опыта, что оказалось чревато серьезными последствиями. С этой фирмой, уже под названием «Рокуэлл Интернэшнл», в начале 70-х и в 90-е годы нам пришлось тесно работать над совместными проектами.

В проектировании серии ракет «Сатурн» ведущую роль сыграли немецкие ракетчики во главе с неповторимым Вернером фон Брауном. Они создали не только уникальный ракетный комплекс, но и то, что теперь принято называть наземной инфраструктурой, включая полигонные сооружения. Ближайший помощник


Вернер фон Браун
фон Брауна — Курт Дебус — стал директором Центра на мысе Канаверал — полигоне НАСА. Зрелый талант 50-летнего фон Брауна проявился в этом проекте во всем блеске. Ни одна из всех этих ракет (Сатурн-1, 1Б и 5) не потерпела аварии в полете. Технический руководитель создания ракет «Сатурн» оказался многосторонне прозорливым. Например, в один из критических моментов он дал лунным «корабельщикам» из Хьюстона несколько дополнительных тонн, которые буквально спасли американский «Аполлон». Об этом много лет спустя тоже поведал мне коллега по «Союзу» -«Аполлону» К. Джонсон. Намного раньше стало известно, как почти простой инженер Дж. Хубольт выдвинул и сумел пробить через многоэшелонированную техническую бюрократию блестящую идею схемы полета со стыковкой на лунной орбите. Лунный модуль LM после возвращения с Луны стыковался с основным кораблем, ожидавшим на окололунной орбите. Только после принятия схемы с дополнительной стыковкой на трассе полета к Луне (для перестроения «лунного поезда») сложился весь многоступенчатый комплекс. Это принципиальное решение приняли уже в средине 1962 года, а всего через месяц подписали контракт на создание так называемого лунного экскурсионного модуля (Lunar Excursion Module — LEM) с известной авиационной фирмой «Груммэн».


Схема перестыковки:
I — отделение командного (СМ) и служебного (SM) модулей; II — разворот на 180°; III — стыковка с LM-лунным модулем и отделение 3-й ступени ракеты-носителя «Сатурн-5»



Схема полета к Луне со стыковкой по программе «Аполлон»

Перестроение в полете позволяло также решить другую важную задачу: обеспечить спасение корабля при аварии ракеты на активном участке. В этом случае командный модуль (СМ) с астронавтами, вместе с двигателями САС (системы аварийного спасения), оставался в самой верхней части ракеты. Позднее идею перестроения на орбите использовали в проекте «Союз» — «Аполлон».



Два варианта полета на Луну: со стыковкой на лунной орбите и прямая схема приземления

Стыковочное устройство корабля «Аполлон» с переходным тоннелем для астронавтов обеспечивало герметичное соединение СМ и LEM. В стыковочном механизме в отличие от нашего использовались пневматика и гидравлика, что мне не совсем понравилось, когда через несколько лет привелось с этим познакомиться.

Весь лунный комплекс также вписался в жесткий весовой лимит и без того гигантской и «очень совершенной» ракеты «Сатурн-5». В противном случае пришлось бы или стыковать два «Сатурна» на околоземной орбите, или создавать еще более мощную, совсем уж фантастическую, ракету «Нова».

Надо отметить, что схема полета со стыковкой на окололунной орбите была впервые предложена еще в 20-е годы нашим соотечественником Юрием Кондратюком, человеком огромного и разностороннего таланта и необычайно сложной судьбы. Об этом должны были знать Королев и Тихонравов и, скорее всего, американцы. Так или иначе, позднее наши проектанты тоже взяли эту концепцию за основу и по-своему стали ее реализовывать.

Чтобы отработать стыковку, а также выход в открытый космос и длительные полеты, как рассказывалось, параллельно с основной программой «Аполлон» НАСА с помощью других исполнителей (головная фирма — «Макдоннелл»), но по единому стратегическому плану, дополнительно развернула работы по программе «Джемини».

*
* *

Надо вернуться к нашему лунному проекту.

Фактически подготовительные работы начались у нас в ОКБ-1 в конце 50-х. Уже тогда было понятно, что для полета на Луну требовалась на порядок более мощная ракета, чем «семерка», т.е. носитель, способный вынести на орбиту «лунный поезд» с новым кораблем, тоже на порядок более тяжелым и сложным, чем «Восток».

В самом начале 60-х в ОКБ-1 стала складываться целая программа создания и отработки суперносителя, который получил индекс Н1 (Носитель №1). «Девятка», о которой уже рассказывалось, оказалась не просто одиночной МБР и преследовала не только боевые цели. Это «продвинутое изделие», как многие другие ракеты Королева, открывало новые возможности и перспективы. Первым результатом, образцом нового класса ракет стала ГР-1, о



Лунные ракеты Н1 и «Сатурн-5»
которой тоже упоминалось. Эта так называемая глобальная ракета, способная выводить боевой заряд на орбиту и доставлять его к любой цели по разным траекториям, со всех сторон вписывалась в план создания носителей, более продвинутых, чем «семерка», и как составное звено, и как промежуточный этап при отработке Н1. Наши ракетчики из ОКБ-1, подобно американским немцам, предлагали начать летную отработку поэтапно, в данном случае — с ракеты ГР-1, в первую очередь, с испытания новых ракетных двигателей. Дело в том, что разлад с Глушко, которого Королев называл Глушко, делая ударение на первом слоге, заставлял искать другую кооперацию. Новым смежником по основным кислородно-керосиновым двигателям для Н1 стал генеральный конструктор авиационных двигателей Н.Д. Кузнецов, сотрудничество с которым началась в конце 50-х по вариантам «девятки» и по ГР-1. В конце концов двигатели Кузнецова установили на всех трех ступенях Н1 (A, Б и В) и четвертой ступени «лунного поезда» (блок Г).

Надо также отметить, что благодаря так и не залетавшей ракете ГР-1 мы приступили к разработке ракетного блока многократного запуска в условиях космического полета, в невесомости. Подобный блок должен был стать 3-й ступенью этой глобальной ракеты.

Дальше в этой программе, как и у американцев в серии «Сатурнов», могли сначала полететь 2-я и 3-я ступени Н1, а также блок Г в составе носителей среднего класса Н11 и Н111. Этим планам также не было суждено сбыться все по тем же причинам, связанным с разладом в ракетно-космической стратегии. Не финансировали также создание наземного стенда для испытаний 1-й ступени (блок А) в целом. Забегая вперед, надо сказать, что это обошлось очень дорого: во всех четырех полетах Н1 аварии происходили именно на 1-й ступени, ее отрабатывали в полете.

Нашему отделу пришлось вести традиционную приводную тематику почти для всех блоков многоступенчатой ракеты, а также для отсеков лунных кораблей ЛОК и ЛК. В частности, мы создавали привода для основных ракетных двигателей Н1 Кузнецова. Впервые такие привода устанавливались непосредственно на камеру сгорания; сам двигатель выполнялся в виде моноблока вместе с турбонасосным агрегатом (ТНА), со всеми его клапанами, регуляторами и другими компонентами. Еще одна особенность этих двигателей состояла в глубоком регулировании тяги. За более плотную компоновку расплачивались проектировщики узлов, подвергаемых очень высоким виброперегрузкам. В середине 60-х, занимаясь виброзащитой приводов, я выезжал в Самару (Куйбышев), в КБ к Кузнецову. Помню напряженную атмосферу работы на заводе и в КБ, где трудились конструкторы под руководством Печенкина — заместителя генерального, отвечавшие за этот двигатель.

