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NOTE ON THE TRANSLATION 

The general title of Rynints series, I1Mezhplanetnye Soobshcheniya," 
is sometimes translated literally a s  "Interplanetary Communications." 
However, a s  has been pointed out by various wri ters  on the history of 
space science (Willy Ley, Carsbie Adams, and others), the actual meaning 
is closer to "Interplanetary Travel." The title of the ser ies  in the present 
English translation, "Interplanetary Flight and Communications, " is thus 
a compromise between the two interpretations. 

The subjects dealt with in this volume range from the most speculative 
(the origins of life and the possibility of traveling to other stellar systems) 
to the most practical (data from rocket experiments). 

In general, an attempt has been made to use the terminology current in 
1932, the year this collection was published, rather than more modern 
space jargon. Thus, "entry1' o r  "return" is used instead of "re-entry," 

by reaction" o r  "reaction aircraft" instead of "jet propulsion" 
o r  "jet aircraft," "useful load" instead of "payload," and even, at  times, 
"velocity of gas ejection" instead of "exhaust velocity." 

The commentaries on the papers, the biographical notes, and the final 
sections by Kondratyuk and Rynin were written in Russian. The res t  of 
this volume, with the exception of Goddard's paper, was translated into 
Russian from French o r  German. The abridged version of Goddard's 
paper has been copied from the original paper in English, rather than re- 
translated. 

Notes o r  additions in square brackets, and footnotes labelled a s  trans- 
lator 's  notes, have been added during the translation from Russian into 
English. All other notes o r  additions were made by Rynin during com- 
pilation o r  editing of this volume. 

A great number of proofreading e r r o r s  in the Russian text have been 
corrected without comment, for the most part mistakes in symbolic 
notation. 

September 1971 Ron Hardin 
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FOREWORD 

This work is the eighth volume in a s e r i e s  of studies undertaken by the 
author. The overall t i t le of the ser ies  i s  "Interplanetary Travel," and the 
seven volumes which have already been published are: 

I. "Dreams, Legends, and Early Fantasies," Leningrad, 1928; 
11. "Spacecraft in Science Fiction," Leningrad, 1928; 

111. "Radiant Energy: Science Fiction and Scientific 
Projects,  " Leningrad, 193 1; 

IV. "Rockets, " Leningrad, 1929; 
V.  "Theory of Rocket Propulsion," Leningrad, 1929; 

VI. "Superaviation and Superartillery," Leningrad, 1929; 
VII. "K. E. Tsiolkovskii: Life, Writings, and Rockets," 

Leningrad, 1931. 
The ninth and last volume, entitled: "Astronavigation. Annals, 

Bibliography, and Index," i s  now in press .  
Any comments regarding the volumes which have already appeared, or 

regarding the sending of these to  readers ,  may be directed to the author at 
the following address: 

Leningrad, Kolomenskaya Ulitsa 37, apt. 25. 

Nikolai Alekseevich Rynin 
Leningrad, 1 October 1931 



This issue, Theory of Space Flight, is a collection of translations of 
classical publications, mainly by foreign and some Russian authors. 

It presents translations from the work of the French scientists Esnault- 
Pelterie (three papers) and Maurice Roy, the American scientist Goddard, 
the Germans Oberth, Hohmann, Lorenz, Shershevskii [Scherschevski], Kunz, 
Pirquet, Debus, and Ley, and the Russians Kondratyuk and Lebedev. 

Many of the results included in this issue were also used in the previous 
publications in the ser ies .  A separate issue (NO. 7) has been devoted 
exclusively to the work of K. Tsiolkovskii. Analysis of the work on inter-  
planetary t ravel  included in this issue clearly shows that different people in 
different countries independently came to the same conclusion, namely that 
interplanetary t ravel  i s  feasible but impracticable a t  this stage because of 
technical and financial difficulties. These difficulties will certainly be 
overcome in the future, and man will finally pierce the a rmor  of the atmos- 
phere and the earth 's  gravitation, escaping into the mysterious and luring 
abysses of interplanetary space. 



R O B E R T  ESNAULT-PELTERIE 

FOREWORD TO ESNAULT-PELTERIEIS PAPERS 

In all, four works  by Esnau l t -Pe l t e r i e  dealing with in terplanetary  t r ave l  
a r e  known to  us .  These  a re :  

1. "ConsidBration s u r  l e s  rbsul ta ts  d 'un  allggement indefini d e s  
moteurs ,"  1913; 

2. "L1exgloration p a r  fusees  de la t r s s  haute a tmosphere  e t  la 
possibilitk d e s  voyages in terplaneta i res ,  " 1928; 

3.  "Astronautik und Relativitatstheorie,  " 1928; 
4 .  "LIAstronautique," 1930. 
Transla t ions  of the f i r s t  t h r e e  of these  a r e  presented below. The  fourth 

work, which is Esnau l t -Pe l t e r i e l s  chef dloeuvre,  was  published in 1930 i n  
Paris. In addition t o  the f i r s t  th ree  papers,  i t  includes a number of new 
s tudies  containing s o m e  l a r g e  nomograms.  Although it would be  extremely 
useful to publish a t rans la t ion of th i s  book as well, for  financial r e a s o n s  
t h i s  was  not possible. We cite h e r e  just the t i t l e s  of the chapters  of 
"LIAstronautique": 

1. His tory  of the Subject (pp. 17-24); 
2. RBsumB of Works of Goddard, Oberth, and Hohmann (25-38); 
3 .  Rocket Motion i n  a Vacuum (39-78); 
4 .  Rocket Motion in  A i r  (79-108); 
5.  Expansion of F u e l  Gas i n  a Nozzle (109-130); 
6 .  Combustion in a Chamber (131-152); 
7. The Use of Rockets (153-168); 
8.  Interplanetary T r a v e l  (1 69-206); 
9. In teres t  in  In terplanetary  Studies (207-224); 

10.  Conclusion (225-248). 
N. Rynin. 



SOME INFORMATION ABOUT ESNAULT- PELTERIE 

Rober t  Esnaul t -Pel ter ie  (Figure  1 )  was  born in  P a r i s  on 8 November 1881. 
He studied a t  the  Janson De Sail ly Lyc6e until 1898 and then at the  Sorbonne. 
In 1902 he  completed his  mi l i t a ry  se rv ice .  Esnaul t -Pel ter ie  was active in  
the field of aviation a s  e a r l y  as the yea r  1900. At f i r s t  h i s  exper iments  with 
a n  a i rplane s i m i l a r  to that  of Wright were  unsuccessful. However, then he 
began to  look f o r  optimum wing shapes  and studied wing res i s t ance  with the  
aid of an automobile. On the  bas i s  of these  data, he designed a monoplane in 
1907 and made a successful  flight in  i t  in 1908. Then he took up the  study of 
flight engines, as well a s  s o m e  other  subjects  re la ted t o  aviation. In 1908 
~ s i a u l t - ~ e l t e r i e  was  awarded a l a rge  p r i ze  f r o m  the F r e n c h  Society of Civil 
Engineers  f o r  h i s  engine. At present  he is honorary  Pres ident  of the Board 
of the F rench  ~ i r c r a f t  Industry, holds the  Legion of Honor, and is a 
Licentiate of t h e  Physical  Sciences.  

FIGURE 1. Robert Esnault-Pelterie. 
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In P a r i s  in 1927, on the  initiative of the engineer Esnaul t -Pel ter ie  and 
the banker Andr6 Hirsch, an annual pr ize  of 5,000 f rancs  was se t  up for  the 
best  work on "Astronautics" ( a  t e r m  suggested by J. H. Rosny, President of 
the Goncourt Acad'emy). This  work had t o  be of a scientific nature and i t  
could deal with subjects such a s  the following: 

Astronomy and ball ist ics;  
Physics:  atomic theory, transmutation of elements,  electromagnetic 

interplanetary communication, s torage of energy, use  of a telescope with 
a movable base,  etc. ;  

Chemistry: s torage of a i r  for  respira t ion in a container, removal of 
respira t ion products, preparation and s torage of atomic hydrogen, etc. ;  

Mechanics: construction of interplanetary ships,  control and guidance, 
parachutes,  etc. ;  

Metallurgy: superlight alloys (calcium, lithium, beryllium, etc.);  
Physiology: effect of acceleration on organisms.  
In 1930, Esnaul t -Pel ter ie  presented an interesting lecture  to  the  French  

Institute concerning the  possibility of rocket flights around the world in 
1 h r  26 min and f rom P a r i s  to New York in 24 min. 

In 1930 he traveled t o  the USA and, a t  the request of the  American 
Interplanetary Society, delivered a lecture  in New York on the subject of 
interplanetary t ravel .  In th is  lecture ,  Esnaul t -Pel ter ie  predicted flight 
into interplanetary space af ter  25 years  and he s t ressed  the need for  
considerable s u m s  of money (about 2 million dol lars)  t o  make  such flight 
possible. 

His f i r s t  work on interplanetary t r ave l  was published in a French journal 
in 1913: Esnault- Pel ter ie ,  R. "Considkration s u r  l e s  re'sultats d 'un 
allggement ind6fini d e s  moteurs." - Journal  de physique th6orique e t  
appliqu6e. Cinquieme s 6 r i e .  Tome 111, Anne'e 191 3,  Mars ,  pag. 21 8. P a r i s .  

The work of Esnaul t -Pel ter ie  has been cited a t  var ious  t imes  by wr i t e r s  
in Russian. The following a r e  examples:  

Veigelin, K. - P r i r o d a  i Lyudi, No. 4 .  1914. 
Tsiolkovskii, K. Issledovanie mirovykh prost ranstv  reaktivnymi 

pr iborami  h he Exploration of Space by J e t  ~ a c h i n e s ) ,  pp.4-7, 
Kaluga. 1914. 

Novaya Vechernyaya Gazeta, No. 210, 20 November 1925; Leningrad. 
Outside the  USSR, Esnau l t -Pe l t e r i e t s  work has  been mentioned in: 
Gussalli, L. Si pub gig tentare  un viaggio dalla t e r r a  alla luna ? 

Milano. 1923. 
An ar t ic le  in  the journal "I1 Secolo" XIX, Genova, Martedi 4 Maggio 1926. 
Now le t  u s  proceed t o  the f i r s t  paper by Esnaul t -Pel ter ie .  It should be 

noted that the  high value for  the fuel weight on a rocket obtained by 
Esnaul t -Pel ter ie  is due not to  any e r r o r  in  his  calculations, a s  has  been 
suggested by Tsiolkovskii, but r a the r  t o  his  assumption of a v e r y  low 
acceleration of the rocket  (11 110 g ) ,  a value which Esnaul t -Pel ter ie  , 

considered t o  be sa fe  fo r  a man. This  acceleration can, of course,  be 
assumed t o  be higher.  L 



First Paper 

CONSIDERATIONS CONCERNING THE RESULTS OF 
AN INDEFINITE WEIGHT-REDUCTION OF ENGINES* 

The ideas presented in this paper were engendered by resul ts  
obtainable at present from applications of light engines. It would be 
interesting t o  find out what could be expected from such engines if their 
weights were considerably less .  In other words, what will be the possibilities 
if the weight of an engine i s  decreased indefinitely for a [given] horsepower. 
Will the resulting progress relate only to  the field of aviation, o r  will new 
horizons open up? If they exist, what will these new horizons be ? 

Many writers have used voyages from s t a r  to  s t a r  a s  the subjects of 
novels. Even today, s t a r  travel is  said to  be impossible, however, without 
taking into account the actual physical data which could help solve the 
problem. The purpose of this work will be to present some such physical 
data, which have resulted from certain considerations having a bearing on 
the calculations. 

The f i rs t  difficulty encountered by us is the absence of an atmosphere 
between the s t a r s .  Since there is no atmosphere, an airplane could not be 
used for a flight in outer space, because there would be nothing to hold it up. 

Problems of a physiological nature will be considered below. Here let 
us limit ourselves to the question of whether our knowledge of mechanics is 
sufficient to create an engine capable of propelling a ship regardless of 
whether there i s  any external support. 

Although it may seem strange to  someone who has not made a study of 
this subject, such an engine has been known for  a long time, namely the 
rocket (Jules Verne's cannon, which would crush the passengers during 
launching, cannot be considered "an engine for a spaceship"). 

It is often said that a rocket moves by virtue of i ts  reaction "on air ."  
The f i rs t  part of this statement is  true, but the second part "on a i r "  is 
false. A rocket moves just as well in a vacuum, and even better, than ina i r .  

In order to better understand this phenomenon, let us assume that a 
machine gun is  mounted on a trolley which can move without friction along 
rai ls  parallel to the axis of the weapon. With each firing, the machine gun 
will move backward according to a familiar law of mechanics. The 

" [Conside'rarion sur lea r8sultats d'un allegement indkfini dee moteurs.] 



momentum acquired by the machine gun and i ts  trolley, considered 
together, will be equal and opposite to that acquired by the projectiles. The 
a i r  resistance will only serve  to reduce the velocities. 

In a rocket the, role of the bullet i s  played by the gas produced when the 
fuel explodes. This gas i s  ejected from the rocket in a continuous flow. 
Let us assume that M, is the total mass  of the rocket at launch, M, i s  i t s  
mass  at a time P, and dm is the mass of fuel ejected from the rocket 
during a time dt . 

Let us also assume that the fuel efflux takes place at a constant ra te  
relative to the rocket, and that the flow rate  of the fuel remains constant and 
equal to  p .  Finally, V  is the velocity acquired by the rocket, F i s  the 
reaction force, and y i s  the acceleration at a time t .  

Calculations show that the phenomenon can be described by the formula 

It should be noted that, if the rocket consists completely of fuel (an idea 
which, though purely abstract,  i s  of some interest), it would burn up com- 
pletely in a time 

The introduction of this limiting t ime into the formula giving V a s  a 
function of t leads t o  

(T-t) d V = v .  dt,* 

from which 

F o r  i= T we have o=-m (assuming that a i s  positive). This result 
should not surprise us, since the reaction force remains constant; thus the 
mass decreases in proportion to the decrease in fuel and, at the limit, goes 
to zero. The acceleration increases to  an infinitely large value. The 
expression for the path t raversed a s  a function of t i s  

After all  the fuel is  used up, the path will be 

Therefore, leaving aside other questions for the moment, we may conclude 
that flight in a vacuum is after all  not impossible. However, it i s  not enough 
just to  propel the device, it must be directed a s  well. 

M  " ~ r o m  (1) we have  M d V = f i . d t . v ;  - - d V = v . d t ;  but M = M o - p t ;  and thus M d ~ = v d t ;  
f i  P (- 3 + t )  . dV=vd t  or-(7'- t) d V =  vdtt. However. assuming that the velocities have unlike signs. we 

P 
obtain the equation given in the text. 



In principle, this does not present great difficulties. In order to  change 
the direction of flight, i t  i s  sufficient to change the orientation of the engine 
in such a way that the direction of the reaction force will be at an angle to 
the flight path. If such a shifting of the engine cannot be made in al l  direc- 
tions, then one o r  two small  engines can be used to  give complete 
maneuverability. 

In order  to move a body of known weight away from the center of a s tar ,  
energy must be expended. Let us consider a mass M at a distance x from 
the center of a s t a r  of radius R. Here y i s  taken to be the acceleration of 
gravity at the surface of this s ta r .  In order  for the body to  t raverse  a 
distance dr, an element of work 

must be performed. This gives a total work done of 

F rom this it i s  clear that, to move a given mass  out to infinity, it is  
necessary to perform an amount of work 

or ,  designating the weight of the body a s  P=My,  the work i s  

Let us consider the weight of the body a s  a result of universal gravita- 
tion, that is ,  the force acting between the body and the s ta r .  Then, designat- 
ing the mass of the s t a r  a s  U, we obtain 

where k is  the gravitational constant. Now, the work required to move the 
body to infinity will be 

Therefore, if a sufficiently high velocity i s  imparted to a body leaving the 
earth 's  surface, this body will depart to  infinity. 

F o r  the earth this velocity i s  11,28Om/sec. In other words, if a projectile 
leaves the earth with this velocity, it will never return (provided a i r  
resistance is  not taken into account). This critical velocity is equal to that 
acquired by a body falling t o  the planet from infinity, without any initial velocity. 



