

КОСМИЧЕСКАЯ ГОНКА В АЗИИ

Пока западные страны последние 40 лет удерживали своих космонавтов на орбите Земли, восточные страны изучали Луну и строили планы.

ЗАПУСК

Ракета «Великий поход-2F» взлетает со спутником «Шэньчжоу-7» 25 сентября 2008 года.

КОСМИЧЕСКОЕ ТРИО

Командир Чжай Чжиган (в центре) с тайконавтами Цзином Хайпэном (слева) и Лю Бомином на борту «Шэньчжоу-7».

ереходной шлюз открыт, и бывший летчик-истребитель готовится выйти из орбитального космического корабля. Один из двух его напарников пожелал ему удачи и остался ждать в шлюзе, готовый оказать помощь. Удачно завершив эту стадию программы, космическое агентство, согласно плану, приближалось к своей главной цели — высадке на Луну человека примерно через 10 лет.

Здесь описаны не первые дни программы «Аполлон», а события сентября 2008 года, и перед нами не астронавт, а тайконавт – Чжай Чжиган из Китайского национального космического управления.

НОВАЯ КОСМИЧЕСКАЯ ЭРА

Китай планирует запуск пилотируемых орбитальных станций к 2017 году и отправку человека на Луну к 2020-му. Перспектива «красной Луны» не на шутку испугала президента США Джорджа Буша, и он объявил о начале новой лунной программы. Индия и Япония также обеспокоены прогрессом Китая, считая, что их коммерческие интересы

оммерческие спутники — большой бизнес для Китая. Совместно с EKA он разрабатывает спутниковую навигационную систему «Галилео», возможного конкурента для американской системы GPS. Индия утверждает, что на своих спутниках дистанционного зондирования она зарабатывает с каждого вложенного доллара два. Япония ежегодно инвестирует в космические исследования 2 млрд долларов. В Южной Корее составили пятилетний план развития коммерческих грузовых космических ракет.

ПРОРЫВ КИТАЯ В КОСМОС

ервые выходы в открытый космос были историческими событиями для СССР и США. Всего три месяца разделяют выходы в космос космонавта Алексея Леонова и астронавта Эда Уайта. Первый выход в отрытый космос китайца в 2008 году имел не меньшее значение. Чжай Чжиган доказал, что китайский космический костюм Feitian действительно работает.

Тайконавт 15 минут находился у «Шэньчжоу-7», после чего вернулся на корабль, где с коллегами Лю Бомином и Цзином Хайпэном провел ряд научных экспериментов. Во время выхода командира в космос Лю оставался в открытом шлюзе, чтобы помогать ему и передать флаг Китая. От аналогичного этапа в программе «Аполлон» до прилунения оставалось четыре года.

и региональная безопасность находятся под угрозой.

Индия планирует доставить своего космонавта (гаганавта) на Луну вскоре после Китая, Япония инвестирует в пилотируемые человеком программы, а другие восточные страны развивают космические технологии (см. «Наши сведения: Небесные выгоды»).

Ракетная программа Китая, стартовавшая в конце 1950-х годов, предусматривала в основном запуск ядерных боеголовок. СССР предоставлял технологическую и экспертную поддержку до

КИТАЙСКИЙ ПРОРЫВ Ян Ливэй перед посадкой на «Шэньчжоу-5». Он стал первым космонавтом КНР.

1960 года, пока отношения между странами не ухудшились. Китай продолжил программу самостоятельно. В 1970 году он запустил первый спутник «Дунфан Хун-1» («Алеет Восток»).

В 1971 году правитель Китая Мао Цзэдун объявил о пилотируемой космической программе, но после его смерти в 1976 году Китай сконцентрировался на коммерческих и военных проектах. На данный момент страна запустила более 100 спутников, в том числе 30 для иностранных государств, используя проверенные временем ракеты «Великий поход».

МОЩИ СТРАНЫ, ЧТО ОЧЕНЬ ВАЖНО ДЛЯ ПОДНЯТИЯ НАШЕГО НАЦИОНАЛЬНОГО ПРЕСТИЖА».

Оуян Цзыюань, научный руководитель программы Китая по изучению Луны

ЦЕЛЬ - ЛУНА

Китайская корпорация аэрокосмической науки и технологии была основана в 1999 году. В том же году она удачно запустила и вернула беспилотный аппарат «Шэньчжоу-1».

Первый космонавт страны Ян Ливэй совершил полет в космос на борту «Шэнчьжоу-5» в 2003 году, после чего в космос отправили еще пятерых космонавтов, в том числе экипаж из трех человек «Шэнчьжоу-7» под командованием Чжай Чжигана. Они провели на орбите около трех дней (см. «Наши сведения: Прорыв Китая в космос»).

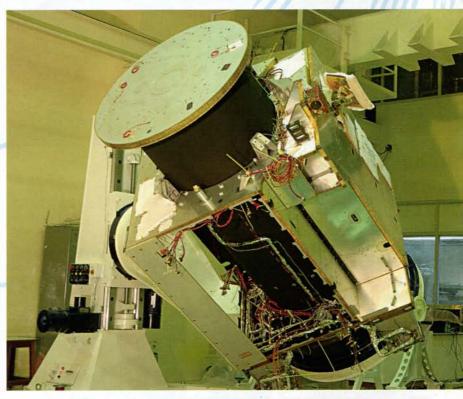
Главная цель Китая стала очевидной в октябре 2007 года, когда был запущен

спутник «Чанъэ-1» для исследования Луны (см. «Миссии», выпуск 70). Как и другие азиатские конкуренты, Китай стремится основать на ней колонию, чтобы эксплуатировать ее ресурсы, такие как гелий-3 (см. «Мир астрономии», выпуск 69).