Создание «очень нового» ракетного двигателя потребовало от специалистов по авиационным двигателям гораздо больше времени, чем казалось сначала. Полностью отработанный двигатель появился, по существу, только почти через 10 лет, что сыграло роковую роль в провале всей программы, но не только это. Похоже, пути ракетно-космические, как и Господни, неисповедимы: несмотря на приказ уничтожить, создатели уникальных двигателей сумели сохранить их в течение 20 лет. Они оказались востребованными не только для новых российских проектов: в самом конце XX века их стали покупать американцы для одной из своих разработок.

В целом не получилось у нас тогда единой программы создания лунного ракетно-космического комплекса: не было ни ракетно-немецкой последовательности, ни американско-космической системы отработки кораблей от «Меркурия» до «Аполлона». Вот вам и плановая экономика эпохи развитого социализма, обещавшего нынешнему поколению жить при коммунизме.

Несмотря на усилия руководителей советской космонавтики, политическая система, осудившая культ личности, оказалась неспособной создать по-настоящему творческую обстановку и обоснованную стратегию даже в самой передовой сфере. Ни главный теоретик космонавтики Келдыш, ни другие высокие руководители, ни сам могучий Устинов (не любивший Челомея, а Королева считавший слишком самостоятельным, слабо управляемым, и всем остальным предпочитавший Глушко) не могли коренным образом изменить существенные изъяны в стратегии. Слишком политизированной была ракетно-космическая техника, находящаяся под сильным влиянием лидера страны.

В конце 50-х годов первые варианты ракеты-носителя Н1 рассчитывались на полезную нагрузку (ПГ) в 45-75 т. В средине 1960 года (23 июня) было принято специальное, можно сказать, стратегическое постановление «О создании мощных ракет-носителей, спутников, космических кораблей и освоении космического пространства в 1960— 1967 гг.», по которому разработка Н1 планировалась на 1960-1963 годы. Однако через месяц после полета Гагарина, 13 мая 1961 года, принимается другое постановление «О пересмотре планов по космическим объектам...»; именно тогда Хрущев стал активно делать ставку на Челомея.

Несмотря на начавшиеся трудности, к средине 1962 года эскизный проект Н1, который, по существу, предусматривал программу создания и последовательного развития целой серии тяжелых ракет-носителей, был готов. Защита проекта проходила в течение двух недель на экспертном совете под председательством


С. П. Королев и М. В. Келдыш (Главный конструктор и главный теоретик космонавтики)
Келдыша. Несмотря на одобрение, дальнейшая работа вскоре снова замедлилась. Технический проект ракеты-носителя Н1 завершили и формально утвердили только в 1964 году, потеряв, как минимум, два года на дополнительные «разборки». Однако самым печальным была не потеря времени; нарушилась стройность, цельность программы: в ней не осталось ни очень важных промежуточных этапов, ни носителей среднего класса, ни последовательности отработки, ни глушковских двигателей, ни водорода.

Мы все, и по праву, восхищаемся ракетой среднего класса «Протон», она в конце концов стала надежной и внесла выдающийся вклад в советскую космонавтику. С другой стороны, по тому постановлению партии и правительства от 23 июня 1960 года планировалось создать, и в более короткие сроки, ракету-носитель того же класса, но экологически чистую и значительно дешевле.

Когда в процессе создания Н1 стало ясно, что водорода не будет, а 75 т на орбите слишком мало, чтобы слетать на Луну, вес этой ракеты-носителя возрос за счет увеличения объема баков, числа двигателей 1-й ступени и других модификаций и сравнялся с американским «Сатурном». Тем не менее наш увеличенный полезный груз на околоземной орбите (около 90 т) составлял менее 70% массы «Сатурна-5», у которого на 2-й и 3-й ступени использовался водород. Все попытки Королева начать по-настоящему осваивать жидкий водород и заказать водородный двигатель фактически не увенчались успехом. Это сильно задержало развитие высокоэффективных ракет, отражая положение в советской РКТ в начале 60-х в целом. По-настоящему освоить водород нам удалось гораздо позже, только в ракете «Энергия», которая дважды успешно слетала лишь в конце 80-х.

Третья водородная ступень «Сатурна-5», знаменитая S-IVB, не только выводила «Аполлон» на околоземную орбиту: основная часть водородного топлива тратилась на то, чтобы разогнать корабль к Луне. Все остальные маневры: перевод на окололунную орбиту, обратный разгон к Земле, а также


Американский «Аполлон», наш ЛОК с ракетным блоком Д и его один ракетный блок Д многоразового использования
несколько промежуточных коррекций траектории (при полете туда и обратно) — выполнял единый, мощный и многоразовый служебный модуль SM с маршевым ракетным двигателем корабля «Аполлон».

Еще раз надо сказать, что без водорода у нас все эти маневры пришлось разбить, разложить на несколько ракетных ступеней. В результате, в дополнение к ракетному отсеку ЛОКа (блок И) появились еще два блока Д и Г. Таким образом, недостатки ракеты-носителя диктовали все остальное в лунном проекте: и многоступенчатый ракетный «поезд» и сами лунные корабли.

В нашей ЛК весом всего 5,5 т вместе с блоком Е, который обеспечивал мягкое прилунение и взлет, удалось разместить только одного космонавта, переходившего из ЛОК в ЛК и обратно через открытый космос на лунной орбите. Американский LEM весил целых 15 т. Следует, однако, сказать, что в его состав входили два ракетных блока: посадочный и взлетный. У нас же основную часть торможения при прилунении обеспечивал ракетный блок Д, который отбрасывался перед самой посадкой, перед первым включением двигателя блока Е. Как отмечалось, основная задача блока Е после прилунения состояла в том, чтобы обеспечить взлет ЛК с Луны.

Когда в 1964 году технический проект ракеты-носителя Н1 формально утвердили, потеряв несколько лет на внутренние «разборки», работы в США шли уже полным ходом. Новому послехрущевскому руководству стало очевидно, что никто, кроме Королева, не сможет составить настоящую конкуренцию американцам. Что называется, спохватились, хотя время было упущено. Однако еще один год ушел на то, чтобы принять окончательное решение о полетах к Луне и на Луну.

В августе 1965 года под председательством Л.В. Смирнова, зампреда Совмина, руководителя ВПК, состоялось совещание по ближайшим перспективам развития космонавтики, на котором делался упор на наше начавшееся отставание от США. Как раз в это время вовсю залетали «Джемини», а программа «Аполлон» успешно продвигалась к летному этапу испытаний. Судя по опубликованным материалам, совещание проходило довольно сумбурно, целеустремленно и однозначно выступил лишь Глушко, который напрямую обвинил в отставании советской космонавтики Главного конструктора ОКБ-1 — Королева. Тем не менее совещание сыграло свою положительную роль. Именно тогда, в августе, когда нашему Главному оставалось жить лишь несколько месяцев, началось утверждение проекта орбитального «Союза» и наших лунных проектов Л1 и Л3.