The law of motion for such a body can be expressed a s  

F o r  x=R 

and 

For  the earth 

For  a body 1 kg in weight and for  the earth, we have, from equation (3), 
B= 6,371,103 kgem, which is equivalent t o  14,970 cal. It should be recalled 
that 1 kg of a hydrogen-oxygen mixture in an appropriate proportion gives 
3,860 cal. F o r  comparison, 1 kg of gunpowder (fulmicotton [cotton powder] 
and potassium chlorate) gives only 1,420 cal. Therefore, 1 kg of an oxygen- 
hydrogen mixture gives nearly of the energy required to  lift 1 kg from 
the earth to infinity. On the other hand, 1 kg of radium, which yields a total 
of 2.9.10' cal, provides an energy 194,000 times greater  thanthat required. Here, 
however, we a r e  not yet taking into account the efficiency of a reaction engine. 
Let us  consider a body which recedes from a s t a r  with an accelerated motion 
described by some law. At the moment when its velocity i s  opposite in sign to, 
and greater  than, the velocity it would have a t  the same point if it were falling from 
infinity without any initial velocity, it would be useless to impart to the body any 
further energy. Its kinetic energy would be sufficient to send it off to infinity. 

The law of motion for a body acted upon by a constant force F greater  
than the weight of the body and directed vertically and centrifugally relative 
to a s t a r  can be expressed by the equation 

The body acquires a velocity for which a further expenditure of energy 
will not be necessary at a distance from the center of the s t a r  equal to 

F where A=p. 

Once a body has left the earth under the influence of a force equal to i ts  
weight, that is,  for  

it will attain tne critical velocity at a distance from the center equal to two 
earth radii, o r  a t  a height above the earth 's  surface equal to the te r res t r ia l  
radius. This tells us  that a body can escape completely from a s t a r  with 
the aid of a thrust force less  than its weight. If the s t a r  has an atmosphere, 
the body may f i rs t  fly like an airplane, gradually ascending and increasing 
i ts  velocity in proportion to the decrease in a i r  density, until it attains the 
critical velocity. 



Let us determine the energy required to take a body from the earth to 
the moon and back (Figure 2). Such a flight can be divided into three periods: 

1. The body is accelerated to the critical velocity required to escape 
from te r res t r ia l  gravitation; 

2.  The energy expenditure (burning of the rocket) terminates. The body 
moves under the influence of the velocity attained; 

3 .  At a certain point it turns its lower side toward the moon, the engine 
begins to operate, and the velocity decreases, so as  to slow down to  zero at 
the moment of contact with the lunar surface. 

F i r s t  Period. Let u s  apply to the body a force 

with A =11/10g, a force which can be applied even assuming the presence 
of living beings aboard the body. The critical distance will be 

12 which corresponds to a height of 5,780,000m above the earth 's  surface. 
At this moment the velocity will be 

The flight time during this period will be 

Second Period. The body continues flying by inertia and is attracted by 
both the earth and the moon. Let us assume that P is the weight of the body, 
a t  the earth's surface, PI i s  i ts  weight at the lunar surface, @ is the radius 
of the moon, and D=x+y i s  the distance between the earth and the moon. 
Calculations show that 

At the point where the attractions of the earth and moon a r e  equal, the 
velocity will be 

This i s  the lowest velocity on the flight path. 
With the approach to the lunar surface the velocity will be 

v=3060m/ sec. 

The velocity of f ree  fall from infinity to  the lunar surface is 

v =2370 m/  sec . 
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FIGURE 2. Flight from earth to moon. 



The time required to  t raverse the distance of the second period can be 
determined neglecting the attractive force of the moon, which proves to be 
negligible. This time will be equal to  the time required for the body to 
fly f rom the moon'to the point where the engine stopped operating: 

Third Period. Now the motion has t o  be retarded, once the ship has 
been turned and the engine started. What will be the law governing this 
retarded motion? We can compare this motion to  a s imilar  motion relative 
t o  the earth, taking into account that the attraction of the moon will be much 
weaker. 

Since great accuracy is  not necessary, let us limit the acceleration which 
must be overcome by the engine t o  a value equal to  half the acceleration at 
the lunar surface, and let us assume that the motion takes place with 
deceleration under the influence of this fictitious acceleration. 

l3 
We find that the ship must be turned at the following distance from the 

lunar surface: 

This point is s o  close to  the lunar surface that, since our calculation i s  not 
perfectly accurate, the duration of the third period can be assumed equal to  
the time required for flight of the ship to the moon itself. 

The deceleration will last for a t ime 

t = 226 sec = 3 min 46 sec 

Thus the approximate flight t ime is: 

1 period 0 h r  24 min 9 sec 
2 period 48 h r  30 min 
3 period 0 h r  3 min 46 sec 

Total about 48 h r  58 rnin 

Fo r  the return flight almost the same amount of time, in the opposite 
sequence, will be required. It should be noted that the engine will work only 
during 28 min of the flight to the moon and about the same amount of time 
during the return flight, provided the braking effect of the eart  h l s  atmosphere 
is not utilized during decent. 

Now let us determine the actual minimum power required to  c a r r y  out the 
flight, taking into account the engine efficiency. Let us assume that the ship 
weighs 1,000 kg, of which 300 kg i s  propellant. If (taking into account that 
during descent to  the earth the retardation is  just due to the atmosphere) 
the engine operates only 27 + 3 . 5  min, or ,  with some reserve,  

the fuel consumption per  second will be 



s o  that the velocity of ejection is  

v=65,300m/ sec, 

and so  1 kg of propellant will yield 

T= 217.2.106 kg. m o r  512 - 101 cal. 

A mixture of H 2 + 0  contains only of this energy and other powerful 
energy-producing substances contain only 1/360 of this energy. On the other 
hand, 1 kg of radium contains 5,670 times a s  much energy as this. 

l4 
The engine power required for our ship will be 

~ f ~ : ~ ~ ' w  =414,OOO hp. 

It should also be noted that the efficiency of a reaction engine is quite 
low. Actually, in order  t o  take a 1 -kg mass  from the earth out to infinity, 
6,371,103 kg. m of work must be performed on it. We have determined that 
this work for an engine i s  217.2. lo6  kg. m. Therefore, the efficiency will be 

In addition, to  impart to the gas an ejection velocity of 65,30Om/sec in a 
vacuum, the gas must be heated to  an improbable temperature of 2.525 . l o6  
degrees. Fo r  flight in a i r ,  moreover, the conditions will be even worse, 
since in addition to  an increase of this temperature a greater  pressure will 
also be necessary. 

Let us assume that, after the ship has reached the critical velocity, the 
engine continues to operate and stops working when the velocity is 10 km/sec. 
Then the times required to reach the planets closest to  the earth at their 
closest approach will be: 

for Venus 47 d 20 hr 
f o r M a r s  9 0 d 1 5 h r .  

It should be noted that the energy expenditure for these flights will not be 
too much higher than the minimum required to  overcome te r res t r ia l  gravity. 
Actually, once the ship has reached a sufficient distance away from the 
earth, it will continue in free flight and the attraction of the earth will slow 
the flight very little. 

Consequently, the main difficulty is to  overcome te r res t r ia l  gravity, and 
once this has been accomplished, it will not be especially difficult to  get to 
other planets, be they near o r  far.  Here, naturally, the safety of the 
passengers during their s tay inside the hermetically sealed ship must be 
guaranteed, and this will be considered below. 



In the preceding sections we have suggested only the theoretical 
possibility of a flight between the earth and the moon. This is a problem 
in pure mechanics, which does not bring up the question of whether man 
will actually someday be able to  leave our planet and investigate others. 
This leads us  to  study the physiological conditions necessary to  ca r ry  out 
such a flight. l 5  

The successes which have been attained during underwater voyages 
indicate that it is possible to  exist away from the a i r  for a certain period 
of time. The question of the temperature requires special consideration. 
It is usually assumed that the temperature in interplanetary space is 
absolute zero. It is the opinion of the author, however, that this is not the 
case. 

The concept of temperature has meaning only for material bodies and 
it does not apply to a vacuum (Dewar flasks a r e  evidence of this). If the 
heat influx t o  a ship per  units t ime is less  than the heat outflow, then its 
temperature will drop; however, if influx is  greater  than efflux, the 
temperature r i ses .  It i s  possible to  construct a ship in such a way that 
half of its surface will be of polished metal which does not conduct heat 
from within. The other half of the surface may be, for example, oxidized 
copper, forming a black surface. If the polished surface is turned toward 
the sun, the temperature of the ship drops; in the opposite case, the 
temperature r i ses .  

The foregoing indicates that the problem has, in principle, been solved. 
However, it should be kept in mind that there is one more  difficulty which 
complicates the practical solution of the problem. Actually, in our example 
of a flight from the earth to  the moon, we have suggested an acceleration of 

for the time it takes t o  t ravel  a distance of 5,780 krn from the earth's 
surface. During this entire period the passengers will weigh ll/lo of their 
weight on earth. It may be assumed that this should not cause them any 
special discomfort. However, the feelings experienced by them will be 
more unusual when the engine ceases operation. Then they will lose their 
weight and have the feeling that they a r e  falling into a void. 

If the organism is  not accustomed to  such a change, then in the absence 
of a gravitational field an artificial field should be created, at any rate  one 
equal to  the te r res t r ia l  field, and then the passengers will retain their 
t e r res t r ia l  weights, wherever they may happen t o  be in outer space. 
However, the system required for this will call  for a large expenditure of 
energy and makes an already difficult problem even more complex. 

Let us consider the formula expressing the law of motion of a body 
acted upon by a constant force from the moment it leaves the earth. We 
assume that, until the maximum velocity between the earth and moon is  
attained, an acceleration equal to  ll/lo of te r res t r ia l  gravity is  used, and 
that all the other maneuvers take place with an acceleration equal to the 
te r res t r ia l  acceleration. In addition, we assume that the effect of the lunar 
attraction, in view of i t s  smallness, can be neglected. Under these 



conditions calculations show that the vehicle should turn at a distance of 
29.5 ear th radii  from the center of the earth. At this moment, the velocity 
will be 61,70Om/sec. After this the turned vehicle will be retarded by a 
force equal to  i t s  t e rzes t r ia l  weight. 

The t ime required to  reach the moon will be 

t = 3 hours 5 min. 

16 
However, in this case the work required for the flight of a 1000 kg space- 

ship, 300 kg of which i s  fuel, will be 67.2.1 O6 cal per  kg of propellant, that is ,  
131 t imes more than in the f i rs t  case. Dynamite provides only 1147,300 of 
the required power, while radium provides 433 t imes  a s  much power. The 
required power is 

857 ' l0l0 = 4,760,000 hP. (a) 
24,000. 75 

If this means of propulsion is used for a flight to  a nearby planet, then 
we obtain the following maximum velocities and flight t imes: 

Velocity Flight t ime 

for Venus 643 km/sec 35 hr 04 min 

for Mars 883 km/sec 49hr 20 min 

Although the above velocities a r e  also improbable, s t i l l  there a r e  celestial 
bodies which attain velocities of the order  of these, for instance, any comet. 

Only molecular forces and particle energies can make such flights possible. 
If we assume that a loaded vehicle weighing 1000 kg includes 400 kg of 
radium, and that we can obtain energy from it  at any time, a s  desired, then 
this amount of fuel will suffice for a flight to  Venus and back with some fuel 
left over,  and it will be barely enough for a flight to  Mars and back (with 
constant acceleration). 



THE EXPLORATION BY ROCKET OF THE UPPER 
ATMOSPHERE AND THE POSSIBILITY OF 
INTERPLANETARY TRAVEL* 

FROM THE SOVIET TRANSLATOR 

This work is a development of the paper written by Esnault-Pelterie 
back in 1913. In this paper the author presents a number of original con- 
clusions and hypotheses, which other scientists dealing with interplanetary 
travel have little touched upon o r  completely ignored. The subjects con- 
sidered include: 

1. Representation of the motion of a rocket in a vacuum without gravity, 
with the aid of so-called critical curves, and a study of the economics of 
the motion, that i s ,  the expenditure of a minimum of fuel. 

2.  Analysis of the optimum rocket shape. The author considers three 
types of rockets: cylindrical, conical, and exponential (a rocket moving 
with constant thrust),  and gives preference to the latter,  especially for a 
manned flight. 

3. For  manned flights the author recommends an acceleration differing 
little from te r res t r ia l  (1.1 to 2 g ) ,  because of possible danger to an organ- 
ism a s  a result of high accelerations. 

4. The heating of a vehicle during paqsage through the atmosphere is 
given special consideration, a s  well a s  the temperatures of vehicles 
approaching close to the earth, Venus, Mars, and Mercury, on the side 
toward the sun and on the dark side. 

5. With regard to fuel, the author believes that existing types can be 
used to send rockets into the upper atmosphere, but he feels that flights 
to the moon o r  to other planets will be possible only when man possesses 
atomic energy. For  the present, it i s  advisable to use atomic hydrogen, 
but the properties of this substance have a s  yet been little studied. 

6 .  The author considers specious the theory of Arrhenius ("pan- 
spermism") that spores can t ravel  from planet to  planet. Instead, a 
hypothesis concerning the appearance of life on a planet i s  put forward, 
life being considered a s  one type of the physicochemical phenomena 
which continue through all  t ime and go through a gradual evolution of 
forms from simpler to  more complex. 

7. In conclusion, the author appeals for more progress in the exciting 
field of interplanetary travel,  by carrying out studies of a number of par-  
ticular subjects, so  a s  to  prepare for the moment when physics provides 
mankind with the possibility of using atomic energy. 

N. Rynin 

* L'Exploration par fus6es de la  u&s haute aunosph'ere e t  l a  possibilit6 des voyages interplane'taires. 
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FOREWORD 

Dreams of flying from the earth into the limitless s ta r ry  heavens a r e  a s  
old a s  mankind itse1f:In this  paper Robert Esnault-Pelterie approaches in 
a scientific manner a problem which for many centuries has been treated 
by various wri ters  from a predominantly fantastic viewpoint. Lucian in 
ancient Greece and Cyrano de Bergerac in 17th-Century France suggested 
quite fantastic means of overcoming te r res t r ia l  gravity. And who does not 
recall  the more recent plans of Jules Verne's projectile, o r  the curious 
device of H.G. Wells, whereby the first  man reached the moon because the 
outer shell of the vehicle possessed the mysterious property that formed 
a screen against the force of gravity? With regard to  this field of fantasy, 
it i s  appropriate here to mention the little-known novelist Achille Eyraud, 
who in 1865 suggested a type of rocket or  reaction engine for flights away 
from the earth. 

The scientific study of such engines can be traced back to  the time just 
twenty years  ago (1 907) when Robert Esnault-Pelterie first:: took up this 
subject. His ideas were published later ,  in 1912, the date of his report to 
the French Physical Society. Although others have studied this fascinating 
subject since then, of whom Esnault-Pelterie mentions Dr.Bing and the 
American professor, Goddard, we can safely say that the author of this 
paper was the first  to tackle the subject in i t s  entirety. Esnault-Pelterie 
has initiated and greatly developed the scientific study of the flight of 
living beings into the mysterious reaches of interplanetary space. 

Naturally, the problem is still  far  from being resolved, but the first  step 
has been taken and it i s  now clear what obstacles have to be overcome in 
the construction of a rocket which will be able to take us  to  the heavenly 
bodies. The day may be coming soon when mankind will have at i ts  disposal 
atomic energy, and then it will be possible to car ry  out the ideas expressed 
in such a brilliant and talented manner by Esnault-Pelterie. 

Esnault-Pelterie has already completed a number of elegant scientific 
endeavors of different types. In particular, he was a pioneer in aviation 
and he came up with ideas which were often far  ahead of his time, and 

l9 which showed the perspicacity and intuitive ability of the author. Most 
people know of him as  the inventor of the "Manche balai," that i s ,  the 
control stick used in aviation. He is also the author of a number of other 
significant works related to aviation, automotive theory, and, in general, 
mechanics. 