САМОСТОЯТЕЛЬНАЯ ИНДИЯ

Как и в Китае, ракетная программа Индии началась при поддержке специалистов из СССР. Индийская организация космических исследований (ИОКИ) была основана в 1969 году.

Однако когда Индия в 1974 году провела испытание атомной бомбы, ИОКИ исключили из сообщества космических стран. Ракетная программа Индии развивалась неудачно. С 1979 по 1994 год


миссия на луну

Диспетчеры полета в Космическом центре имени Сатиша Дхавана радуются запуску первого индийского космического зонда «Чандраян-1».

«ЧАНДРАЯН-1»

Первый искусственный спутник Луны в Космическом центре имени Сатиша Дхавана. половина испытательных полетов завершилась провалом. Поворотной точкой стало создание ракеты-носителя для вывода спутников на полярную орбиту – PSLV (см. «Важные открытия»).

Через год после успешного запуска Китаем искусственного спутника Луны Индия запустила «Чандраян-1» на борту ракеты PSLV, чтобы исследовать Луну визуально, изучить инфракрасные и рентеновские частоты, а также составить ее

ВАЖНЫЕ ОТКРЫТИЯ
ИНДИЙСКАЯ РАКЕТА-НОСИТЕЛЬ

Ракета-носитель PSLV разрабатывалась для вывода на полярную орбиту спутников индийской системы дистанционного зондирования IRS, предназначенной для поиска природных ресурсов и наблюдения за засухой, наводнениями, сельскохозяйственными угодьями и лесным хозяйством. PSLV оказалась успешным проектом. С 1993 года она подняла более 30 спутников, в том числе 16 иностранных. Одним из них стал «Калпана-1» — первый метеорологический спутник, названный в честь Калпаны Чавлы, погибшей в катастрофе на шаттле «Колумбия». PSLV принадлежит рекорд по количеству запущенных в одном полете спутников — 10 зондов.

РЕКОРД PSLV-C9 стартует с космодрома Космического центра им. Сатиша Дхавана в Шрихарикоте с 10 спутниками на борту.

трехмерную карту с отметками залежей минералов. На борту спутника находилось оборудование НАСА и ЕКА.

Индии еще предстоит отправить человека в космос. Первым серьезным ша-

гом в этом направлении стало строительство Центра подготовки космонавтов, оборудованного центрифугой для адаптации к перегрузкам и бассейном с нулевой плавучестью для имитации невесомости.

ИОКИ также построила новую стартовую площадку в Космическом центре имени Сатиша Дхавана специально для лунной программы. Также разрабатывается космиче-

₹ ТЕХНОЛОГИИМОДУЛЬ «КИБО»

Экспериментальный модуль «Кибо» — самый крупный и один из самых сложных на МКС. Он состоит из герметичного отсека, в котором космонавты работают без скафандров, и «открытой» платформы для проведения экспериментов в космосе. Для передвижения полезной нагрузки и поддержки космонавтов он также оснащен дистанционным манипулятором — роботизированной рукой. «Кибо» используется для проведения экспериментов в области космической медицины, биологии и связи. Кроме того, он пилотируется японскими космонавтами.

мощный модуль Лаборатория «Кибо»

МОЩНЫЙ МОДУЛЬ Лаборатория «Кибо» (в центре) успешно состыкована с модулем «Гармония» МКС. Роботизированная рука «Кибо» слева, а «Канадарм» МКС – ниже.

ская ракета для экипажа из трех человек, способная выполнить маневры по сближению и стыковке.

ЯПОНСКИЕ ТРИУМФЫ

снимок луны

На рисунке – индийский

спутник «Чандраян-1»

исследует поверхность Луны с ее орбиты.

Свой первый спутник Япония запустила в 1970 году и с тех пор занимается вопросами связи, сбором данных, разработкой космических аппаратов и выполнением программ совместно с НАСА. К примеру, на Международной космической станции

жизнь в космосе

Бортинженер Японского космического агентства Коити Ваката готовит еду в условиях невесомости на МКС. (МКС) работает японский экспериментальный модуль «Кибо» (см. «Технологии»).

Япония достигла и самостоятельных успехов. Среди них – запуск первого азиатского межпланетного аппарата «Сакигакэ», который в 1986 году сблизился с кометой Галлея, и аппарата «Хаябуса»,

который успешно доставил образцы грунта астероида Итокава. Но в 2003 году Японии не удалась вывести межпланетную станцию «Нодзоми» на орбиту Марса.

СОКРАЩЕНИЕ ОТРЫВА

В 2003 году три японских космических агентства объединились в Японское агентство аэрокосмических исследо-

ваний (JAXA). Его цель – расширить космическую программу страны и к 2030 году основать лунную базу.

Для исследования Луны Япония в разные годы запустила на ее орбиту несколько спутников. К примеру, в 2007–2009 годах аппарат «Кагуя», также известный как SELENE, собирал данные о поверхности Луны.

США выиграли космическую гонку в 1969 году, когда прилунился «Аполлон-11», а СССР отказался от своей лунной программы. Возможно, азиатские государства окажутся ближе к цели.