Лунные проекты Челомея — это особая глава в истории о том, почему мы не слетали на Луну, и в истории советской космонавтики 60-х годов в целом. Уже писалось о том, какие последствия принесли на Землю первые космические успехи и, как следствие, земная слава. В первую очередь они повлияли на наши лунные программы. Как упоминалось, через месяц после полета Гагарина было принято специальное постановление, согласно которому работы над ракетой Н1 отодвигались на второй план.

Когда Брежнев сменил Хрущева, последнего обвинили, прежде всего, в волюнтаризме. Субъективный подход к реализации космических программ граничил с посадками кукурузы в Архангельской области. В результате, в первой половине 60-х ключевые программы ОКБ-1, и не только Н1-Д1, но и «Союз», оказались застопоренными, уступив первенство челомеевским ракетопланам и космолетам, которые в те годы были нереальны даже для настоящих ракетчиков и у нас, и в Америке. Что такое настоящий ракетоплан, мы узнали в 80-е годы, когда стали создавать «Буран», и в 90-е, когда стали летать на американском «Спейс Шаттле».

Как мы стали жить и работать в послехрущевскую эпоху, мне еще предстоит рассказать. Казалось странным, что, осудив Хрущева, новое политическое руководство нередко продолжало ту же практику. В результате, неистребимые качества карьеристов и фаворитов делали их непотопляемыми: тем или иным путем они находили покровителей наверху, и «подрывные» проекты возрождались как черные птицы феникс.


Посадка и взлет ЛК (с блоком Д) и LM
Двухместный LM (масса 15 т) состоял из посадочной и взлетной ступени. Одноместная ЛК (масса 5,5т) прилунялась с помощью ракетного блока Д (масса 17т), который обеспечивал основной тормозной импульс для посадки на Луну и отделялся на высоте 1-2 км от поверхности. Блок Д использовался несколько раз на участке полета Земля-Луна для выполнения коррекций траекторий и вывода ЛОК (лунный орбитальный корабль) и ЛК на окололунную орбиту. Ракетный блок Е запускался дважды: на последнем участке торможения при прилунении и при взлете с Луны с выводом ЛК на окололунную орбиту для стыковки с ЛОК

Уже в 1966 году, когда программа Н1-Л3 вовсю катилась вперед, Челомей предпринял еще одну энергичную попытку отвоевать «свое место» на Луне: он представил проект, который базировался на гигантской ракете УР-700, имевшей стартовый вес 4500 т. Чтобы превзойти Н1-Л3, запланировали прямой полет — сразу на Луну и обратный старт — сразу на Землю. Вес УР-700 при отлете к Луне оценивался в 50 т, что лишь на немного превосходило «аполлоновский» проект. Но такие параметры ставили под большое сомнение всю эту затею. Не удивительно, что проект отвергли так же быстро, как и подготовили, удивительно, что он возродился еще раз в 1968 году, но снова ненадолго.

*
* *

В целом Н1 получилась необычной во многих отношениях ракетой: от размеров и веса, а также суммарной тяги двигателей 1-й ступени (самой большой из всех созданных ракет), и до ряда совершенно новых и, надо сказать, не всегда удачных технических решений. Если начать с внешней стороны, следует отметить форму и размеры баков в виде огромных шаров-баллонов диаметром от 5 до 13 м, подвешенных на конических переходниках. Технология их изготовления и сборки на Байконуре (в специально построенном огромном сборочном цехе с уникальным сварочным оборудованием) определялась невозможностью их транспортировать после изготовления. У нас не было того, что имели американцы: до Байконура не было водных путей, как до мыса Канаверал, куда ступени «Сатурнов» доставлялись на баржах. Сам же Байконур в отличие от курортного мыса был не только выжженной пустыней, но и очень засекреченным районом.

В 1967 году на Байконуре Б. Пензин — заместитель главного из куйбышевского филиала, который в конце 50-х учился у нас, осваивая РМ «семерки», показывал мне сборочный цех Н1. Эта демонстрация произвела на меня тогда огромное впечатление, соизмеримое с размерами шаровых баков и ракеты в целом.

Многие системы ракеты Н1 были спроектированы на высоком уровне. Мои коллеги по электромеханике из ВНИИЭМ и соседи-двигателисты генерального конструктора А. Люлька создали эффективную бортовую электростанцию, которая заменила тяжелые и дорогие аккумуляторы.

Беспрецедентным и неповторенным оказался принцип управления Н1 по тангажу и рысканию за счет рассогласования тяги путем дросселирования периферийных двигателей (без традиционных, но более мощных рулевых машин). Похоже, Королев действительно хотел забыть о наших РМ. Помню, еще до «семерки» нам пришлось заниматься так называемой спаркой, представлявшей собой два небольших (рулевых) ракетных двигателя, которые поворачивались за счет рассогласования тяги. Тогда этой разработкой, идею которой в несколько измененном виде и использовали для Н1, непосредственно руководил В. Мишин.

Другим принципиальным нововведением стал так называемый КОРД — система контроля и обеспечения работоспособности двигателей. Необычно большое число ракетных двигателей (30 на первой ступени) диктовалось размерностью их тяги (150 т). При отказе отдельных двигателей КОРД мог их попарно отключать. Такова была в принципе правильная идея повышения надежности ракеты Н1. К сожалению, никто не смог заранее разглядеть смертельной опасности и с самого начала не заложил в систему «инстинкт самосохранения», так сказать, ракетный иммунитет. К тому же по разным причинам не удалось быстро создать не только систему датчиков, но и алгоритмы обработки сигналов, всю эту надежную диагностику параметров «контролируемого взрыва», как очень образно и точно называют процессы, происходящие в ракетном двигателе. Это стало причиной второй тяжелейшей аварии 3 июля 1969 года, когда КОРД, несший в себе вирус «ракетного СПИДа», сработал, отключив почти все двигатели, и Н1 села обратно на старт, взорвав себя и все вокруг.

Первая авария в конце февраля 1969 года объяснялась взрывом двигателя на 70-й секунде полета.

После двух рядовых аварий, в конце 1969 года, за подписью Главкома ракетных войск маршала Н.И. Крылова появилось «Обращение к министру MOM C.A. Афанасьеву», в котором приводились результаты анализа принятого в нашей стране метода отработки боевых ракет, фактически перенесенного на программу Н1. Этот подход, предполагавший проведение десятка экспериментальных пусков, был совершенно не применим при создании очень дорогой и уникальной ракеты.