Esnault-Pelterie was the first  to  suggest a direct method for studying 
the laws of aerodynamics (1905). In 1906 he constructed a motor-driven 
model plane, which was a novelty at that time. He suggested testing the 
strength of an airplane by loading it with sand, and he worked out a new 
method for measuring the strength of metals. 

The following paper was read before the annual general meeting of the 
French Astronomical Society in 1927. In addition to  the formulas and 
calculations, which a r e  of great interest,  Esnault-Pelterie opens up before 
the reader  a number of possibilities such a s  to inspire man's imagination. 

* Here the writer is in error, since the first to present a theory of rocket flight in general, and rocket motion 
in interplanetary space, was the Russian scientist K. E. Tsiolkovskii (in 1903). 



In the hope of seeing the future epic of interplanetary voyages come to 
pass, let us say along with the poet: 

Si nous pouvions franchir ces  solitudes mornes; 
Si nous pouvions passer  les  bleus septentrions; 
Si nous pouvions atteindre au fond des cieux sans bornes, 
JusqulB ce qulB la  fin, gperdus, nous voyions, 
Comme un navire en mer  cro'lt, monte et semble &lore, 
Cette petite &toile, atome de phosphore, 
~ e v e n i r  par  degr&s un monstre de rayons. 

V. Hugo 

General Fe r r i e r  
Member of the Institute 
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AUTHOR'S NOTE 

In October 1927 my friend Andr6 Hirsch drew my attention to a number 
of works dealing with a subject of interest to me. I tried without success 
to obtain these works in Vienna, where I was obliged to be later.  There I 
found out about the studies by Lorenz (Danzig),published on 7 May 1927 
in the "Zeitschrift des Vereins deutscher Ingenieure." This very serious, 
albeit somewhat short, work included a bibliography which listed, in 
addition to Goddardls books, which were already known to me, the follow- 
ing new works: 

1925. H. Oberth. " ~ i e  Rakete zu den Planeten-Raumen"; 
1925. W. Hohmann. "Die Erreichbarkeit der  Himmelsk~rper";  
1925. M. Valier, "Der Vorstoss in den Weltenraum." 

I was able to get the f i rs t  two books on 14 January 1928, although 
Oberth's work was the 1923 edition and not the 1925 edition. In Hohmann's 
work I found, with some surprise,  a number of subjects which had been 
studied independently by myself, and in some parts he had progressed 
even further than I, for instance concerning the braking of flight in the 
atmosphere, where he speaks of successive circuits of the earth along 
ellipses. However, Hohmann considers passage through the atmosphere 
at a height of 75 km with a speed of 11 km/sec,  without taking into 
account the heating up of the vehicle, which will be so considerable a s  
to render it uncontrollable. 

With regard to the ratio of initial and final masses of the rocket, the 
results of Hohmann a re  identical to mine, and this is very significant. 
Interestingly enough, he, like myself, carr ied out calculations up to gas- 
ejection velocities of 10,000 m/sec. However, he assumed an acceleration 
of 20 g, which does not provide much of an advantage over an acceleration 
of 10 g. Hohmann's work deserves a serious study rather than just a 
mention, and I am very sor ry  that I was not familiar with i t  earl ier .  

Oberth's book is also very thorough and deserving of attention. Some 
questions related to the effect of acceleration are  developed and rocket 
designs a re  even presented. Before beginning my own study, I could not 
help but mention these two works and express my great respect for them. 

Finally, I should ask to be excused if I have passed over other works 
that were unknown to me, since it was not easy to obtain bibliographies 
on this subject and in fact I then still  had not obtained the above book by 
Valier. 

Robert Esnault -Pelterie 



2 1 
INTRODUCTION 

Mr. President, Ladies and Gentlemen. * 
Our president', General Fe r r i e r ,  onthe suggestion of our colleague, 

Andre Hirsch, approached me recently about presenting to  the members 
of the society a more detailed report of the subject discussed by me on 
15 November 1912 at the French Physical Society. But f i rs t ,  let me 
mention some works with which I have become familiar since the above 
date. 

Fifteen years  ago, I wished to deliver a lecture on the possibility of 
interplanetary travel,  and the difficulties related to it ,  at a time when 
aviation had just been born and when expectations had been raised. At 
that t ime, for many, perhaps somewhat ill-advised reasons, it seemed 
to me more prudent to hide the actual purpose of my study under the 
title: "Considerations Concerning the Results of an Indefinite Weight- 
Reduction of ~ n g i n e s . "  Now, however, I am able to make known my ideas 
under their t rue title. 

The volume of my previous report was reduced s o  much by the secre-  
tary of the Physical Society that my ideas were often barely intelligible to 
the reader ,  and this leads me now to present the material in more detail 
then was possible earlier.  My ideas on this subject go back to a much 
earl ier  time. Long ago, I was surprised by Jules Verne's e r ro r  in the 
novel " ~ r o m  the Earth to the Moon," in which he described his t ravelers  
enclosed in a projectile which was to be shot from 3 cannon 300 meters  
long. In order to keep his passengers from being crushed by the inertial 
forces during launching, Verne provided a frame 2 m  high at the base of 
the projectile, which would break up when the cannon was fired. Actually, 
the effect of such a frame would be equal to just lengthening the cannon 
from 300 to  302 m, that i s ,  there would be almost no change in the effect 
of the inertial forces o r  the danger that the passengers would be 
flattened. 

22 
Hence I concluded that it was necessary to give a projectile a running 

s ta r t  of several  kilometers, and this led to  the use of a rocket. I myself 
would not be able to establish just when this idea occurred to me, if it 
had not, fortunately, been referred to  in an old book by Captain Ferber:  
"From Hill to Hill, from City to City, from Continent to  continent,", on 
page 161 of which he writes: 

"In order  to  go higher, and man would like to go higher, a different 
principle must be adopted. The principle of the rocket is the most appli- 
cable, implying the use of a reaction engine. Man will be sealed up in an 
enclosure where a i r  for breathing will be produced artificially. Actually, 
he will no longer ride a flying machine, but rather  a controllable projec- 
tile. The realization of this idea will not be improbable, a s  long a s  the 
sun provides our planet with reserves  of energy. A reduction of the heat 
at the earth may serve a s  a stimulus to new progress, since then life on 
earth will be different. Man will be faced by a serious dilemma; either 
to return to  the age of his ancestors and follow the path of regression, 
or  to proceed to new conquests by human genius. 

* Report to general meeting of French Astronomical Society on 8 June 1927. 
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"The more powerful, more developed, men of the future will have to  do 
this. Some of them will then leave our inhospitable planet, and the triumph 
of the lighter-than-air craft,  which has been born before our eyes, will be 
realized. " 2: 

Ferber  has dated the note in his book to  26 July 1908. Therefore, my 
ideas can be said to go back to sometime during the first  half of 1908. I 
should note that similar ideas were stated at that t ime by someone else, 
namely by Dr. Andre Bing, whom I did not know earl ier  and who, after my 
report in 1912, sent me his Belgian patent No. 236377 of 10 June 1911. 
This patent i s  entitled: "A Device For  Studying the Upper Atmosphere." 
Dr. Bing also noted that, some years  before, he had discussed this prob- 
lem with one of my colleagues at the Society of French Scientists and 
Inventors, Edouard Belin, the inventor of the phototelegraph. 

Finally, in 1912-1 913, Robert Goddard, an American professor at 
Princeton University, made a number of theoretical calculations. Then, 
in 1915-1 916 at Clark University (Worcester, Mass.), Goddard carried 
out some experiments with rockets designed to study the upper atmos- 
phere, following the idea expressed so  wonderfully by Dr. Bing. Professor 
Goddard concluded that a projectile with a charge of magnesium powder 
could be sent to the moon and that the explosion could be seen from the 
earth with a telescope. 

When reading Dr. Bingls patent, the impression i s  obtained that i ts  
author probably did not ca r ry  out calculations to check the feasibility 

23 of the invention. However, a s  he wrote me in 1913 and a s  i s  quite evident, 
Dr. Bing simply wished to retain the priority for himself by means of this 
patent. The patent leads one to conclude, albeit not completely directly, 
that almost any height can be reached using successive rockets, which 
would then fall away one after the other when burned out. This was also 
Professor Goddardls main principle, when he calculated sending a rocket 
out of the atmosphere with an initial weight 600 t imes that of the useful 
load. In other words, for instance for a flight into interplanetary space 
or to the moon (which is practically the same thing), to send a load of 
1 kg, the initial weight must be 600 kg. 

The results obtained by Professor Goddard would appear, at f i rs t  
glance, to contradict my results.  He assumes it to be possible to send 
a projectile out into space, while I feel that it i s  not possible at present 
to send out a device capable of overcoming te r res t r ia l  gravity; first  a 
more powerful energy source, such a s  radium, must be found, and no 
such source i s  a s  yet at our disposal. However, this contradiction is 
only apparent and can be explained by the fact that Goddard and I a r e  
approaching the problem from different points of -~iew. 

He wishes simply to send to the moon a projectile with powder aboard 
and to determine the moment of the explosion on the moon using a tele- 
scope. On the other hand, I consider the problem of sending living beings 
from celestial body to celestial body and bringing them back to  earth. I 
have shown clearly that it is possible to  send a small  part of a projectile 
a given distance, a s  was indicated by a formula in my 1912 report,  and 
also by a statement following it at  the top of page 5 (SectionII). However, I was 
also aware that to do this an enormous initial mass of the projectile 

* "Let us recall the persons who developed this idea, mainly Wells, Esnault-Pelterie, Archdeacon, Quinton, 
and other philosophers" (note quoted from Captain F. Ferber de Rue). 



would be necessary. I consider the principle to be impracticable for flights 
with living creatures. In such a case, a s  I will show below, the initial mass  
must be not 600 t fmes,  but several  thousand times, greater  than the final 
mass,  i f  the passengers a r e  not to be crushed during the launch, a s  would 
be the case for Jules Verne's heroes when they a r e  launched from a 
cannon. They would also be crushed for other reasons to be given below. 

These then a r e  the conclusions from my 1912 report which I felt should 
be presented here in order  to prevent any misunderstanding bythe reader. 
The present report deals with the following: 

Chapter I. A study of rocket flight in  vacuum; the equationofmotion; the 
most economical shape; cylindrical, conical, and exponential rockets; 
heights and velocities of escape (beginning of free flight); utilization co- 
efficient. 

Chapter 11. Study of rocket flight in a i r ;  equation of motion; equation of 
a i r  resistance; ballistic coefficient; most economical shape; under known 
conditions, a i r  resistance does not al ter  significantly the conditions obtain- 
ed for flight in  a vacuum; temperature of compressed a i r  ahead of rocket; 
attainable accelerations. 

24  Chapter 111. Application of rockets to study of the upper atmosphere and for 
interplanetary travel; launching to the moon; flight around the moon; 
conditions depending on exhaust velocity; for what exhaust velocities cal- 
culations can be made; possibility of implementation. 

Chapter IV. Conditions necessary for transport of living beings; an 
interplanetary ship; living conditions aboard it; the physiological effects 
of the absence of acceleration; maneuverability; conditions for implement- 
ing it; duration and velocity of a flight to Venus or  Mars. 

Chapter V. Of what scientific interest a r e  visits to other worlds? What 
might we find on them? Are they inhabited? 

Conclusion. 

Chapter I 

ROCKET MOTION IN A VACUUM 

The study of this simpler problem i s  very important for the later  con- 
sideration of the general problem taking a i r  resistance into account. The 
rocket ascent is divided into two periods: a f i rs t ,  o r  burning, period with 
acceleration in flight; and a second period, after burning of all  the fuel, 
when the rocket does not have thrust but flies in i ts  trajectory under the 
influence of the velocity attained. 

For  the present let us  consider just a rectilinear trajectory toward the 
zenith, and let us  introduce the following notation: 

V: rocket speed at given moment 
v : absolute velocity of gas ejection 
m: effective mass of fuel (for time to, m=m, ) 
p :mass  of empty rocket 
M = m + p :  total mass  of rocket at given moment 
F :  reaction force at given moment 



f: acceleration 
dm:  element of mass  ejected during given time element dt 

y : height at given moment 
C: acceleration OF gravity at given height (at sea level G=g ) 
R: a i r  resistance. 

Note. I consider distances, forces, and accelerations directed upward, 
like the velocity V, to be positive. The quantities a, C, and R will be 

2 5 
positive by definition (par essence). 

Reaction in a nozzle. Let us  assume that a 
constant regime of gas ejection has been es -  
tablished in a nozzle (Figure 3). At a moment 
I' the nozzle contains a certain gas mass be- 
tween surfaces A and B ;  A1 and B' are  taken to  

FIGURE 3. 
be the position of this mass at a moment d - - - d f .  

The part included between surfaces A1 and B 
will be common to the two cases. The part 

between R and 8' i s  the mass  drn ejected during a time df and it equals the 
mass between .4 and A'. The latter has a very low velocity and i ts  momen- 
tum i s  an infinitesimal second-order quantity. The former, on the other 
hand, acquires the ejection velocity and i t s  momentum vdm will be a f i r s t -  
order  quantity. 

Since the res t  of the gas mass retains i t s  velocity, the theorem of the 
momentum component gives 

The acceleration will be 

Since rim and d~vf a r e  negative, X' will be positive. 

Equation of motion. Diagram. In order  to present the formulas more 
clearly, let us consider the absolute values of C and K and let us write 
the general equation of motion: 

However, remembering that the motion is in a vacuum, we obtain: 

(4 bis) 

o r ,  on the basis of (3) ,  

&=- .-Altr - G. 
AT df (5) 

* --&I is the part of the total mass M of the rocket e jehed during the time df;  naturally, d M =  dm 4 0  . 

23 
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The motion can be depicted using a diagram on which Y i s  the abscissa 

and y is the ordinate, the case being limited to positive values of y and 17. 
Then 

from which 

:&--<t'- VdV,  $_... V..f!!. 
d@ -- dt - y df lfg (7) 

Now equation (5) can be written a s  

The critical curve. The critical curve is understood to be a curve 
representing the motion of the rocket without gas ejection (without thrust). 
The curve is s o  called because, in order  to reach a given height y ,  there i s  
no need to continue accelerating the rocket all  the way to  this height. It i s  
enough to accelerate it to some lower height, corresponding to some point 
on the critical curve passing through a point at the height y ,  after which 
the flight continues by inertia. The equation for the critical curve i s  ob- 
tained from (4 bis), by setting r=0 in it. Then, from (7) we obtain 

Fo r  small heights (from the following it will be clear  which heights) 

After integration we obtain 

Y6" - v p  x:.z 243. 

(1 0 bis) 

(1 0 t e r )  

Equation (10) may be written a s  

and this shows that at all  t imes during flight in a vacuum a projectile of 
constant mass  retains a constant energy. If we designate the total energy 
of a unit mass a s  gq , then we obtain 
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The equation for the critical curve in a vacuum, a s  compared with a 

variable ,!,I, will be 

To obtain the value of q ( V , g ) ,  it is sufficient to integrate (12). 
Let u s  denote the radius of the earth a s  a ,  and then 

Consequently, 

from which 

Setting q1=0 for y= V=.Q, we have 

(1 4 bis) 

If y i s  small enough compared with a, then 

Ia t) I.: zg +-!) . (1 6 bis) 

The most economical curve. Assuming that the medium does not pre-  
sent any resistance to the flight, we find that for an ascent to even a few 
hundred kilometers a great energy expenditure is necessary. Therefore, 
the main problem is to use the minimum mass of propellant required to 
lift the given final mass p to the given height. 

Let us  draw the critical curve V,AY(q,) in Figure 4 
passing through the final height, and let us  assume 

9 1 that OBA is some curve corresponding to  the theories 
of burning and thrust. Integration of equation (9) gives 

L E!? / V~VL!!!!. 
1 - Vet (17) 

( o h )  

Since 

FIGURE 4. 

28 varies with 



it i s  sufficient to find the minimum of the integral on the right side. Let 
us  draw the two critical curves for 7 and ( q - t d q )  in such a way that 

and the thrust curves intersect at points B and B1. 
From equations (9) and (12) we obtain 

where dM is negative and g, V, V ,  and M a r e  positive; dr) is by definition 
positive, and the point corresponding to the period of thrust passes 
successively through al l  the critical curves on the side of increasing q 
and does not turn backward.* 

The differential element of the right side of (17) can be written, accord- 
ing to  (12), a s  

Let us  draw a curve OR1 B: A,, below curve O13B1A in  the figure, and let 
us  consider an element U,H',, which, like BB: corresponds to the value dq. 
Of these two elements, the smallest will be the one for which the product 

is greater ,  independently of what pair of elements i s  chosen. 
This compels us  to  select the maximum value of v a s  determined by 

the physicochemical properties of the explosives available to us. If the 
explosive i s  selected appropriately, v can be assumed constant. 

Because of the shape of the curves, the second of the two elements 
BBj and B,B1l will correspond to a larger  t7, and this holds t rue for all  
elements of curves OIjA and UB,A,. Therefore, the second curve will be 
more useful than the first .  Passing to  the limit, we see that the most 
economical curve for fuel consumption i s  the part OV, on the V axis,  
and for it the ratio ,%fo/P will be a minimum. 

In this case,  the burning period will be instantaneous, the acceleration 
will be infinite, and the projectile will have a lift dy.=Q, s o  that formula 
(1 7) reduces to  

from which 

29 
Now if we consider formula (16), after applying it successively to points 

V, and Y of the q1 = const curve, we obtain 



and (22) becomes 

(23 bis) 

If Y i s  small in comparison with the radius of the earth a, then 

SY (23 t e r )  (+) mi* == 

Under the most favorable theoretical conditions, and assuming an exhaust 
velocity of 2,000 m/sec,  in order  to  overcome the force of te r res t r ia l  gravity 
with a final mass of 1 kg, an initial mass of 269kg i s  necessary. This value 
is considerably lower than that obtained by Goddard for the case of a i r  
rather  than a vacuum. If we assume v = 2,500 m/sec,  this value drops to  
88 kg. 

However, it should be kept in mind that these figures correspond to 
strictly abstract conditions. If it were necessary to impart to  a finite mass 
an instantaneous and infinitely large acceleration, the mass  would have to 
be stretched out into a plate without any thickness in order  for i ts  quantity 
per unit a rea  to be 0. Its a rea  then would be infinite, and the limits of the 
mass would lose their physical meaning; finally, for a flight in the atmos- 
phere we would have to introduce an important condition with regard to 
reduction of the c ross  section of the rocket. 

Minimum c ros s  section. The above theory indicates the upper, infinite, 
limit for the ejection of a unit mass. It would be desirable to consider how 
this c ross  section, for a unit mass,  can be decreased a s  desired, either in- 
finitely or  at least to some lower limit, which (since again this pertains to 
flight in a vacuum and to a theoretical point of view) will be useful to  us  
later  when studying flight in air,  

Determination of ejection area. For  the expansion of an ideal gas in 
a nozzle, the ejection velocity i s  given by the equation 

where, if the gas expands to zero pressure,  then theoretically we convert 
all  the energy to kinetic energy without any loss to  friction. 

It should be noted that the pressure at the nozzle exit i s  not determined 
by the pressure in the center, where the gas i s  expanding. Instead, it is 
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determined by the ratio between the orifice c ross  section and the throat 
c ross  section, taking into account the initial temperature and pressure; 
here I will not discuss al l  of the theory of the Lava1 nozzle. However, it 
follows that in the case of a vacuum, in order  to be logical, the a r ea  of 
the orifice has to be infinite, which leads us,  a s  in the previous case, to 
an absurd condition. 

In order  to  avoid this difficulty, a rocket with very high pressure 
(1,000 or  even 2,000 kg/cm) can be used, s o  that for a very high degree 
of expansion (100 o r  200) the gas would have a sufficiently high pressure 
at the nozzle exit (10 o r  20 kg/cm). Thus a large part of the energy of 



the gas would be converted to kinetic energy at that time; theoretically it 
would be 75% for a degree of expansion of a hundred, and practically, a s  
in Goddard's experiment, it would be 64% for an unspecified degree of 
expansion. 

From this it follows that the c ross  section of the nozzle throat should 
be a s  large a s  possible, that i s ,  equal to the midship section of the rocket. 
For  the very high pressures under which it will function, this c ross  
section makes it possible to attain a degree of expansion sufficient to turn 
most of the energy into kinetic energy. 

These considerations lead us  to  draw the following simple theoretical 
conclusions concerning rockets: the c ros s  section of the nozzle orifice i s  
the gas-ejection section and i s  equal to the midship section of the rocket. 
Through this orifice gas in i t s  final expansion stage is ejected at a a 

velocity v .  If we assume that ahead of the nozzle there is a reservoir  of 
fuel, then the.flow rate  of the latter will be proportional to  the flow rate  
of the mass  of ejected gas. 

Therefore, let us replace the actual rocket by a theoretical one consist- 
ing of a solid fuel, in the shape of a surface of revolution. At a given 
moment, the rocket has a velocity in some direction serving a s  an axis 
of this surface and limited at the r e a r  by a surface normal to this velocity. 
The latter plane surface i s  the surface of combustion and from i t  gas is 
ejected backward at a velocity v .  As the fuel flows out, this surface moves 
into i t s  mass at a rate  such that the gas discharge continually corresponds 
to  the exhaust velocity v through the orifice. 

This purely theoretical simplification is actually not compatible with the 
condition of proper utilization of energy, a s  required by the use of a nozzle. 
However, it must be demonstrated that it is a s  completely law-abiding a s  
possible, since later  it will greatly simplify the entire discussion. When a 
cylindrical rocket i s  discussed, this will indicate that the gas-ejection 
section remains constant; if the rocket i s  conical, then the ejection section 
i s  proportional to  2 1 3  of the residual mass; and finally, if a rocket with 
constant thrust i s  considered, then the ejection section will be proportional 
to the residual mass. 

Consequently, the ejection section has now been determined. The volume 
of gas ejected in a time dt will be 

31 For  this surface the ejected mass will be 

and taking ( 3 )  into account, 

The thrust (reaction) will be 



Here o and 7J a r e  determined by the physical properties of the fuel. 
S Therefore, we can specify arbitrarily only the value of p. For  a launch- 

ing from the earth we have 

that i s ,  

The right side of this inequality expresses the minimum of the ejection 
section for an initial lifted mass M,. 

Optimum utilization of given section. Let us  assume that a certain rocket A 
has the shape of a surface of revolution about the velocity direction, and that 
a meridian of this shape i s  specified. We compare it with a cylindrical 
rocket C having the same initial and final masses,  and with an ejection 
section which i s  continually equal to the most effective ejection section of 
'A. Then it will always be t rue that 

and, according to  (28), 

This will be the case a t  any given arbi t rary height. The velocity of fuel 
efflux, and thus the lightening of rocket A ,  will always be less  than, o r  at any 
rate  equal to, that of rocket C. For  tbe efflux at a given time, the residual 
mass of A will always be higher than, or  at any rate  equal to, the residual 
mass of C. If, however, a s  i s  sometimes the case, the height y is taken a s  
the independent variable instead of the time, this condition may not hold 
t rue,  and then the following two cases a r e  possible. 

1. Fo r  the same height of ascent the residual mass of Ais  always great- 
e r  than that of C. 

32 For  a given random height interval dy, the following elementary quantities 
of work will be done: 

Since this work is performed to overcome the force of gravity and to 
impart kinetic energy, therefore for the same heights we have 



However, since in this case it i s  always t rue that 

therefore the greater will be 

and thus 

(37 bis) 

After taking the sum from 0 to a certain y and extracting the square 
root, we obtain 

However, rocket A has at least at one point a section smaller than that 
of the other rocket, otherwise the two rockets would be identical. There- 
fore, it i s  always true that 

VA < v,. (38 bis) 

The latter inequality also applies to the case when, at some height, one 
of the rockets has used up all  i t s  fuel. According to the foregoing, this will 

take place for a cylindrical rocket at a height where the 
other rocket stil l  has fuel reserves.  yp; Let us plot the fuel curves of a Vy diagram (Figure 
5). Because of inequality (38 bis), curve OC lies below 
curve OA, but for a height C rocket A will still have 
energy reserves.  Let us assume that these reserves 

.d' a re  used up at just the moment when rocket A reaches 
3. ---- U a height corresponding to the end of burning of C. Then 
FIGURE 5.  this curve will be parallel to the V axis, but it may not 

reach the end point of curve C. Actually, if this were 
the case, then it would be only due to the consumption 

of more propellant than in the case of C, since the previous considerations 
show that curve OAC corresponds to a greater fuel expenditure than curve 
OC. 

33 Moreover, an instantaneous expenditure of the residual fuel of A requires 
an infinitely large section, and curve A cannot bend down along AC. It will 
continue rising, for instance, to point A,, where there i s  even less  reason 
for it to bend and go to point C. 

2. If rocket Astays long at heights which differ little from one another, 
then it may be that, for the portion of fuel used, it will attain a large height 
with less  reserves  of fuel than the cylindrical rocket at the same heights. 

Let us  assume that at each height which rocket A t r i e s  to reach more 
easily than C, we prevent this from happening, by hindering the correspond- 
ing consumption of i t s  active mass  in such a way that at all  heights the 
following inequality holds true: 



(38 t e r )  

In this case the previous sequence of arguments remains in  force, a l -  
though the effect of the action of rocket C i s ,  in the final analysis, reduced. 

Conclusion. Let u s  define the utilization coefficient [efficiency] of the 
rocket as :  

Now it can be stated that a cylindrical rocket has a better utilization 
coefficient than some other rocket with the same maximum section. In 
other words, i t  can lift a greater  final mass  t o  a given height o r  it can 
lift a given.fina1 mass  to a greater  height. 

Comparison of cylindrical rockets of like section with one another. Let u s  
consider a cylindrical rocket for which 

8> a min. (40) 

Here,  

and the rocket is launched and r i s e s  according to the familiar law. 
Now let us  assume that we hinder the launching by adding to the rocket 

an explosive cylinder of the same section and of a mass  m, , s o  that 

At the moment when this mass  m, reaches burnout, and the main rocket 
begins to  operate, the la t ter  will already possess a certain velocity and will 
have reached a certain height. Therefore, the main rocket will attain a 
greater velocity and a greater height than previously during the consumption 
of i t s  fuel. 

34 
Therefore,we either increase the final height o r  increase the final mass,  

if burning ceases  at the moment where the corresponding point of the second 
rocket reaches the critical curve of the main rocket. 

Conclusion. Of al l  the cylindrical rockets of like c ross  section, the rocket 
with the greatest initial mass  lifts a given final mass higher, o r  lifts a great- 
e r  mass  t o  a given altitude, but with an attendant reduction of the utilization 
coefficient 



Critical curve. We have already seen that, in order  to  reach a given 
height H, it  is enough to continue burning until the moment when point 
(K y )  gets to a cr i t ical  curve with a limit V=O and y=H. The equation 
of this curve is obtained from (16) and on the basis of the two above 
cases  we have 

Fo r  H=o> we have 

This i s  the equation for the curve of motion (escape) of a rocket in a 
vacuum. 

Properties of rockets of different shapes. Before solving completely the 
theoretical problem taking a i r  resistance into account, i t  would be interest- 
ing to  determine the limits of the theoretical possibilities, a s  applied to  
their actual implementation. 

For  simplicity, I will assume the rockets to  be actually cylindrical, 
conical, o r  some other definite shape. The ejection section will be desig- 
nated a s  S, and the length of the moment t a s  I .  Fo r  a fuel of uniform 
composition with a density q and a burning rate  of d, we will have 

In addition, at each moment 

from which 

35 Integrating (45), we obtain 

I=[,-dt. (48) 

Fo r  a final initial length I, of the rocket, the total burning t ime will be 

.*=Io,loP1 
vl V Q '  (49) 



from which 

Cylindrical rocket. The equation of motion gives 

1 M ~ - - ~ . . " s - M ~ -  dts - 
(1+5). 

Integrating (46), we obtain 

M= M, - evS t ,  

from which, assuming 

M,=e .vST ,  

and M=Q v S ( T - t )  

we obtain 

indicates that 

and 

Let us  set 

where k is arbitrarily a portion of the maximum of the fictitious length o r  
the hypothetical assumed length. 

Let us  also introduce the variable 



36 which can be represented for a given moment in t e rms  of the ratio 
of the consumed mass to the initial mass:  

and this gives the ratio of the available mass to  the initial mass. At the 
end of flight this ratio gives the utilization coefficient 

I 
With this notation, equation (55)  can be written in the following form: 

a$, " .T gT9  -- 
d B  1-2 I-' (63)  

or ,  introducing z, 

Finally, 

and after integration we obtain 

and 

Here yi and yj designate average values depending on A. If it i s  possible 
to neglect y in comparison with a, these equations give 

1 v=. [ ~ ~ - k q .  (69)  

and 



If in these formulas we set t =  T, that is ,  X = 1, then we find that for 
consumption of al l  the fuel the velocity will be infinite, but the height 
attained will be finitq. If in (70) we set A = 1, and k =  1, we obtain this 
maximum height for a given V .  For a velocity 

37 which is almost the same a s  that of Goddard, we obtain the burnout heights 
listed in Table 1. 

TABLE 1. 

It is clear from this table that a cylindrical rocket, that i s ,  rocket C 
with constant ejection sections, will not burn at heights above 204 km for 
an exhaust velocity of 2,00Om/sec. For a utilization coefficient of 170, it 
will burn up to 185 km, and for k = 0.5 for the same X it will burn up to 
142.5 km. 

Velocities V at the end of burning are  found from (6).  Table 2 gives 
additional height values. 

38 The height of ascent of a rocket a s  a projectile is obtained from (42); 

The velocity required to overcome te r res t r ia l  gravity is 11,180 m/sec.  
The lower three rows of Table 2 satisfy this condition. 



(37) 
TABLE 2. 

Conical rocket. The shape of this rocket i s  determined by the equation 

Its total mass is 

In a particular case 

M , = ~ ' % .  3 

The scaling law gives 

The equation of motion (51) has the same form, but in this case we have 



From (74) and (49) we obtain 

3 so- 3 -- 
%-e'-e lv l  TI' 

and from (75), (49), and (51), we have 

Finally, taking (47) and (7 7) into account, 

d P y = 3 v - 1 .  
d@ TX-t ( l + g  
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This eqqation is identical to (55), except that in it u i s  replaced by 3v. 

Let u s  call this velocity v1 the fictitious velocity: 

v1=3v.  (81 

From (80) and (81) we obtain the ascent condition: 

T,<$='. 8 (B2 

We assume that 

T,,.=kr1=k', 
8 

(83 

where k has the same meaning a s  for a cylinder. 
Equation (60) now becomes 

so  that 

The quantity (1 - X) now represents the coefficient of linear utilization 
but not the mass utilization. The latter wi.11 be 

Under these conditions we obtain the same integrals a s  in  (66) and in 
(67), except that v is replaced by v ,=3u,  that i s ,  



If y is small  in comparison with a,  then formulas a r e  obtained which a r e  
analogous t o  those for a cylindrical rocket. For  equal X the velocity of a 
cone will be three t imes  that of a cylinder and the height will be nine t imes 
greater.  However, formula (86) shows that the coefficient of mass  utili- 
zation ( u )  for a cone is lower than that for a cylinder, that i s ,  the former 
uses  more propellant than the latter.  

The theorem following formula (33) and the subsequent result  indicate 
that, for sections which a r e  identical per  unit mass ,  a cylinder i s  more 
economical than a cone. A cone and cylinder can also be compared for 
identical fuel consumptions and the theorem can be modified accordingly. 

For  the sake of clarity,  the subscript will be used for a l l  quantities 
pertaining t o  a cone, and quantities without this subscript will be used for 
a cylinder. 

40 Let us  compare the velocities and heights attainable with conical and 
cylindrical rockets for identical mass  utilizations. From (61) and (86) it  
follows that 

and thus 

By specifying some arbi t rary A1, we obtain the corresponding A. For  
example, for 

we have 

In order  to  obtain the values of V and y for a cone, the same values for 
a cylinder with X = 0.5 must be tripled and multiplied by 9, respectively, and 
then the values obtained must be recalculated for a cylinder with A = 0.875. 
Thus we obtain Tables 3 and 4. 