После упомянутого письма сделали очень много как для методики испытаний, так и для усовершенствования ракеты Н1. В частности, приняли решение отрабатывать двигатели для длительной работы с возможностью многократного включения. К сожалению, когда удалось достигнуть такого уникального качества, было уже поздно и вскоре проект был закрыт. Потерявший доверие КОРД вообще стали отключать на начальном этапе полета, хотя саму систему, насколько оказалось возможным, усовершенствовали. Однако это не спасло от следующей, третьей аварии в конце трагического июня 1971 года (спустя три дня, 30 июня, при спуске на Землю погиб экипаж, возвратившийся с первой орбитальной станции «Салют»). К ней привел другой крупный просчет в управлении ракетой по крену.

Согласно официальной версии, реактивные сопла, в которых использовался отработанный газ двигательных турбин, не смогли справиться с аэродинамическими возмущениями, возникшими в результате завихрений за 17-метровым хвостом, да еще неизвестно зачем сделанной конической юбкой. Надо сказать, что это была не единственная и неоднозначная версия. Ветераны лунной эпопеи отмечали, что работу специалистов сильно затрудняла



Сергей Сергеевич Крюков (справа) и Яков Петрович Коляко — руководители разработки Н1 и многих других ракет
общая обстановка, возникшая при разборе аварии. По словам Я.П. Коляко, одного из руководителей создания Н1 и других ракет в нашем КБ, наш новый главный конструктор Мишин вообще не владел тогда ситуацией. Например, важнейшая телеметрическая информация почему-то оказалась засекреченной. Оказалось даже трудным определить, правильной ли была полярность поворота сопел, а ведь они стали отклоняться сразу после отрыва ракеты от пускового стола и дошли до упора уже на 15-й секунде полета на высоте 250 м, когда крен достиг 15°. Ничего подобного во время первых пусков не наблюдалось. Было похоже, что, как и при подготовке первого беспилотного «Союза» в 1966 году, хорошей методики проверки полярности реактивных струй не было.

Так или иначе, но после аварии снова вспомнили и о наших традиционных РМ, и о «семерочных» рулевых двигателях и насколько возможно «обузили юбку». По крайней мере, правильность отклонения больших реактивных «рулей» стала визуально-очевидной, как на «семерке».

После такой «аварийной» модификации при последнем, четвертом пуске Н1 чуть-чуть (всего 7 с) не дотянула до разделения роковой 1-й ступени, в очередной раз — из-за отказа двигателя. Это случилось в конце 1972 года, когда полностью отработанные двигатели Кузнецова были готовы к полету на следующей ракете. История советской ракетно-космической техники могла пойти совсем по иному пути. С другой стороны, после четвертой аварии верховное руководство советской РКТ уже не видело перспективы в проекте Н1-Л3 и искало подходящего случая для выхода из трудной ситуации. Окончательное решение приняли только в 1974 году. Они не пощадили даже уникальную, почти отработанную ракету, не пожалев ни затраченных миллиардов, ни растраченного интеллектуального потенциала, ни самих этих уникальных специалистов, с которыми тогда даже не посоветовались, не поговорили. Не считаться с людьми, которые не умели постоять ни за себя, ни за свое дело, давно стало нашей, наверно, самой печальной российской традицией. Много лет спустя таким же путем стали совершать зло еще большего масштаба.

В связи с Луной надо еще раз подчеркнуть, что в Советском Союзе с начала 60-х почти пять лет работы над пилотируемыми программами характеризовались, прежде всего, разбродом. Вместо концентрации сил разлад Королева и Глушко и проектно-подрывная деятельность Челомея привели к огромной потере времени, распылению ресурсов и утрате целеустремленности. Тем не менее Хрущев до конца своих дней так и не признал непонимания того, «кто был кто» в советской РКТ и где было реалистичное, а где абстрактное искусство.

Только несгибаемой волей и неистребимой находчивостью Королев и его сподвижники в эти годы продолжали продвигать и «Союз» с его новыми системами, и лунные корабли, и суперноситель Н1. В 1964 году начались некоторые сдвиги в сторону «нашей» Луны и создания ракеты-носителя Н1. Челомеевские плакаты и деревянные макеты кораблей не могли все-таки конкурировать с настоящими экспериментальными прототипами изделий Королева. 1965 год можно было бы назвать годом великого перелома. В августе и последующие месяцы, последние для нашего Главного, одно за другим на самом высоком уровне принимались решения, которые определили пилотируемые программы и орбитальных полетов (7К — «Союз»), и к Луне (Л1), и на Луну (Л3). Таким образом, Королев, по крайней мере, успел расчистить дорогу своим последователям. К сожалению, эта дорога не смогла привести советских космонавтов на Луну. Будь жив наш Главный, многое было бы по-другому, это точно; остается гадать, каким мог стать конечный результат.

Лично для Королева именно эти годы, по-видимому, стали роковыми: хорошо известно, что постоянные стрессы не прибавляют здоровья. В те годы соратники не раз наблюдали своего Главного расстроенным, почти разбитым, что совершенно не было свойственно его кипучей, деятельной натуре. В письмах домой он упоминал о своих мыслях уйти на пенсию. И это — уникальный академик в 55 с небольшим-то лет.

Восемь лет спустя те, кто в начале 60-х предавал Королева и его дело, окончательно погубили осиротевшую несчастную ракету № 1.

*
* *

Теперь — коротко о лунных кораблях.

В конце концов корабли для полета к Луне — Л1 и на Луну — Л3, не считая, конечно, ни на что не похожую ЛК — кабину для прилунения, стали строить на базе «Союза», который



Он действительно летал к Луне?!
отрабатывался параллельно в те же годы. Их основой стал спускаемый аппарат, в котором космонавты взлетали на орбиту и возвращались на Землю. В принципе, это была правильная, рациональная идея. Для нормального полета не хватало немного веса и внутреннего объема, может быть, тех самых 200 мм.

Корабль Л1 остался без БО, и, чтобы как-то расширить его СА, в котором двум космонавтам предстояло провести почти неделю, «выбросили» второй, резервный парашют. Оба СА (Л1 И Л3) для возвращения с Луны со 2-й космической скоростью сохранили «союзовскую» форму, приобрели более теплозащитный лобовой щит, но потеряли некоторые резервные системы, прежде всего, запасной парашют. В результате масса СА уменьшилась, а внутренний объем несколько возрос. В целом все три корабля получились различными, тем не менее принципы построения многих систем и приборов оказались одинаковыми, а главное, это были те же люди, разработчики советской пилотируемой космонавтики.



Связка двигателей 1-й ступени «Сатурна-5»

Лунный орбитальный корабль оказался больше похож на «Союз», чем Л1: БО сохранили, прежде всего, потому что он был необходим как шлюз для перехода через открытый космос в ЛК и обратно. В дополнение к небольшому двигательному отсеку появился целый ракетный блок И, задача которого заключалась в разгоне ЛОК от Луны для возвращения на Землю.

По сравнению с нашим ЛОК корабль «Аполлон», по праву носивший название всей программы и это громкое имя, получился по-настоящему хорошо сложенным и мощным. В его 5,5-тонном командном модуле довольно свободно размещался экипаж из трех человек и оставалось место для отдыха и для хранения грунта, который предстояло добыть на Луне. Служебный модуль (SM) весом около 24 т представлял собой ракетно-энергетический блок, топлива которого хватало и для выхода на лунную орбиту, и на отлет от Луны к Земле, и на все другие необходимые маневры. Если не считать аварии на «Аполлоне-13», от полной катастрофы на котором спас лишь LM — лунный модуль, равно как и настоящее мужество в космосе, профессионализм и находчивость на Земле, то корабль сослужил американцам верную службу.