TABLE 3. Cone with X = 0.5 

1 

104,319 

1,158 

k 

y i n m  

V in m/sec 

0 

0 

4,159 

0.01 

5,580 

4,128 

0.05 

27,009 

4,008 

0.1 

51,714 

3,858 

0.5 

166,833 

2,658 



TABLE 4. Cylinder with A = 0.815 

These tables show that the larger  kinetic energy of the residual mass 
of a cylinder compensates and increases the difference in potential energy 
corresponding to the difference in the heights obtained at burnout. If, for 
example,the residual mass is 1 kg and k =  1, the kinetic-energy excess of 
a cylinder will be 223,000 kg.m, and i t s  potential-energy efficiency will be 
about 9600 kg.m. It is clear  from (16) that q for a cylinder remains con- 
siderably larger  than that for a cone under the above conditions of 
conformability. 

Rocket with constant thrust. Previously, we defined such a rocket by the 
condition 

41 
;=p=m-.. (100) 

Such a rocket may be called "exponential" for the following reasons. 
F i r s t  let us  assume that 

where kc has the same value a s  for a cylinder,that i s ,  

Now let us  write (100) in the form 

Now, differentiating with respect to f and taking (16) into account, we 
obtain 



from which 

and 

The shape of the rocket will be a surface of revolution about the OZ 
axis. Let us take x and z to be the coordinates of i t s  meridian. 

Then 

and 

This expression shows that a s  z goes to infinity, x goes to 0. Thus such 
a rocket will have infinite length and burning time. 

From (49) and (59) we obtain 

42 
If we designate I a s  the actual length of the exponential rocket, then 

and 
1 -- 

S=S,.e L. (111) 

Finally, i ts total mass will be (according to (1 04)) 

This shows that for such a rocket not only the radius and area  of any 
normal section, but also the residual mass ,  vary according to a power law 
a s  a function of the rocket length, indicating the correctness of the name 
of this rocket. 



Considering ( 1 0 9 )  and replacing ~ i ,  by Q'v', we can write ( 1 0 1 )  in the form 

This relation shows that L represents the length of a cylindrical rocket 
of the same mass and the same initial c ross  sections a s  the exponential 
rocket being considered. 

The equation of motion 

is transforrned,taking into account (100) and (101), into 

The condition of ascent from the earth gives 

and for this to be the case it is necessary and sufficient that 

where y  varies from 0 to  a, and the acceleration also varies from some 
initial value to the limiting value: 

which constitutes the "thrust acceleration." This is why I have called such 
a rocket a "rocket with constant thrust," and not a "rocket with constant 

43 acceleration." The latter would be correct  only for a reduction of the 
acceleration of gravity and a small  value of this acceleration in comparison 
with the thrust acceleration. 

Introducing the velocity V, we can write equation (1 1 5 )  as  

which gives 

and 

This is the equation of the ( V; y )  curve for a period of infinitely long 
burning. The velocity V increases with y ,  and both these quantities 
increase without limit. 



Critical height at which such a rocket reaches free-flight (or critical) velocity 
vs 

If we eliminate % f r o m  (120) and (144), we obtain 

which gives a critical height 

y, = ka. 

Note. Since k < 1 ,  therefore y, < a 
F rom (120) and (123) we obtain 

from which 

When k varies from 

44 the velocity Vc decreases from 

@a 

to 

&G. 
Calculation of time; critical time. Previously we had 

which gives 

This is the equation of an elliptic integral. Since it was not possible to 
solve this integral accurately, I have obtained an approximate solution 
(see Appendix at end of this paper). 

Numerical results fm exponential rockets.  This rocket is of special 
interest in that it subjects the rocket components and any living beings 
which might be aboard, to an almost constant acceleration. I will make 



acceleration. I will make calculations for three values of the acceleration, 
for reasons to be given below. Here the following values of y,, V, and t, 
were obtained: 

The reciprocals 4 of the utilization coefficient a r e  of special interest; 
P 

they a r e  given in Table 5 for various values of v.  

4 5 

TABLE 5 .  

Chapter II 

ROCKET MOTION IN AIR 

Let us designate a s  R the absolute resistance of the a i r  (that is ,  the 
force resulting from the opposition of the a i r  to the motion of an object). 
This quantity increases with V,  dedreases with the height y, and depends 
on the way in which the rocket penetrates the air .  

The equation of motion can be written as 



Let us assume that the area of ejection i s  equal to the "caliber" of the 
rocket. Then 

1. The condition of minimum cross  section i s  

4 6 
S 

2 .  During the entire burning period, if a does not increase, the total 
d* acceleration 2y will never be negative. Actually, according to  hypothesis, 

S or,  also according to hypothesis, does not diminish, s o  that we obtain the 

same for 

S me.vZ. 

Moreover, 

(* 

decreases, when the height increases. Consequently, the difference 

increases with height. 
In order  for the total acceleration 

to become negative, R must increase, but this requires an increase in V, 
which in turn means that the total acceleration must be>O. 

M .  Corrections. If during the burning period is a constant quantity 

(exponential rocket) o r  a nonincreasing function of time, then: 
a )  the velocity and height will continually increase ; 
b) it will be t rue at all t imes that 



except for the case m e n  the acceleration is less  than 0. 
For  rocket flight in  a vacuum we have seen that, given identical 

maximum sections, a cylinder is the most economical shape and also that a 
cylindrical rocket of maximum length could transport the greatest final 
mass.  

Fo r  the case of air ,  we can compare rockets possessing equal capabilities 
of air  penetration. The slowing-down process can be expressed a s  

where iii is the "coefficient of ballistic penetration, I '  and p (V,y) i s  a function 
47 which increases with V, decreases with y, and depends on just these two 

variables. 
We obtain the following results:  of two cylindrical rockets with identical 

ballistic penetrations, the longer of the two, or ,  what comes to  the same thing, 
the one with greater  mass  per unit section area, will ascend higher o r  (for 
equal heights) lift a greater  final mass.  

Here it would be sufficient to  repeat the earl ier  discussion for the case of 
a vacuum. However, so that the question of the velocity loss  due to a i r  
resistance will not perplex the reader, let us throw more light upon it by 
f i rs t  studying the case of two projectiles P and P with equal ballistic 
penetrations, sent upward at the same moment and from the same height; 
the initial velocities of the projectiles a r e  V, and 1/,'. 

Let us assume that 

in  which case, regardless of the a i r  resistance, projectile P will reach a 
greater  final height than P. Let us consider this case in more  detail. 

At the end of a very small  t ime interval following the launch, the f i rs t  
projectile will be higher. However, it will slow down more due to the a i r  
resistance than P will, s o  that i ts velocity loss will be greater .  The second 
projectile will nevertheless fail  to catch up with it, since, just when i t s  
velocity i s  equal to  that of the f i rs t  projectile, i ts  retardation due to a i r  
resistance will not only be equal to, but will even exceed, that of the f i rs t  
projectile, since it is lower and since the effect of gravity i s  stronger there. 
Consequently, the f i rs t  projectile attains a greater  final height. 

Now let us  return to the case of two rockets, in this instance two 
identical rockets CD and @. Rocket CD i s  assumed to have a velocity Vo 
at a height yo, while UP is still on the ground with zero velocity. 

Now both rockets a r e  ignited. It can be assumed that, for equal fuel 
consumptions, the f i rs t  rocket will fly ahead of the second. Actually, when 
the velocity of the second rocket becomes equal to that of the first ,  the 
retardation due to  a i r  resistance will be the same (if not greater) for the 
second rocket than for the first .  Thus the second rocket will fly in front and 
will stil l  have an advantage at higher altitudes. 



As a result, for flight in a i r  a s  well a s  for flight in a vacuum, a 
cylindrical rocket of greater  length will lift a given mass  higher o r  will 
lift a greater  mass to  a given height. 

Curve of total fuel consumption. Fo r  the case of a cylinder we have 

- 
0 

48 which, for cylinders with equal 3 ,  i s  the equation for a (Kg) curve possessing 

unusual properties. 
Actually, we see that the velocity varies, increasing. Let us assume that 

the burning of the rocket proceeds to the end, so  that M goes to zero. The 
height of burnout will be limited (and, of course, less  than for a vacuum), if 

R 
the velocity becomes infinite; in such a case the ratio 7 also goes to 

infinity. However, at a certain time it will be t rue that 

and the acceleration becomes negative. Accordingly, the velocity cannot 
increase above some given limiting value. 

On the other hand, toward the end of burning, a s  M approaches 0 ,  it can be 
R assumed that, if the difference e.d--S remains finite (that is,  greater  than 

some specified small quantity), the velocity increases and exceeds the given 
limit, which contradicts the first  part of this discussion. Thus, the 
difference 

goes to zero. The following i s  therefore true: the equation 

i s  the curve of total burning. All the burning curves approach this curve. 
For  a cylinder, using the same notation as  in the case of flight in a 

vacuum, we obtain 

and assuming 



we obtain 

Let us now introduce coefficient k , where 

The formulas of ballistics a r e  used to determine R .  The acceleration 
49 l ' ,  expressed in the cgs system, i s  understood t o  be the retardation due to  

the a i r  resistance faced by a projectile of mass p, for some fictitious ogival 
angle. Therefore, 

According to  Havrels formula, 

where A,'= 1.208 (mass  in kg of 1 m3 of a i r  at the earth, according to Havre). 
a' i s  the diameter (caliber) in m, i s  the mass  in kg, and h = 10-4. 

In the expressions for e-C and F(V), quantities y and V a r e  in m and 
m/sec .  Thus we have 

where 
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Consequently, $ = x ~ , , ' s i n y . e - b ~ ( V ) .  

Now our equation can be written a s  

where all the units a r e  cgs, except y and V in e-hY and F(V), and the lengths 
a r e  in meters .  

If y, v and V are  everywhere expressed in m and m/sec ,  the equation 
becomes 



(1 55 bis) 

(155 t e r )  

where Q i s  in cgs units, Ai=1.208 (or some other value in kg/m3 correspond- 
ing toy=O), and y, a, and V a re  in m. 

For 

50 
we find the coefficient of s in Y .e-" F(V) to be 

Accordingly, 

d_V- 2000-3.0761.10-a sin y.s-liY F ( V )  - T 
dl - 1 - 1  9.81 - 

A s  already stated above, a cylindrical rocket i s  one which has a 
constant ejection area.  A conical rocket, on the other hand, has an ejection 
a r ea  proportional to the power of 2/3 of the residual mass.  

However, assuming that in this case the diameter of the projectile 
remains constant, it would be of no use to  derive the corresponding formulas, 
since it i s  not clear  how the throat area of the nozzle would change, this 
being essentially the ejection area. 

The case i s  similar for an exponential rocket. Moreover, further dis- 
cussions of particular types of rockets more or less  approximating conical 
o r  exponential rockets will be, more precisely, discussions of successive 
cylindrical o r  composite rockets (fus6es gigognes). Special study of each 
of these cases is necessary. 

AIR RESISTANCE 

The foregoing formulas were established using ballistic data. However, 
function F(V), which enters  into the expression for R ,  has stil l  not been 
determined. Although the velocities involved here a r e  greater  than those in 



ballistics, stil l ,  since only an approximate evaluation of the phenomenon is 
desired, let us  use the usual formula of aviation: 

This formula gives only a f i rs t  approximation, and la te r  it should be 
changed to show the variations with pressure, temperature, and humidity, by 
introducing appropriate coefficients. In addition, it is unfortunately 
necessary to  introduce another, quite arbitrary, coefficient to compare the 
midship sections (of rockets) with different profiles moving in a i r .  

This method of comparison seems to  me to  be erroneous, since the 
aerodynamic properties of a plate moving orthogonally depends on its 
dimensions-and on the shape of i t s  contours. Consequently, the choice of 
a standard for  the square section will be completely arbitrary. 

I propose that we always compare the resistance to  the penetration of 
the a i r  by the rocket with the momentum, relative to this rocket, of an a i r  
column with the same midship section a s  the rocket, and with a length equal 
t o  i ts  velocity of motion in a i r .  This resistance will be equal to  the force 

51 produced by a complete cancellation of the momentum relative to the a i r  
which would be encountered by the rocket if all i t s  molecules were to  move 
across the plane. Such a determination has the advantage that it i s  possible 
to establish the absolute coefficient of penetration relative to  the cross  
section of the rocket. 

If such a form were realized, i ts  resistance to motion through the a i r  
would be expressed in ordinary aerodynamic units (kg of weight, m,  sec),  
giving 

where g=9.81 and a i s  the weight (in kg) of one m3 of a i r  at the given point. 
Since all the units a re  cgs, this formula may be written a s  

where a i s  the mass  in grams of one cm3 of a i r  at the given point. 
In ballistics the exponent of w i s  assumed to increase with the velocity, 

reaching almost four for the speed of sound. However, let us retain the 
formula a s  given in (158), since it yields more favorable results.  

Fo r  an arbi t rary rocket shape, 

where k = l  for the standard shape. In accordance with experiments in 
aerodynamics laboratories, we have 

k=0.70 for a plane; 
k =0.106 for a sphere. 

If, as in our case, the rocket moves at a velocity considerably greater  
than the average velocity of molecules of the surrounding gas, then we can 
assume that a perfect vacuum exists as te rn  of it. Thus the entire-force f 



may be attributed to the compression of gas ahead of the rocket nose. 
Now it is easy to  obtain the average pressure; from (159) we have 

Let us designate a s  p the external (overall) pressure,  giving a com- 
pression ratio of 

where 

a l l  -- --- 
P p"-rn' 

Here R i s  the perfect-gas constant divided by the molecular mass of the 
gas, T i s  the absolute temperature, and a and p a r e  the specific mass  and 

52  pressure of the a i r  at the given atmospheric point (cgs units). 
Thus 

This remarkable expression shows that in a gas at constant temperature 
the degree of compression depends only on the velocity, being proportional 
to the square of the lat ter .  The degree of compression i s  therefore 
independent of the gas density at the point in question. 

To determine the gas temperature ahead of the rocket, we use the 
expression 

This formula shows that the final temperature increases with an increase 
in the temperature of the surrounding gas, but less  rapidly than the lat ter  
does. Moreover, this final temperature does not depend on the pressure of 
the surrounding a i r .  Consequently, it i s  incorrect to  say  that the rocket 
heats up due to  "air friction," as i s  usually stated in the case of meteors. 
Friction itself could not exert any appreciable effects, since it is a function 
of the first  power of the velocity, rather than the square. At high velocities 
the effect of friction will be completely overshadowed by that of the kinetic 
energy of the air, which is proportional at least to d. 

The heating is a result of the compression, which i s  quite sufficient t o  
heat meteors a s  well. Fo r  instance, let us consider a moving body with 



k=0.1 (for a projectile of ogival shape k will be somewhat lower, and for a 
meteor it will be somewhat higher). For  T,=250r abs, the heating AT of 
the a i r  ahead of the body will be a function of the velocity (see Table 6).  

TABLE 6. 

It is clear  from the table that for a velocity of 2 km/sec the heating is 
already great enough to preclude the presence of living beings aboard the 
rocket. It is t rue  that this heating will not last long, and that the heat 
capacity of the rocket slows down somewhat the influx of thermal energy. 
In addition, the rocket will cool off toward the stern, where the a i r  is 
rarefied and cooler. 
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Note 1. In aeronautics k i s  assumed to be much lower. For  example, 

for streamlined bodies k may be as  low a s  0.03 (using my units of 
measurement). However, it should be noted that this result  i s  obtained 
because small jets of the medium converge behind the body and give r i se  
to a propelling force forward. This force reduces the drag, but in itself 
this resistance does not decrease. 

The enormous velocities with which we a r e  dealing here a r e  many times 
greater  than the average molecular velocity of the surrounding gas. 
Consequently, this weakening of the penetration need not be taken into account, 
since the small jets of the medium a re  not able to  close the rocket in from 
behind. On the other hand, it may be that the pointed nose of the rocket, by 
reducing the relative impact velocity of molecules, will have a marked 
influence with respect to both the resistance to  penetration and the thermal 
situation, compressing the air .  Be that as  it may, it i s  hardly possible that 
k will be less  than 0.5, but nevertheless the temperature will stil l  be quite 
high. 