Где-то в начале 80-х И. Павленко из журнала «Пионер» уговорила меня написать интригующую статью для детей об удивительных космических превращениях. Основная мысль рассказа состояла в том, чтобы показать, как и почему космонавты, улетавшие с Земли на гигантской ракете, возвращались назад в последнем, совсем небольшом модуле этого уникального космического поезда. Рассказать об этом удалось очень наглядно на примере полета астронавтов на Луну. Действительно, вес капсулы «Аполлона» составлял лишь 0,25% стартового веса «Сатурна». Рассказ получился довольно длинным, как и само первое межпланетное путешествие, во время которого раз за разом приходилось отбрасывать ступени ракеты и отсеки корабля. Для ракетно-космического комплекса Н1 — Л3



Приводнение «Аполлона»
(с нашим СА весом около 2,5 т) это соотношение было бы еще разительнее — меньше 0,1%. Об этом в моем рассказе, разумеется, не упоминалось.

*
* *

В соответствии с основной лунной программой американцы облетели Луну на «Аполлоне-8» в конце 1968 года. Они выполнили эту миссию, воспользовавшись всем своим ракетно-космическим арсеналом, и в то же время очень продвинувшись к своей конечной цели — высадке человека на Луну. Со стороны, особенно издалека, нам в нашей слабо информированной стране полет к Луне действительно казался выполненным как бы между прочим. На самом деле предложение совершить пионерский полет к другому небесному телу, которое приняли всего за четыре месяца до старта, стало неожиданным не только для сторонних наблюдателей, но и для самих участников, включая руководителей программы и НАСА в целом. К тому же, решили не просто облететь Луну, но и полетать вокруг нее, вывести корабль на окололунную орбиту. Можно было подумать, что такое решение национального масштаба, связанное с престижем страны, с соревнованием с нами, с Советами, готовилось каким-то комитетом стратегического планирования по поручению самого президента страны. Как стало известно намного позже, ничего подобного не происходило: Кеннеди уже давно не было в живых, и сработала инициатива снизу — она оказалась намного сильнее.

Интересно также коротко сказать о тех условиях, в которых принималось то драматическое решение в августе 1968 года. В это время ни один лунный корабль не летал даже на околоземную орбиту, а до пуска первого пилотируемого полета «Аполлона-7» на сравнительно небольшой ракете-носителе «Сатурн-1Б» оставалось полтора месяца. Что касается гигантской ракеты-носителя «Сатурн-5», разработанной специально для полета на Луну, то к этому времени состоялось лишь два беспилотных пуска. В космос также слетали лишь несколько упрощенных беспилотных «аполлоновских» кораблей. Хотя в целом эти полеты прошли успешно, требовалось устранить серьезные замечания, особенно во втором полете «Сатурна-5». Пожалуй, главное состояло в том, что за прошедшие полтора года с того трагического пожара на Земле, который унес жизни трех астронавтов и о котором рассказывается дальше, было внесено огромное количество изменений, и эта работа не была завершена.

Предложение родилось на среднем уровне технического руководства. Идею выдвинул тот самый Дж. Лоу, который очаровал меня во время проекта «Союз» -«Аполлон». В то



Джордж Лоу
время он — заместитель директора Центра в Хьюстоне — руководил перестройкой лунной программы после пожара. Его предложение с большим энтузиазмом поддержали руководители сначала основных центров НАСА, а затем (правда, с меньшим воодушевлением) штаб-квартиры в Вашингтоне. Почти как у нас с первым спутником: в конце концов технари, посоветовавшись между собой, доложили политикам на самый верх, а президент Л. Джонсон дал добро на очень престижное предприятие, конечно, столь же рискованное. Надо отдать должное всем, кто взял на себя ответственность за подготовку и реализацию плана, включая самих астронавтов Ф. Бормана, Дж. Ловелла и У. Андерса.

Всех, кто нес ответственность за опасную миссию, высшие руководители НАСА заставили расписаться кровью, тоже — почти как у нас.

Американцы так торопились, боясь пропустить нас вперед, что использовали обычно «мертвый» на Западе сезон — свое Святое Рождество. Им даже пришлось мобилизовать весь свой тихоокеанский «Нэйви» (ВМФ) для рождественского «спасения на водах». Корабль благополучно вернулся на Землю только на третий день Рождества, приводнившись 27 декабря. Зато Рождество 1968 года стало, наверно, самым необычным для всего западного мира, в первую очередь, для американцев: ведь они провели его, прильнув к голубым экранам, почти как мы — к «Голубому огоньку» с нашими советскими космонавтами.

Миссия «Аполлона-8» к Луне сразу выдвинула американцев на самые передовые позиции и принесла им полдюжины «впервые в мире» : и первый выход человека за пределы гравитационного поля Земли, и первая миссия к другому небесному телу, и первый пилотируемый полет на лунной орбите, и первый человеческий взгляд на Луну вблизи и на Землю — издали, и первое возвращение в земную атмосферу со 2-й космической скоростью, и еще несколько подобных «впервые».

*
* *

Что касается нашего облета Луны, то решение объединить усилия двух «конкурирующих фирм» приняли той же осенью 1965 года, когда комиссия Келдыша наконец подвела итоги конкурентной борьбы с Челомеем, осознав состояние его проекта ЛК-1 по плакатам и деревянным макетам, не сулившим быстрых побед. Так родился проект соединения трехступенчатой ракеты-носителя «Протон» Челомея — с 4-й ступенью (с тем же самым ракетным блоком Д) Королева и его лунником Л1, который пришлось делать меньше и легче «Союза», чтобы уложиться в жесткий лимит. Проект не вывел советского человека к Луне, но, по крайней мере, этому четырехступенчатому варианту РН было суждено сыграть выдающуюся роль в советской и российской космонавтике: с его помощью стали запускать тяжелые межпланетные корабли и выводить на геостационарную орбиту спутники связи.

С января 1967 по октябрь 1970 года в общей сложности было проведено 13 запусков беспилотных кораблей. В процессе запуска или полета в космосе почти 10 раз происходили аварии или серьезные отказы, полет в августе 1969 года («Зонд-7») оказался вполне успешным. Однако это произошло уже после посадки на Луну американских астронавтов на «Аполлоне-11» в июле 1969 года.

Надо еще раз признать, что отлаженной, последовательной системы отработки и подготовки к полету в то время создать еще не удалось. Пока корабли были сравнительно несложными, а программа полета достаточно проста, воля и интуиция Королева и его соратников, как правило, не подводили. Удача тоже не оставляла советскую космонавтику, прежде всего, пилотируемую. Однако при таком подходе достичь устойчивого успеха с более сложными кораблями и полетными операциями стало невозможно. Пилотируемая программа облета Луны Л1 была закрыта: наверху решили, что дальнейшая игра не стоила свеч.


Космический корабль для облета Луны с ракетным блоком Д

Возможно, так оно и было.

После полета «Аполлона-11» стало ясно, что чудес не бывает. Мы проиграли лунную гонку. В тех условиях мы не могли ее выиграть. Если и считать что-то чудом, так это сам «аполлоновский» ракетно-космический комплекс, начиная с его концепции, схемы полета с двумя стыковками и кончая организацией работы тысяч предприятий, сотен тысяч человек, свершивших научно-технический и человеческий подвиг в такой короткий срок.

В части долгосрочного развития нашей космонавтики программа Л1 внесла большой вклад в накопление опыта отработки кораблей, наземной подготовки космических операций. Она воспитала многие сотни квалифицированных специалистов, в том числе нашего будущего Генерального конструктора Ю.П. Семенова, которого назначили ведущим конструктором корабля Л1 в 1967 году.

*
* *

В наследие от споров, какой носитель использовать для лунной программы, и дебатов о компонентах топлива для пилотируемых полетов остался так называемый подсадочный вариант схемы полета. Он заключался в том, что корабль Л1 с ракетным блоком Д запускался на низкую околоземную орбиту на «Протоне» без экипажа на борту. Пилотов планировалось доставить на орбиту на «Союзе», запускаемом на отработанной и более безопасной (кислородно-керосиновой) «семерке». С самого начала вариант с подсадкой экипажа был неосновным, и вероятность его реализации казалась небольшой. Однако работу организовали вполне серьезно, а для нас, стыковщиков, она вылилась в очередную непростую кампанию.

Дополнительная сложность возникла из-за того, что руководство двух министерств, нашего — MOM и оборонного — МОП (последнему подчинялся азовский ОМЗ), пережив трудные времена с освоением в производстве первого стыковочного механизма, решило «поменять лошадей». Вместо того чтобы укрепить базу в Азове, в МОПе приняли решение начать изготовление в другом месте. Выбор пал на казанский ОМЗ, имевший более солидную предысторию и высокую репутацию.

Как мы узнали позже, этот завод возник в первый год войны, когда в Казань успели эвакуировать часть ленинградских оптиков-механиков. Возможно, некоторые ехали тем же эшелоном, что и моя семья. Эта программа познакомила и подружила меня с довоенными земляками. Особенно полюбился мне старший мастер Виктор Никаноров — ответственный за сборку и испытания стыковочных механизмов. Ему не пришлось получить высшего образования, но был он настоящим ленинградским интеллигентом, которого судьба забросила в Татарстан. Никаноров много рассказывал мне о военных годах: о том, как в 41-м сооружали цеха и одновременно налаживали сборку самолетных прицелов почти на голом месте, в Дербышках, на окраине Казани, как работали по 12 часов в день без выходных, как спали прямо в цеху на матрасах, как голодали, как весной 42-го сажали картошку в нескольких километрах от завода, куда добирались после смены, и возвращались к следующей смене пешком, как продержались на этой картошке еще одну зиму, а потом стало немного легче, когда появились американская тушенка и яичный порошок.

Я слушал его и вспоминал свою зиму 1942-1943 годов, рассказы моего товарища П.П. Давыдова, работавшего в войну на заводе в Подлипках, о том, как ему не хватало сил добираться после смены до дома, вспоминал симоновские телевизионные рассказы из цикла «Солдатские мемуары», особенно историю артиллериста, который вместе с другими бойцами ночью закапывал противотанковые пушки в землю так, чтобы торчал один ствол, иначе днем — конец, а потом сваливался от изнеможения рядом с пушкой, и не дай Бог менять позицию перед рассветом по приказу какого-нибудь ретивого штабного командира. А сколько таких рассказов, а сколько нерассказанного, а сколько тех, кто не успел рассказать...

Через 22 года после окончания войны мы налаживали изготовление модернизированного стыковочного механизма на казанском ОМЗ, чтобы лететь к Луне. Работа продолжалась, несмотря на то что было ясно: никакой подсадки не будет.

В те годы мы стремились продвинуть технику космической стыковки вперед. Улучшенный механизм стал промежуточным шагом. Нам удалось усовершенствовать многие узлы. На основе теории, разработанной в диссертации, были созданы малоинерционные тормоза — ЭМТ и другие узлы. На казанском заводе соорудили новый эффективный испытательный стенд с так называемым качающимся грузом, который воспроизводил динамику стыковки в невесомости.

К сожалению, ни один стыковочный механизм казанской серии так и не слетал в космос, хотя их успели полностью отработать.

*
* *

Наша лунная кабина и американский лунный модуль LM — эти первые инопланетные конструкции существенно отличалась от всех других космических кораблей. Спроектированная для посадки на Луну, ЛК состояла из трех характерных частей: герметичной кабины космонавтов, ракетного блока и посадочных опор. Задачу прилунения осложняло отсутствие атмосферы и облегчала пониженная лунная тяжесть.

При сильнейшем дефиците веса проектанты ракетно-космического комплекса Н1-Л3 проявили исключительную изобретательность, чтобы свести концы с концами и уложить полет на Луну одного космонавта в прокрустово ложе безводородного носителя Н1. Ключевым звеном в этой кампании стал ракетный блок Д многоразового запуска в условиях космической невесомости, который предполагалось использовать несколько раз на разных участках полета. Первый раз — для того чтобы дотянуть до 2-й космической скорости, после того как блок Г выключался, израсходовав все топливо до нуля, опустошив баки безо всяких гарантийных остатков. Затем блок Д включался еще 2-3 раза для выполнения промежуточных коррекций на трассе полета к Луне. Большая часть топлива расходовалась на то, чтобы вывести корабли на окололунную орбиту и чтобы должным образом скорректировать траекторию их полета. И, наконец, блок Д, отделившись вместе с ЛК-кабиной от ЛОК-корабля, выполнял торможение и отбрасывался лишь перед самой лунной поверхностью. Все эти ухищрения позволяли нашим проектантам, работавшим под руководством И.С. Прудникова, значительно облегчить оба лунника: и ЛОК-корабль, и ЛК-кабину. В частности, поэтому они получились значительно легче американских аналогов СМ & SM и LM.

Американцы очень хорошо продумали посадку своих астронавтов на Луну. Для этого у них имелись прекрасные возможности, прежде всего по весу аппаратуры. Помню, как при первом посещении Хьюстона летом 1971 года меня поразили огромные размеры американского LM, который был тогда выставлен прямо на улице, недалеко от здания № 13, где мы отрабатывали стыковку «Союза» и «Аполлона». Казалось, что лунный модуль подвергали тогда дополнительным испытаниям в субтропиках Техаса. В те годы мне приходилось несколько раз в день проходить мимо модуля и наблюдать его архитектурный кубизм и блеск его угловатых деталей, покрытых золотистой пленкой. LM, как и наш ЛК, нуждался не в аэродинамических формах, а в защите от яркого космического Солнца. Между широко расставленных ног модуля торчало сопло двигателя посадочной ступени. Второй двигатель взлетной ступени находился внутри и виден не был. Этой второй ступенью можно было в любой момент воспользоваться на этапе спуска на Луну в случае отказа посадочной ступени.