Note 2. Formula (155) indicates that the temperature T does not depend 
on the surrounding pressure. Thus it might be concluded that no manned 
rocket could ever leave the earth without vaporizing. If this were the case, 
however, meteors would become ignited when they arrived from infinity 
just to  heights of about 120 km. Hence it follows that a certain temperature 
may be insufficient for  heating. Somewhat more heat i s  required. 

Later it will be seen that the energy produced by retardation a s  a 
projectile falls toward the earth reaches an appreciable value only at a 
height of about 120 km, the height at which "falling s ta rs"  a r e  observed. 
Above this level neither energy nor heat a r e  developed. If a meteor or  
projectile were to become slightly heated there, it would soon radiate into 
surrounding space a quantity of heat equal to that obtained earl ier  and would 
not become heated further. 

Experience with meteors convinces us in this respect. Only a cylindrical 
rocket, which develops i ts  maximum velocity below 200 km, will heat up to  a 
dangerous degree. A conical rocket, with a maximum speed at a level nine 
t imes higher (around 1,800 krn), will not be exposed to this danger, and the 
same is true of an exponential rocket, except for an acceleration f = 1 0  g 
which should be considered unsuitable for other reasons a s  well. 



On the basis of the foregoing considerations, we conclude that the 
presence of a i r  resistance does not modify considerably the results obtained 
for motion in a vacuum. This i s  because a rocket, in contrast to a 
projectile fired from a gun, develops i t s  maximum velocity gradually rather 

54 than rapidly. Except for the two cases cited, this velocity becomes very 
large only above the dangerous zone at 120 krn, where the density and the 
resistance to penetration a r e  s o  low that the work required to overcome 
them is negligible, regardless of the velocity. Consequently, the rocket can 
serve a s  a vehicle for flights into interplanetary space. 

Chapter ?I1 

POSSIBLE ROCKET APPLICATIONS 

The study of the upper atmosphere may well be the f i rs t  application of 
rockets. Theory shows that the nitrogen content should increase with height; 
then, at very great heights, this gas should give way to hydrogen. Above the 
hydrogen zone there is probably an even lighter gas, the basis  of the 
luminous phenomena of the aurora borealis. This gas, a s  yet chemically 
unknown and hypothetical, i s  called geocoronium. 

It would be of interest t o  study the regions of the atmosphere above the 
heights (up to  30 km) attained by sounding balloons. Any altitude can be 
reached with the aid of rockets; the only problem will be to obtain a 
sufficient amount of such a rarefied gas. Physicists, of course, would be 
quite satisfied to  study just a small sample of it. 

In 1919 Prof. Goddard proposed another rocket application, namely a 
"moon shot." His suggestion was to  send a pound of magnesia [flash] powder 
(American "Victor" powder) to  the moon and to watch the explosion through 
a telescope. Calculations show indisputably that such an experiment is 
theoretically possible. Moreover, the American newspapers soon announced 
that an appropriate rocket was ready to take off. It i s  not known to  me 
whether such experiments, worthy of American enterprise, have been carried 
out. As yet nothing has been heard of their results.  

This problem i s  solvable for  certain conditions. As I concluded 15 years 
ago, and a s  was assumed later  by Goddard, the velocity o; gas ejection should 
not be more than 2,000 m/sec .  Table 5 shows that at low accelerations 
unacceptably high ratios of the initial and final masses a r e  obtained. The 
highest acceleration assumed by me (r=10 g), which i s  acceptable for 
recording instruments o r  for specially constructed photo apparatus, can be 
attained without any insurmountable difficulties. Fo r  a vacuum the mass 
ratio i s  358.5, s o  that an initial mass  of 358.5 kg is  required in order to send 
a final mass of 1 kg into space. Here, however, the initial mass  is assumed 
t o  be almost all fuel. I say "almost all" because actually the fuel can 
provide an exhaust velocity considerably higher than 2,000 m/sec;  during 
the calculation of this velocity it was assumed that the rocket was relieved 

55 of i ts  inert mass  to  only a small extent, in comparison with the fuel. In 
addition, I do not take into account the heating which can occur for an 
acceleration of 10 g. 



Goddard obtained a less  favorable rat io for a i r  than I did: 602. However, 
in  the transition from theory to  practice, unbelievable difficulties a r e  
encountered, even assuming ( a s  did Goddard) that for a moderate assumed 
velocity the weight, of the surrounding gas equals only '1, the weight of air .  
Consequently, for  1 kg of final mass,  43 kg of shell  and 558 kg of fuel will be 
necessary. It must be admitted that I do not have in mind a similar rocket. 
But Goddard worked with a powder providing 1,238.5 cal/kg, while, as early 
a s  1912, I noted in my brochure that fuels more powerful than this exist. 
Then I referred to a powder s imilar  to the American powder mentioned 
previously, but at the same time I also drew attention to a mixture of 
hydrogen and oxygen in appropriate proportions, which provides 3,860 cal/kg. 

For  his powder, Goddard obtained an experimental value of 

A mixture of Hz and 0, on the other hand, may give about 3,400 m/sec .  
Here, however, a reservation should be made. For  a high degree of 
expansion the exhaust velocity depends mainly on the initial temperature, 
while tKe latter depends in turn on the rapidity with which the combustion 
products a r e  dissipated. Thus the problem i s  very complicated. In order 
to  evaluate the results,  we must know the combustion reaction for Goddardls 
powder. If the combustion products a r e  vapors of water and carbon 
dioxide, then a marked dissociation takes place, especially of the carbon 
dioxide. If, on the other hand, vapors of water and carbon monoxide a r e  
produced, only the first  of these will undergo a certain degree of dissociation. 

In any case, the dissociation increases s o  rapidly with temperature that 
the latter is appreciably reduced. For  example, if hydrogen is burned with 
oxygen in the right proportion, water vapor at a temperature of 5,300 to 
5,400°C should be produced, whereas the flame of an oxygen jet will not have 
a temperature exceeding 2,500°, due to the radiation losses.  The limitation 
of the increase in temperature is also known to be due to dissociation. 
Because of the foregoing, the Hz+ 0 = H20 reaction cannot be expected to 
give a velocity greater  than 3,000 m/sec .  However, this constitutes a very 
considerable improvement over a rocket with an assumed acceleration of 
r=5 g (the limit for heating). Here the mass  ratio will be only 63, which 
facilitates the construction of the rocket. Moreover, even better resul ts  
can be obtained. Prof. Langmuir, working at the General Electric Company 
in America, prepared some atomic hydrogen and used it in a burner accord- 
ing to the reaction H+ H = Hz. This reaction liberates more heat per  mole- 
cule than the formation of water vapor does (5a°C), and it has the advantage 

56 that it reduces the dissociation temperature even more.* 
The final molecular mass  i s  '1, of that for water, and this reaction would 

have a great [overall] advantage were it not for the fact that, unfortunately, 
the enormous specific heat (3.8) cancels out this advantage in part,  limiting 
the theoretical temperature to 9,900". In the final analysis, the practical 
resul ts  depend on the dissociation of molecular hydrogen into atomic 
hydrogen. Obviously, if this dissociation is not great at high temperatures, 
then this means can be used to  obtain very high temperatures. 

* According to different data, we have: 1) 75 to 80 cal per molecule; 2) 90 cal a t  constant volume and 
3,000°; and 3) 85cal  a t  constant pressure and the same temperature. I have assumed the lowest value, 
75 cal. 



In the absence of more  precise data at present, let us assume that the 
velocity may reach 10,000 m/sec,  with a theoretical limit of 12,000 m/sec .  
Then, according to Table 5, we obtain quite acceptable mass  ratios, even for  
r=2g. 

However, will it be possible to  keep atomic hydrogen in liquid fo rm?  
Will there not be a danger of explosion? Will i t  not be easily detonated ? 
Can it be stored conveniently? 

I do not have the answers to these questions. However, even if 
satisfactory answers can be found to  them, there i s  another problem of a 
special kind, which Goddard did not foresee and which I will now discuss. 

In order  to  overcome the earth 's  gravity, a rocket must develop a 
velocity of 8,000 to 11,200 m/sec,  depending on the height of flight. This 
velocity will be equal to that acquired by an object falling to  the same place 
from infinity without any initial velocity. 

Lunar gravity i s  much weaker than te r res t r ia l  gravity. At the surface 
of the moon it i s  only 0.165 a s  great.  The moon's radius is 0.237 of the 
earthcs radius. At a distance from the lunar center equal to  the radius of 
the earth, the acceleration due to gravity will be only 

that i s ,  it will be a little more than '/loo of that at the earth 's  surface. This 
figure indicates the ratio of the masses  of the moon and earth. 

If there is even a slight e r r o r  in either the launching angle or  the velocity 
at burnout, the rocket will not have the proper trajectory. If the purpose i s  
to  hit the moon and if the rocket i s  aimed well enough, then the terminal 
velocity i s  essentially unimportant, provided it i s  high enough. It should 
be noted that i t  will be very  difficult to aim the rocket precisely, unless 
the launching si te  i s  s o  chosen that the moon i s  in the equatorial zone, where 
the tangential velocity due to  the rotation of the earth is about 463 m/sec .  
This velocity has to be added to the velocity of the rocket relative to the 
earth, irrespective of the effect of a i r  currents.  All this complicates the 
aiming of the rocket. 
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If a zenith launching is carried out at a higher latitude, the smallest 

excess in the terminal velocity will cause the rocket to  bypass the moon 
and to go off either into infinity o r  else into a descent on the invisible side 
of the moon. 

In any case the point of impact of a rocket on the moon, even under the 
most favorable conditions, cannot be specified accurately, and it would be 
very difficult to observe it with a telescope, a s  proposed by Goddard. In a 

letter which I sent to Goddard on 16 June 1920, 
I pointed out how interesting it would be to 
send a rocket not to the moon, but rather  

-it- not around a single it. We person see only on the one earth side, has and been a s  yet 
' =;--. 
0 - - - - - - - - - - - - a0  

able to  view the other side of the moon. It 
\ . would be of great interest to  photograph this 

FIGURE 6. invisible side. 
With respect t o  this,  however, certain 

difficulties a r i se  which I did not foresee in 
1920, but which I will t r y  t o  evaluate here. Let us consider just the 
symmetrical branches of the trajectory, a s  shown in Figure 6. We 



assume that these branches intersect the line between the centers 
of the earth and moon at a right angle at point B . 

Let us use the following notation: Me i s  the point of departure from the 
earth, a i s  the angle M,TL, 1 i s  the distance from B to  the lunar surface, 
W, i s  the velocity at launching (I assume that this velocity is attained 
instantaneously at point M,), and W, is the critical velocity of free flight at 
point A. 

In order  for the t rajectory to pass  behind the moon, angle must be 
between lo and 9". The corresponding values of W, will range from 0.99 W, 
to  1.0001 W,, and the values of I will range from zero to infinity. Con- 
sequently, if the angle varies  by 8" and the velocity varies by 1 y,, the 
distance at which the rocket will circumvent the moon will vary from zero 
to  infinity. 

The trajectory will be symmetrical with respect to  line TB [or OBI only 
i f  angle ru and velocity W, a r e  calculated very precisely. An e r r o r  on the 
high side means that the rocket will not return to the earth, and for an e r r o r  
on the low side it will fall  to  the moon. 
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ity, of sending a rocket around the moon, just on the basis of the aiming 
accuracy and the selection of the departure velocity. 

Now let us consider the question of whether the retarding effect of the 
atmosphere can be used during the return of a rocket to  the earth, a question 
which I discussed back in 1912. The corresponding calculations a r e  as 
follows. 

The velocity of an object falling to earth from infinity with zero initial 
velocity i s  

where ru i s  the radius of the earth, and y i s  the height. At a height of 200 krn, 
this velocity will be 11,105 m /  sec.  

The density of the atmosphere can be expressed approximately by the 
formula 

where ! I , ,  is the specific mass  at the earth, and / L  is this quantity at a height 
H. In the cgs system we have (=l@ for very great heights. Let us set 

Then (19 1) gives 

The acceleration will be 



However, F is the sum of two quantities: one due to  gravity, 

and the other due to  air resistance, 

f s e k . p S w P = k p ' , S d  .e-'. 

The equation of motion i s  

where 

c u = E  = 5 $ and d*H 
dt ==c$- 

F o r  simplicity we take 

59 s o  that (197) may be written a s  

This equation can be solved, but the solution i s  complicated. We can 
see what it represents if we note that the effect of a i r  resistance i s  nearly 
imperceptible at heights above 200 krn. For  this reason, above such heights, 
I determined the velocity with which the rocket approaches. Whether it 
falls from the moon o r  from infinity, this  velocity changes very little. 

Below 200 km the force of gravity may be assumed to be constant, and 
equal t o  951 in the cgs system. However, for simplicity, it can even be 
neglected, and the approximation will stil l  be sufficiently accurate. 

Let us designate a s  z,,' the velocity with which the rocket approaches a 
height of 200 km. Then equation (200), simplified in the manner indicated 
above, can be integrated easily 

If an ordinary parachute i s  used in the descent (K=I) ,$=Z kg/m2, andthe 

deceleration becomes appreciable only at a height of 150 km, where i t  will 
be equal to  1.8 times the acceleration of gravity. Unfortunately, however, 
it increases rapidly and reaches a maximum at a height of 91.5 km, where 



it i s  229 times the acceleration of gravity. Subsequently it diminishes at the 
same rate ,  going to zero at a height of 70 km. Special instruments could 
survive this maximum deceleration, but i t  would be fatal to  living beings. 

In order  t o  avoid $hi$, I assumed that i t  would be possible to  enter the 
atmosphere at a tangent, thereby utilizing the a i r  density more  uniformly. 
Unfortunately, the braking begins only at a height of 150 km and increases 
extremely rapidly over a distance of 80 km. If the trajectory follows a 
tangent at a height of 150 km, then for  a flight at 1,340 krn with passage of 
this height at an angle of 12", 5 will become 4.5 times greater.  Calculation 
shows that the greatest deceleration will be much less  than the previous 
figure, but that i t  will stil l  be 51 times te r res t r ia l  gravity. Assuming a 
descent angle of 6", we obtain a value of ten times a s  great and a decelera- 
tion of about 23.4 g. 

I do not know how, without taking special measures, an organism can 
survive such a n  increase in the force of gravity (similar to that at the 
surface of the sun), which would make a 75-kg person weight 1,750 kg. 
Perhaps automatic parachutes of variable a r ea  could be used, which would 
begin to  work ear l ie r  and then gradually vary their surface area. 

However, this would require such an accuracy of the tangential descent 
that it would be attainable only through a control of the rocket by means of 
additional bursts.  Such bursts could be better used, on the other hand, to 
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Now let us  consider the power of the deceleration, relative to a gram of 

mass  of the rocket. We have 

from which 

This power reaches a maximum at a height of 95 km, that is,  only 
slightly above the height of maximum deceleration. The maximum power is 
very high, 14.8 kw, or  about 20 HP per  gram. As noted previously. the 
retardation is a consequence of the velocity. The a i r  is compressed ahead 
of the parachute, developing a pressure of 458 kg/m2, if the parachute is 
rated at 2 kg/m2 at the ground. 

This pressure,  corresponding to only 46 g/cm2, is very low in absolute 
value, but compared to  the normal pressure that high in the atmosphere it 
is enormous. The degree of compression can easily be expressed a s  a 
function of z. The pressure ahead of the'falling object will be 

The pressure at a height I, on the other hand, i s  



The ratio, o r  degree, of compression will be 

or,  when z i s  very great,  

The temperature of this,  instantaneously compressed, gas will be 

Calculations show the degree of compression to be 1,950, and if the 
temperature of the surrounding a i r  i s  -50°C, then the temperature of the 
compressed gas ahead of the parachute will be 1,730". There i s  no need 
to  ask what would happen to it under such conditions. 

This calculation gives such a result because the temperature does not 
vary  gradually; instead, it begins with a maximum at infinity for zero 
deceleration, decreases imperceptibly until the beginning of deceleration, 

61 and then takes a sharp upward jump for  the maximum developed power. 
Therefore, meteors will probably not become ignited above 120 k m  either, 

this being the region in which their appearance i s  noted. At great heights 
the power developed by them i s  not great,  and the temperature corresponds 
only to slight heating, a small amount compared to the radiation and not 
enough to heat the meteor. 

This temperature r i s e s  only when the energy of deceleration suddenly 
reaches an enormous level. Calculations show that this occurs at heights 
of 120 to 130 km, where the power becomes 1.25 to  3.55 kW/g, respectively. 
This energy is  applied just to the forward surface of a parachute, and thus 
the energy concentration per unit mass will be even higher. It continues 
down to a height of 80 krn, the region where "falling s ta rs"  disappear. 

Taking account of this significant result, I consider the use of a parachute 
for braking a rocket in  the atmosphere to be impossible; for this purpose 
it will be necessary to  equip the rocket itself with some type of counter- 
engine. Referring again to the figures given at the end of Chapter I, we see  
that for the optimum case (according to  Table 5) it is necessary to  have a 
propellant supply of 

3.242 = 10.5 times the useful load, (209) 

or ,  for f =2 g 

4 .362 = 19 times the useful load. (210) 

If the useful load i s  m e  ton, then 10.5 or  19 tons of atomic hydrogen will 
be necessary at launching, even for the limiting case, which i s  not practicable 
in reality. However, the problem i s  not insoluble. It is merely difficult to  
obtain a practical solution, especially when working with atomic hydrogen, the 
properties of which a r e  stil l  unknown. 



Chapter IV 

CONDITIONS FOR TRANSPOR TING LIVING BEINGS 

INTERPLANETARY SPACESHIPS 

I have indicated above that it i s  possible to construct recording instru- 
ments capable of withstanding an acceleration of 10 g. Now, however, the 
question a r i ses  of the limit for living creatures. 

I already have some indication of this from practice. In my airplanes 
I provided the pilots with elastic belts; these could be s o  adjusted that at 
the end of their extension they would bear, without being damaged, ten times 
the weight of the body. Thus this danger can apparently be eliminated. The 
problem of the heating, however, stil l  remains. It would be more prudent, 
perhaps, to  limit the acceleration to  r=2 g .  The use of an H+  0 mixture i s  
inadvisable, s o  that atomic hydrogen has to be used, but [ a s  noted above] its 

6 2  properties a re  almost unknown. 
Finally, le t  us  assume that the heating problem has also been resolved. 

There will stil l  be a number of difficulties to be overcome. It will be 
necessary, for instance, to  have a fuel supply sufficient to  overcome the 
earth 's  gravity, and it will be almost impossible to calculate a circumlunar 
flight accurately.* 

Such a bold venture will involve several  probable inconveniences, and it 
is difficult at present to assess  their significance. For  instance, at the 
moment when the thrust ceases, the passengers will experience a sudden 
transition from an acceleration of 2 g, which in itself will be burdensome, 
to  the absence of acceleration, which has not yet been experienced either.  

CONDITIONS FOR STAYING ABOARD THE SPACESHIP 

Provision of a i r  for  breathing 

With respect to an air supply, our experience with submarines i s  very 
useful. Moreover, it may be assumed that an even more successful solution 
will be possible, especially when we have available the enormous quantities 
of energy associated with the splitting of atoms, which w i l l  provide new 
possibilities for chemical reactions acting on the atoms themselves. The 
main goal will be to  retain, without any losses, the gaseous mass  contained 
within a spaceship flying in a vacuum. This will be much simpler than it 
would be to maintain a vacuum inside a spaceship located in a gas under 
pressure,  where enormous losses would be sustained for small  quantities 
of gas penetrating the shell. In our case, however, such losses will pertain 
only to the mass  of gas situated inside the spaceship under pressure.  

It should be noted that it might be possible to fill the spaceship with an 
atmosphere of pure oxygen, so  that the pressure could be reduced to 1/1, of 
atmospheric. Then the losses would be even lower. 

* V.his,of course, was written long before the electronic computer was even imagined (Translator).] 



Maintenance of suitable temperature 

Temperature exists only where there is matter.  Interstellar space, 
accordingly, i s  notzas icy a s  i s  often thought. We are  familiar with the low 
temperatures of the upper layers of our atmosphere. However, a s  tenuous 
as these regions a re ,  they stil l  contain some matter.  The absolute tem- 
perature, on the other hand, can be neither cold nor warm. We know that 
heat i s  a sign of molecular motion, and if no molecules a r e  present such 
motion cannot, of course, exist. 

In my previous paper I only had room to  describe in a few words the 
possibility of varying the temperature of a spaceship by blackening one of 
i ts  surfaces and polishing the other, with one o r  the other side to be turned 
toward the sun. Rotation of the spaceship would then produce some average 
temperature, equal to  that which a heat conductor would have in the same 
place, if i ts ent i re  surface possessed the same radiating capacity, no matter 
what i t s  degree. A black body represents a particular case of this. For  

6 3  simplicity, I will call this temperature "the temperature of a black spherical 
conductor subjected to the effect of solar  radiation at the given point." This 
i s  the temperature which would correspond to the nonexistent temperature 
of a vacuum, and we can see  that in our regions it differs markedly from 
absolute zero. 

BLACK-BODY TEMPERATURE AND LIMITING 
TEMPERATURES OF THE SPACESHIP 

Let us consider a spherical heat conductor (Figure 7)  of diameter D and 
radiating capacity K. The conductor i s  exposed to solar radiation in a 

direction zO. We assume that ds i s  a surface 
element of the sphere determined by angles 
a, a+da. /I, and /I+@. In this case 

n D 
d s Z T  d l .  cosa, (220) 

FIGURE I .  

If o is Stefan's constant, and if 0 i s  the absolute 
temperature of the sun, then the amount of heat 

which element ds wil1,absorb if the radiating capacity of the s t a r  is unity, 
for the whole hemisphere, will be 

The amount of heat reflected o r  scattered in space will be 



We designate a s  y the solid angle subtended by the sun as seen from the 
sphere. Then a surface element absorbs only an amount of heat 

Y LP 
dq=dQ- 2n sin a = k . 0 . 8 ~ X  2n x -s ina .cosa .da-dp .  4 (224) 

Integration over limits from a= 0 to %and from p= 0 to 2n gives 

However, this i s  the same amount which would be absorbed by a plane 
disk of diameter D receiving radiation normal to it. 

64 If the absolute temperature of the sphere i s  T, then its entire surface 
will radiate a quantity of heat 

Equilibrium will exist when 

that i s ,  when 

Vicinity of earth 

If the sphere i s  close to the earth, then from it the sun subtends an angle 
of about 32', corresponding to a solid angle 

A solid angle of &c, on the other hand, equals twice the total surface, o r  
82,50602. Consequently, 

L - "2235 - i.709. 1o-e. 
&r -82 506- (232) 



Assuming 8 = 6,300" absolute, we have 

and 

and hence 

The foregoing considerations can also be applied to the earth. Assuming 
an average surface temperature of 15°C o r  288" abs., we see that the earth 's  
central fire and the difference in atmospheric absorption between infra-red 
and visible light account for only 32.4O, that is ,  about 12y0. Therefore, the 
conditions of our life on the earth 's  surface depend to a much greater  degree 
on the sun than on the earth itself. 

Life would contique on earth even if i ts  inner central heat were used up, 
provided that the sun continued to  shine in the sky. On the other hand, if 
the sun were gone, life on earth would be impossible on the basis of the 
internal heat alone. 
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Let us  ngw consider a plane disk of diameter D which i s  continually 

oriented normally with respect to  the solar  radiation and which i s  backed 
by an absolute nonconductor of heat. The disk will receive an amount of 
heat 

and radiate an amount 

The condition for  equilibrium i s  

that is ,  

At the distance of the earth this gives 

If the earth always turned the same side toward the sun, and if there was 
an excess of 32.4"C a s  a result of the factors indicated above, then at a 
point on the earth 's  surface where the sun was always at the zenith the 
temperature would be of the order  of 120°C and the s e a  would boil there. 



Now let us calculate the temperature 7 ,  on the other side of the earth. 
Below the surface of the earth, the temperature increases by lo for each 
30". The average conductivity of the sarface rock i s  300 -1  o - ~  cgs units. 
Therefore the heat ,flow per  cm2 will be 

Stefan's law gives 

and thus 

Ih this case' the entire atmosphere (with the excep t i~n  of helium and 
hydrogen) would be frozen, and no form of life would be possible. 

Note. The obtained values of 8 8 O  and -244" should correspond approxi- 
mately to the extreme temperatures on the lunar sdrface, on the side toward 
the sun and directly opposite, taking i d o  account the slowness of the rotation 
of this body. 

Next let us  assume that half the s p h e r ~  is cgvered with a layer of 
66 oxidized copper, having a radiating capacity ks0.85. The other half is 

covered with a layer of polished aluminum (k1=0.13). If the latter surface 
is turned toward the sun, tkien it absorbs an amourit of heat 

aria radiates an amount 

xL9 q,'=T k ' o .  Tq4. 

The other half will radiate an h o u n t  

JTDZ 
q,' =7f- ko . T,'. 

The condition for equilibrium is 

9=9l'+q2' 

Tm4 = g4 L= Ik',,, F$j Ir-t-k' 8~ k f k  

and hence 



In our case 

If the blackened side i s  turned toward the sun, then we interchange k and 
k1 in (248) to  obtain 

Consequently, near the earth it i s  eas ie r  to bring about cooling than heating. 

Vicinity of Venus 

Now let us consider what would happen to a spherical spaceship near the 
planet Venus, which lies at an average distance from the sun equal to  0.72 
of that of the earth.  The solid angle subtended by the sun a s  seen from 
Venus i s  

From formula (230) we obtain 

which i s  a moderate temperature. However, the temperature due to the 
internal heat of Venus must be added to  this value. Since the internal heat is  
probably of the same order  as  that of the earth, the average temperature at 
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and the formation of large clouds. This conclusion is in accordance with 
telescopic observations and, in particular, with albedo measurements. 

I should mention in passing that it i s  quite unlikely that Venus always 
turns the same side toward the sun. If we multiply the temperature 
corresponding to the ear th ' s  distance by this same factor 1.1787, then we 
obtain 426" abs = 153°C. As indicated above, another 32" must be added to 
this value, so  that the temperature of a place where the sun i s  at the zenith 
will be 

a value quite different from the temperatures at the earth. 
The temperature at a point diametrically opposite to  this otle i s  difficult 

t o  determine, since it depends on the heat provided by the internal fire of the 
planet. Assuming this heat to be twice that of the earth, we obtain a value 
of 35" = -238°C. Under such conditions almost the entire atmosphere should 
descend and solidify on this side of the planet. However, observations 
carried out during a transit  of Venus ahead of the solar disk have shown 
that it possesses an atmosphere which i s  denser than ours, and in such an 
atmosphere the refraction will be almost twice a s  great. On the other hand, 
the albedo of the planet corresponds to a layer of freshly fallen snow-or to 



clouds, s o  that Venus is most  l ikely covered by a nea r ly  solid cloud 
cover.  It m a y  be that  o u r  ea r th  would have a s i m i l a r  appearance if i t  were  
viewed f r o m  above. 

Such consideratjons lead us  t o  believe that  the  days and y e a r s  on Venus 
a r e  different f r o m  those on ear th .  In o r d e r  fo r  the  planet t o  have the  
appearance which is observed, it must  ro ta te  on i t s  axis  with a velocity which 
is at l eas t  equal  t o  that  of the ear th ,  but which is probably considerably 
higher.  

Returning now t o  our  spaceship, le t  u s  determine the  minimum and 
maximum tempera tu res  using formulas  (249) and (250), with T replaced by 
T,, . We obtain 

Tv, = 216.1' = - %.go C 'and To,= 3452i0 =+ 72.5' C. (254) 

This  t ime  the  passengers  would have no trouble keeping warm,  and they 
would even have t o  take specia l  m e a s u r e s  to  keep f r o m  being cooked. 

Vicinity of M a r s  

In the  vicinity of M a r s ,  which is 1.52 t i m e s  as f a r  away f r o m  the  sun as 
the  ea r th  is ,  analogous calculations give 
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In th i s  case  the passengers  would have t o  take specia l  m e a s u r e s  t o  keep 

f r o m  freezing. The wal ls  of the  spaceship  would have t o  be impervious to  
heat, and a heating s y s t e m  would have t o  be  provided inside the ship. 

I should mention that  Mars ,  with a d iamete r  considerably s m a l l e r  than 
that of the  ear th ,  should a l s o  have l e s s  in ternal  heat as well. Living con- 
ditions on th is  planet will depend a lmost  ent i re ly  on the  s o l a r  radiation.  
The  average t empera tu re  on M a r s  will be around 65°C below zero ,  even 
taking into account the  effect of the  a tmosphere .  

The question a l so  a r i s e s  of whether the Martian polar i ce  is not carbon- 
dioxide snow [ d r y  ice] r a t h e r  than water .  Actually, because  of the  lower 
gravi ty  at the  s u r f a c e  of Mars ,  the  l ighter components of i t s  a tmosphere  m a y  
escape into space,  and water  vapor is a v e r y  light gas.  In any case ,  the  
a tmosphere  of th is  planet is known t o  be  quite thin. If M a r s  did not rotate,  
then the  side toward the  sun would have a t empera tu re  of 

However, it makes  one rotation e v e r y  24 h r  37 min,  and the  la tes t  m e a -  
su rements  give the following t empera tu re  for  the  sunny side:  



Vicinity of Mercury 

Analogous calculations give the following temperatures in the vicinity of 
Mercury: 

T,, = 40g0 = +136'C 

T,,,,.,,, = 239.5' = + 20.5' C. 

The spaceship can still fly here, with just its polished side facing the sun. 
A ship with a shape s imilar  to that of an ar t i l lery shell would be able to  
present a minimum profile to the sun. If certain precautionary measures 
were taken, it might even be able to approach closer to the sun. 

PHYSIOLOGICAL EFFECT OF ABSENCE OF GRAVITY; 
ARTIFICIAL ACCELERATION 

In my  1912 report I indicated some possible physiological effects of the 
reduction or  elimination of the gravitational field which would be experienced 
by passengers in a spaceship. Here it will be appropriate to  consider an 
e r r o r  committed by Jules Verne in his novel "From the Earth to the Moon. " 
Verne assumed that, i f  they survived the launching, the passengers would 
continually experience a feeling of normal gravity, except when they arrived 
at the "neutral point, " where the attractions of the moon and earth a r e  equal. 
At this moment they would suddenly float up to  the ceiling of the spaceship. 
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Actually, at the very beginning, during launching, the passengers would be 

crushed against the floor of the ship, and then, when the projectile emerged 
from the cannon, they would be flattened against i ts ceiling, since it would 
strike the atmosphere with a terr i f ic  velocity. 

Let us assume, however, that the projectile i s  not stopped by the resistance 
of the atmosphere. In this case, after having been killed twice, the 
passengers would be subjected to the conditions of falling in a vacuum, even 
though their vessel i s  traveling at a great velocity. The sensation experi- 
enced during falling does not depend on the velocity, but only on the accelera- 
tion, When a body is in f ree  flight, that is ,  when it i s  not acted upon by any 
external force, living beings inside of it will have a feeling of falling, 
regardless  04 the direction and velocity of fall. 

Even without leaving the region of te r res t r ia l  gravity, we may be aware 
of an annoying feeling when we speed up o r  slow down in an elevator. 
Breathing i s  retarded and the feeling i s  given that, if it were to continue 
thus, the heart Would stop a s  well. Future interplanetary t ravelers  will 
find little consolation in the fact that, although their hearts may continue 
to  work, their breathing may cease. During a fall from a great height in 
the atmosphere (for example, when a parachute does not open for a long time), 
the sensation of falling cannot long endure, since the fall is rapidly t rans  - 
formed into uniform motion by the a i r  resistance balancing the weight of the 
body. Although the fall continues, a person will not experience it, since 
there i s  no acceleratiofl. Only a strong a i r  current would be felt, and not 
the f;tlling itself, due t o  the absence of a gravitational field. 