Здесь уместно также отметить, что для повышения безопасности полета американцы широко использовали резервирование. Так, в LM встроили еще одну независимую систему управления со всеми ее многочисленными элементами. Этой системой так ни разу и не пришлось воспользоваться, а вот сам LM, который упоминался как запасной корабль, очень пригодился как спасательная шлюпка, когда на «Аполлоне-13» произошел взрыв кислородного баллона. В результате практически весь служебный модуль вышел из строя, и корабль сразу лишился жизненно важных систем, а с ними — электричества, кислорода и воды, а также маршевого реактивного двигателя, чтобы вернуться домой. Тогда от неминуемой катастрофы спасли и герметичная кабина LM с его системами электропитания и жизнедеятельности — СОЖ, и «лунный» реактивный двигатель, который использовался несколько раз для коррекции траектории: и для того, чтобы правильно облететь Луну, и чтобы не промахнуться на Земле.

Еще один яркий пример заботы о надежности и безопасности — это подход к проектированию всех трех межпланетных ракетных двигателей — маршевого и обоих лунных — на LM. Американцы сознательно пошли на потерю эффективности, отказавшись от традиционного ТНА (турбонасосного агрегата). За счет этого они значительно упростили двигатели и повысили их надежность, выбросив самый сложный и капризный компонент.

*
* *

До этого много говорилось о том, как американцы все здорово сделали, чтобы послать человека на Луну и вернуть его благополучно обратно, и это — правда. Однако, как у любого большого дела, у этой беспрецедентной программы была и другая сторона.

Надо еще раз подчеркнуть, что американцы очень торопились выполнить поставленную перед ними задачу, их очень подгоняла лунная гонка. Несмотря на то что президента Кеннеди уже не было в живых, а Советы стали отставать, руководство разного уровня стремилось как можно скорее выполнить задание и рапортовать. Более того, почти как у нас, им очень хотелось «пятилетки в четыре года». Они надеялись высадиться на Луне уже в 1968 году. Но дело было не только в спешке.

Позднее стали известны многочисленные факты того, что далеко не все делалось так, как хотелось, как надо. Когда в 1966 году приступили к подготовке к первым полетам, стали все яснее просматриваться большие недостатки в состоянии техники и в организации работ. Кульминацией стала трагедия, разыгравшаяся в начале 1967 года.

Как упоминалось, некоторую весовую экономию американцам давало применение чисто кислородной атмосферы. На кораблях «Меркурий» и «Джемини», слава Богу, все обошлось. На «Аполлоне» же за отклонение от естественных земных условий поплатился жизнью экипаж первого пилотируемого корабля: Гас Гриссом, Эдвард Уайт и Роджер Чаффи заживо сгорели при наземных испытаниях на стартовом столе 27 января 1967 года, за месяц до запланированного пуска.

Пожар возник от случайной искры. Огонь за секунды распространился на всю кабину. Попытки Э. Уайта (физически очень сильного астронавта, первого из американцев вышедшего в открытый космос) открыть крышку ни к чему не привели, не могли привести: ее сконструировали прежде всего так, чтобы предотвратить самопроизвольное открывание. По иронии судьбы, инцидент с преждевременным отстрелом крышки, который потопил капсулу «Меркурия» и чуть не утопил самого Гаса Гриссома, сыграл, возможно, роковую роль в его судьбе и в судьбе его товарищей.

Как часто бывает в жизни, через случайность проявляется закономерность. Последовавшее за трагедией расследование обнаружило очень много недостатков, в том числе нарушений правил безопасности. Например, чтобы избежать перепада давления, испытания на старте проводились при полном давлении в кабине чистого кислорода (760 мм рт. ст.), а не при пониженном (250 мм), как в полете. При таком давлении возгорание происходит гораздо интенсивнее, чем при пониженном. Однако дело было не только в этом. Кислород под высоким давлением лишь усугубил ситуацию, ведь на «Меркурии» и «Джемини», в принципе, использовался тот же подход. Дело было и в электрических проводах, которые находились в безобразном состоянии, как у плохого электрика, и в материалах, как спичка вспыхнувших в кислороде, и в других вещах.

Гибель астронавтов стала настоящим шоком и заставила американцев критически посмотреть на всю свою лунную программу. Очень многим трагедия открыла глаза на действительное состояние дел, стала для них «eye-opener». Надо отдать должное американцам: они не только не дрогнули в трудную минуту, не растерялись, а мобилизовались и в конце концов исправили положение. Прежде всего они сумели существенно улучшить организацию работ, радикально усовершенствовать корабль и отработать операции в космосе; им удалось даже уложиться в отведенную президентом Кеннеди декаду 60-х. Опять же жесткая конкуренция с нами их сильно подгоняла.

Как любил говорить соратник Королева, главный ракетный управленец Н.А. Пилюгин, одна авария обычно приносит намного больше опыта и учит во много раз быстрее, чем десятки успешных пусков. Сказанное относилось к ракетам, но к космосу это применимо еще в большей мере. Очень скоро, меньше, чем через три месяца после пожара у американцев, нам предстояло все испытать самим.

Фактически американцы стали испытывать большие трудности задолго до трагедии. Управлять программой, координировать деятельность тысяч предприятий было действительно очень трудно. Масштаб работ оказался беспрецедентным. Неудивительно, что при таком объеме к управлению программой подключилось очень много людей, а они, как известно, бывают разные. Уже было невозможно ограничиться той элитной «Группой, озадаченной космосом» и теми, кто работал с ними в НАСА, в «Макдоннелл» и других проверенных в деле фирмах. Огромные деньги и внимание со всех сторон и разного уровня сыграли в этом деле не последнюю роль. Очень многим хотелось стать у руля такого большого, многомиллиардного и престижного дела. Авиационнал фирма «Норт Америкэн», ставшая головным подрядчиком, отвечавшим за создание корабля «Аполлон», не имела большого космического опыта и фактически поначалу оказалась не готовой решить задачу такого масштаба и сложности.

По воспоминаниям ряда специалистов, к началу 1967 года корабль «Аполлон», прежде всего — его командный модуль, находился в очень плохом состоянии. От администратора НАСА Дж. Уэбба, больше политика, чем инженера, скрыли весьма критическую докладную записку С. Филлипса, руководителя отдела пилотируемых программ. Лично для Уэбба самым скверным стало, возможно, то, что впервые он об этом услышал при докладе в Конгрессе во время разбирательства по поводу гибели астронавтов; когда главного насавца спросили о той докладной, он сказал, что таковой не существует. Уэбб посчитал себя преданным, он так и не оправился после той настоящей трагедии и того позора и, похоже, оказался неспособным взять на себя ответственность за дальнейшие решения. Уэбб подал в отставку до первого пилотируемого полета на «Аполлоне-7», и его сменил Т. Пейн, который с самого начала стал поддерживать сотрудничество с нами, с Советами.

Позднее о программе «Аполлон» стали говорить как о чуде, и не только техническом, но и организационном. В целом, это — правда, но не вся, и не одна, как требует говорить американский суд. Путь к такому чуду оказался тернистым, настоящее чудо надо было выстрадать. Потребовалось пережить и настоящую трагедию, и именно она очень помогла преодолеть многочисленные и большие недостатки.

Структура управления пилотируемой астронавтикой существенно усложнилась по сравнению с проектом «Меркурий». Штаб-квартира НАСА в Вашингтоне расширила свою деятельность, образовав целый отдел по управлению пилотируемыми программами, его возглавил тот самый генерал С. Филлипс, до этого руководивший созданием МБР «Минитмэн». Над ним стоял специальный помощник администратора НАСА, другой известный руководитель, отвечавший за выполнение военных заказов, доктор Дж. Мюллер, физик с большими способностями и склонностью к администрированию. Он жестко руководил программой, используя разные методы, в том числе похожие на наши, советские. Под руководством Мюллера были созданы что-то вроде совета директоров (Management Council), в который вошли директора основных центров НАСА (Гилрут из Хьюстона, фон Браун из Хантсвилла, К. Дебус с Мыса), а также еще один совет — так называемый исполнительный комитет (Executive Committee), состоящий из руководителей основных фирм-подрядчиков и субподрядчиков. С Дж. Мюллером мне тоже привелось познакомиться, правда, уже в 90-е годы.

Вполне понятно, что в такую престижную программу общенационального масштаба стремились попасть очень многие, менеджеры разного уровня и политики всех мастей. Не обошлось там без Конгресса и Белого дома. Они, конечно, помогали, но и вносили дополнительные сложности в организацию работ, отвлекая внимание тех, кто создавал космическую технику и кто готовил операции на орбите. Были и другие сложности и издержки, обусловленные просто недостатками нашей человеческой натуры.

После пожара сменили многих руководителей. Как на войне, и в НАСА, и в промышленности нашлись нужные, проверенные в деле люди. Среди них оказались и те, с кем нам пришлось работать в 70-е годы. Еще раз назову Дж. Лоу; его, заместителя администратора НАСА, перевели в Хьюстон, формально понизив в должности. Однако, став заместителем директора Центра, в тот момент он занял ключевой пост. Этот выдающийся инженер и организатор возглавил комплекс работ по переконструированию многих элементов корабля и перестройке в организации работ, как в НАСА, так и у ключевых подрядчиков.

Как настоящий менеджер, а следовательно, хороший психолог, Лоу начал с того, что потребовал от ключевых специалистов составить перечень мероприятий с письменным обоснованием их необходимости, а затем обязал всех руководителей лично участвовать в работе специальной комиссии по реализации этих мероприятий. Он также настаивал на личной ответственности за порученное дело. Как видно, в трудную минуту НАСА прибегало к советским методам организации работ.

И на новом боевом посту Лоу внес еще один выдающийся вклад в астронавтику.

Ключевых руководителей сменили и на головной фирме «Норт Америкэн», с одним из них, другим Джорджем — Дж. Джефсом — мне привелось встретиться во время программы «Союз» -«Аполлон» и в 90-годы.

Работая в НАСА, мы также познакомились с теми, кому особенно досталось в послепожарной эпопее. Один обаятельный инженер, заработавший на этом деле инфаркт и преждевременно ушедший на пенсию, часто навещал коллег и был рад познакомиться с нами, бывшими заочными конкурентами. Все они очень гордились своими достижениями и разработками в применении не только негорючих материалов, но и не поддерживающих огонь. Им было чем гордиться. Демонстрируя нам свои противопожарные опыты с креслами для пассажирских самолетов, насавцы подчеркивали, что жертвы «Аполлона» оказалось не напрасны, и не только в космосе, но и на Земле; по известной статистике, в авиационных катастрофах люди погибают чаще всего от отравления и удушья при почти неизбежных пожарах.

Изменения на «Аполлоне» коснулись не только пожарной безопасности и не только командного модуля, в котором сгорели астронавты. Не только фирма «Норт Америкэн» подверглась критике и перестройке. Мероприятия вылились в очень широкую кампанию, а глубина реорганизации охватила все разделы космической «аполлоновской» техники, затронула все ее слои.

Особое внимание, наряду с материалами, обращалось на провода, на прокладку кабелей и их защиту. Заменили теплоноситель в гидросистеме и, конечно, полностью переработали механизм открытия крышки. Однако вернуться к пироболтам отстрела крышки, как на «Меркурии», утопившим капсулу Г. Гриссома, не решились или не захотели. Особую заботу проявили не только о «железках», но и о «software» — этом очень тонком «мягком продукте», о программном обеспечении компьютеров, которое разрабатывалось в знаменитом МТИ под руководством известного специалиста Т. Дрейпера.

Над всеми изменениями, которые постоянно вносились в конструкцию, НАСА ввело строгий контроль, называемый управлением конфигурацией (configuration control). С этими термином и процедурой нам пришлось столкнуться и работать 40 лет спустя, когда устанавливали наш стыковочный АПАС на «Спейс Шаттл».

Первоначально LM назывался лунным экскурсионным модулем (Lunar Excursion Module — LEM), после трагедии американский Мюллер запретил всякие «экскурсии», и LEM превратился в LM.

Практика показала, что освоение космоса, как и война, не обходилось без жертв. «И не добыть надежной славы, покуда кровь не пролилась», — написал Булат Окуджава о кавалергардах XIX века. Похоже, это стало относиться и к «кавалергардам» XX века: космонавтам и астронавтам.

А еще говорят, что войну выиграли раненые: стреляный солдат умел выжить сам и помочь товарищам. В космических проектах «ранеными» оказывались те, кому привелось испытать и преодолеть настоящие трудности, аварии и катастрофы, те, кто принимал их близко к сердцу как личную трагедию и кто сделал все, чтобы они не повторились. В программе «Аполлон» «ранеными» были те НАСАвцы и сотрудники многих фирм, кто пережил тот пожар, кто сумел превозмочь тяжелейший кризис. Как на войне, были и такие, кто не выдержал испытания, у кого не хватило силы духа или здоровья. Были и такие, кто просто запил, и это хорошо понятно нам, россиянам.

Подводя итоги, можно сказать, что без пожара на Земле и последовавшей за ним настоящей и глубокой перестройки достичь Луны без больших потерь было бы невозможно. Это не голословное утверждение, это признали многие американские специалисты, активные участники программы. То, что в конце концов удалось успешно выполнить 10 полетов и спасти от полной катастрофы экипаж «Аполлона-13», стало результатом огромной и разносторонней деятельности многих специалистов, сохранивших силы, мужество и преданность делу.

Пожар на «Аполлоне» коснулся и нас, хотя и не в такой степени, как американцев. Была инициирована обширная проверка противопожарных мероприятий, в том числе ревизия материалов, примененных внутри наших кораблей. Нельзя сказать, что тогда было сделано очень много. Однако она стала для нас хорошей «пробой пера». Этот опыт пригодился на последующих этапах, в первую очередь при подготовке стыковки с «Аполлоном» с его чисто кислородной атмосферой.

далее

назад