Many of us a r e  familiar with the  disagreeable sensations which a r e  
experienced at the ends of ship during prolonged rolling of the sea,. It 
might be useful at this point to consider the reason for the feeling of normal 



weight, when each molecule of the body is  located in a gravitational field; 
if a molecule does not move, it is just because it is connected to adjacent 
molecules. To put it simply, the sensation of weight consists in  our feeling 
that the head presses down on the shoulders, the shoulders on the back, the 
body on the legs, the legs on the feet, and the feet on the ground, which res i s t s  
this pressure caused by the acceleration of gravity. 

If the support of the earth were taken away, then each molecule and each 
organ composed of these molecules would be free to react  to the acceleration 
of gravity, and they would all  begin to  move with the same velocity. The 
interaction of forces inside the body would cease, and, to  put it simply, the 
head would no longer press  down on the shoulders, the shoulders on the back, 
etc., and the legs would not be supported by the earth,which we have assumed 
to  be gone. 

There will apparently be a particularly marked effect on the hydrostatic 
system of the. semicircular canals of the ears ,  which serve  to orient the 
organs of the body and which a r e  directly related to the sympathetic nervous 
system. 

Consequently, the effect of the absence or  marked weakening of gravity 
should be considered very seriously. It is to be expected that persons who 
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"spacesickness. " Back in 191 2, in the hope of protecting space t ravelers  
from the r i sk  of the absence of gravity, I considered creating a gravitational 
field using the engine of the spaceship. The passengers would then stil l  
have the sensation of normal weight. At that t ime I was not yet familiar 
with the work of Einstein, whose principle of general relativity demonstrates 
the equivalence of fields of gravitation and acceleration. 

It is interesting to  note that during the transition from travel  on the 
ground to aviation, and then to astronautics,< we pass accordingly from 
transportation at an arbi t rary variable velocity to  transportation at a 
constant velocity, and finally to  transportation at a constant acceleration. 

I have already mentioned that this motion at constant acceleration 
requires the expenditure of a great deal more energy than in the case of 
free flight from the earth. In addition, I have assumed that, once the space- 
ship has reached a given height, it will be able to  continue without any 
thrust.  This moment of transition also presents a danger from the 
physiological point of view. However, I was unable to suggest the solution 
to  this problem, namely to  reduce the acceleration gradually using the 
engine. In this way an organism gradually becomes accustomed t o  the 
transition. This solution will be verifiable, however, only when we have at 
our disposal atomic engines and interplanetary spaceships, which, unfortu- 
nately, i s  stil l  fa r  in the future. 

SPACESHIP MANE WERABILITY 

This subject was touched upon only very briefly in my previous report, 
because of the limited volume of the paper. However, it is of great interest. 
A projectile will follow a rectilinear trajectory only if the resultant of all  
the external forces acting on it has a constant direction and passes through 
its center of gravity. 

* This term was proposed by J.H.Rosny. 



In our case the resultant of the thrust and the reaction of the spaceship 
must at a l l  t imes  pass through the center of gravity of the ship. However, 
this condition will never be satisfied with mathematical precision, and s o  
the ship must be provided with controls. 

My first  idea was to  equip the ship with a reaction engine, which could be 
turned to any side with a control stick, a s  desired by the pilot. In this case, 
in contrast to  airplane controls, the control stick can be moved automatically, 
with the aid of a pendulum. For example, when the rocket deviates from i ts  
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Naturally, if the thrust force passes outside the center of gravity of the ship, 
the latter will change position due to the torque, and the trajectory will bend. 
Such deviations can be carr ied out at will, by adjusting the electrical contacts 
of the pendulum in such a way that the equilibrium position of the latter does 
not correspond to the direction of thrust,  parallel to the velocity at a given 
moment. 

In order  to  keep the ship from rotating about the direction of i ts  flight 
velocity, it i s  possible to  make use of tangential rockets. If the ship is so  
constructed that it has screw threads on i ts  surface which impart to it a 
s imilar  rotation in the atmosphere during the upward flight, then with the 
aid of the above rockets it will be easy to prevent this rotation. 

Finally, if no initial rotation takes place, these rockets can be used to  
turn the ship through some desired angle, a result which can also be 
accomplished using an internal electric motor with a flywheel having a 
sufficient moment of inertia. To turn the motor on, the ship begins t o  
rotate in the opposite direction, the angular velocities of the two rotations 
being inversely proportional to the corresponding moments of inertia. When 
the motor stops, the rotation of the ship ceases a s  well. During such an 
operation, friction between the rotor and the stator does not interfere. 

It i s  difficult at present to  predict just what features a motor utilizing 
the splitting of atoms will have. It may be that other methods for controlling 
the ship will be necessary, such a s  the use of several  reaction engines, 
distributed outside the ship's axis of symmetry (for instance, around a circle 
of given diameter). One of these engines could be made to run faster and 
the others more slowly, etc.  

Whatever the case may be, a spaceship in a vacuum will not be helpless. 
The laws of mechanics show clearly that a thrust can be imparted to it and 
that it can be maneuvered, in the same way a s  vehicles on the ground, in the 
water, and in the air .  The main task will be to  develop new powerful 
sources of thrust.  

Let us assume, however, that such sources a r e  available. What energy 
expenditure will be necessary and possible 7 The solution of the f i rs t  
problem depends on the solution of the second. A body falling to a planet 
from infinity develops some terminal velocity of descent. The general law 
describing i ts  motion is 

Fo r  y=O 



For  the case of the earth, at the limit we obtain 

This is the velocity which must be imparted to a body, launched toward 
the zenith, in order  for  it not to  fall back to  earth (air resistance not taken 

72  into account). As the body disappears to  infinity, i ts  velocity gradually 
decreases, going to  zero. 

Next let us calculate the work performed in such a case by a 1 -kg body. 
If, in general, the weight of a body at the surface of a planet of radius a 
i s  p, then this work will be 

For a te r res t r ia l  radius of 6,371 km, the amount of work done by a body 
with a mass of 1 kg will be 

o r  14,940 cal. 
We recall  that 1 kg of powder (fulmicoton et chlorate de potasse) produces 

1,420 large calories, 1 kg of a hydrogen-oxygen mixture in the correct 
proportion produces 3,860 Cal, 1 kgof atomic hydrogen produces 34,000 Cal 
(that is eight t imes a s  many a s  the preceding mixture), and 1 kg of radium 
produces 2.9. lo9  large calories (that is ,  85,000 times a s  many). Finally, 
according to  relativity theory, matter is just a stable form of energy with 
enormous amounts of the latter stored up in it. Thus, 1 kg of matter may be 
equivalent to 9.17 1 015 kg/m o r  21.5 . 1  012 large calories (1 5 billion times 
a s  many calories a s  the powder mentioned above). 

When such energy sources a r e  finally at our disposal, the conditions of 
travel will be quite different, and the contrast will be reminiscent of that 
between present-day sleeping ca r s  and the f i rs t  simple railroad cars .  

However, if we had available just an Hz+ 0 mixture, then I do not see how 
space flight would be possible, since the acceleration T=lOg at launching 
would be dangerous, and during the return there would be the additional 
danger of burning up in the atmosphere. Even under the best circumstances 
the mass ratio would be 

which i s  not feasible. 
If we could use atomic hydrogen, on the other hand, then, according to 

Table 5, a spaceship would be practicable, although there would be difficulty 
involved. In this case, however, it would be impossible to  imagine an 
unmanned spaceship with automatic instruments; only a spaceship with a 
pilot would be possible. It would be more prudent perhaps to  keep r under 
2 g, so  as  to avoid the danger of heating up during the upward flight. In 
order  to  provide braking during the descent and control during flight, the 
mass ratio must be 20 o r  25, which i s  rather difficult to achieve. But 
perhaps by that time a more suitable material will be available for the 
structure, such as metallic beryllium. 



Now let us imagine such a flight. We assume an acceleration f = 2 g  
and a velocity great enough to overcome te r res t r ia l  gravity, namely 9 km/sec.  
at a height of 3,185 km. The lat ter  height will be attained in 12min 30sec.  
Subsequently the spa'ceship will fly just under the influence of the acquired 

73 velocity. This is the boundary at which a sudden termination of thrust 
causes the feeling of a loss  of weight, together with the physiological 
phenomena mentioned above. Fo r  the time being, I assume that we have 
safely survived these. Now our ship flies accordipg to  the laws of universal 
gravitation, just like any bther celestial body. 

The duration of the flight will be shorter  o r  longer, depending on whether 
the ship passes-.close to  o r  far  from the moon. Half the duration of the 
flight will naturally be longer than the time it would take to  fly to the moon 
along a straight line. However, a study of the latter case aids us in evaluat- 
ing a flight along a curved trajectory. 

Beginning at the moment when the thrust ceases, the ship slows down in 
accordance with the law 

At the point where the attractions of the moon and earth a r e  equal, this 
velocity drops t o  a minimum: 

During the approach to the lunar surface, it increases to 

On the other hand, the velocity of free fall to  the moon from infinity i s  

The time required to t raverse the second part of the path can be 
calculated approximately if we neglect the influence of the moon, which is 
comparatively insignificant. This time will be equal t o  that required for 
f ree  fall  along the path from the moon to  the point of termination of thrust: 

Consequently, the flight over the f i rs t  half of the path will take a time 

A flight to  the moon and back will thus take about 4 days. 
The velocities calculated above seem to  be enormous in comparison with 

those t o  which we a r e  accustomed, but they a r e  quite modest relative to the 
velocities of celestial bodies. The maximum velocity at the end of the thrust 
period will be 33,000 km/hr. In the vicinity of the moon it drops t o  
7,000 km/hr, which i s  a very  modest value. 

On the return path retardation of the ship should begin at the point where 
the thrust ceased earl ier ,  that is,  at a height of 3,200 km. A parachute should 
be employed only very near the earth (at a height of around 10 km). 



74 In spite of the fact that we can now look forward to utilizing the energy 
of H+ H = Hz, still we should limit ourselves to just a study of the moon. 
This, however, constitutes a great step forward, although it involve6 
enormous danger. , I t  should not be forgotten that we assume a successful 
conversion of atomic hydrogen t a  liquid form and a retention of it in this 
state without any danger of explosion. These a r e  things about which nothing 
is known as yet and which, unfortunately, may well be impossible. 

' Before we can dream about the future, we must wait until physicists have 
learned more  about atoms and about methods of utilizing them. The 
methods being used at present a r e  s t i l l  very primitive and of almost no 
value, except for the experiments of Rutherford, who has succeeded in 
splitting some nitrogen atoms. Althouglri this result  is  in itself quite 
noteworthy, stil l  we have a long way to go before it will be possible t o  use 
atomic energy in any significant amounts. 

The nitrogen atom which was disintegrated in this way had a diameter of 

and a mass  of 

It i s  clear from this what a long way we stil l  have to go. As yet it i s  
quite difficult to  foresee just how atomic energy will be used. Will an 
almost unlimited supply of such energy be available in some reservoir ,  to 
be used unendingly? Or will this energy be s o  inaccessible that we will 
not be able to  affect it directly, s o  that i ts liberation will require a certain 
amount of work? I do not know what methods will be used, but I hope 
nevertheless that one day we will possess these sources of the kinetic 
energy of minute particles, which possess such colossal velocities close to 
the speed of light. Although neither the energy of radium nor an energy 
10,000 times greater  than the energy of that substance i s  as yet available, 
stil l  it is  to be expected that we will possess such energies in the immediate 
future. 

Let us assume that a spaceship escapes with r=l.lg and that it flies for 
37 min, after which it acquires the required velocity in a direction straight 
toward the moon. In this case the velocities will be almost the same a s  
those calculated above. In order to keep the ship from crashing on our 
satellite, counterbursts of the rockets should be initiated at a height of 
250 km above the moon, according to approximate calculations. This will 
turn the ship s o  that i ts  bottom i s  toward the moon (it was stated earl ier  
how this i s  done). The retardation will last for several  minutes, s o  that 
the approximate total flight time will be 

The return to the earth takes place in reverse  order,  and it will be much 
easier ,  since the attraction of the moon i s  only 0.165 of that of the earth. 
This means that a ship with a weight of 1,000 kg on the earth weighs only 

75 165 kg on the moon. Fb r  the return flight the ship must once again be turned, 
with a resumption of deceleration, a s  described above. A parachute i s  used 
only very near the earth, when the velocity has been greatly reduced. 



Assuming that the engine will operate for only 75min and that the space- 
ship weighs 1,000 kg at launching, the fuel needed will weigh 300 kg and the 

exhaust velocity will be 150,000 m/sec .  
This indicates that we a r e  stil l  fa r  from 
our goal, even if atomic hydrogen is used. 
It should be noted, by the way, that the 
use of an atomic engine will involve the 
ejection of gas of a corresponding tem- 
perature. However, even for  the lightest 
substance, atomic hydrogen, the exhaust 
velocity will require an initial temperature 
of 315,000°, while for other substances it 
will exceed 2,000,000°. 

It would be more expedient if an 
atomic engine could be made to eject 
electrons o r  positive ions directly. 
It i s  interesting to consider what the 
power would be in such a case, and we 
obtain a value of around 450,000HP. 
The problem i s  to construct an engine 
with this power for a total spaceship 
weight of 1,000 kg. We assume an engine 
efficiency of 30/,, which i s  not too bad. 
The exhaust velocity for ions will be 
considerably lower than 150,00Om/sec. 
A 1,000-kg ship will require much less  
than 300 kg of fuel, but at the same time 
its efficiency will not be a s  high. 

Let us assume that we star t  the 
engine and that, after attaining the critical 
velocity, we wish to reach and maintain 
a velocity of 10 km/sec. Our f l i gh t i s  
directed toward one of the planets closest 
to  the earth, during its nearest approach 

FIGURE 8. Rocket of Esnault-Pelterie to us. The length of such a trip will be: 
on  display a t  interplanetary exhibi- to Venus: 4 2,000,000 km in 48 days 14  hr; 
tion i n  bloscow in  1921 [Figure added to M ~ ~ ~ :  78,000,000 km in 90 days 8 hr .  
by Rynin]. It should be noted that the amount of 

work required for such a journey will not 
be much greater  than the work done during the departure from the 

76 earth. Actually, once the craft is  fa r  enough away to be out of the 
earth 's  considerable gravitational field, the flight will proceed by 
inertia alone. 

Consequently, the problem i s  mainly to overcome te r res t r ia l  gravity, 
and once this has been accomplished it will be comparatively easy to 
reach both distant and nearby planets. However, and this i s  very 
important, the spaceship must be hermetically sealed and living 
conditions aboard it must be suitable throughout the t ime of thk flight. 
Moreover, conditions must be such that the absence of a gravitational 
field will not be injurious to the living organisms aboard. 



If the organism cannot bear such [gravityless] conditions, on the other 
hand, it will be necessary to create an artificial gravitational field, by using 
the engine to produce a constant acceleration. If a field corresponding to  
that of the earth is set  up, then the passengers will not experience any 
discomfort, no matter where they may be. However, such measures will 
naturally necessitate the expenditure of an enormous amount of fuel energy, 
and they will also postpone even further into the future a flight which is  
already difficult under present conditions. 

Let us use the law of motion for a body acted upon by a constant thrust 
during flight away from the earth. We assume that, until the moment when 
it develops the maximum velocity between the moon and the earth, the 
spaceship has an acceleration equal to l1Jl0 of te r res t r ia l  gravity. All the 
maneuvers will thus be carr ied out at this acceleration. The influence of 
the moon is  small enough to  be neglected. Under such conditions, calcula- 
tions show that the craft should be turned when it i s  29.5 earth radii away 
from the earth, when the velocity i s  61,700 m/sec.  Afterward we begin to  
decelerate it with a force equal to i t s  t e r res t r ia l  weight. 

The time required to reach the moon i s  

t=3k27"'. 

In this new case, assuming a 1,000-kg spaceship of which 300 kg i s  fuel, 
the work required i s  67.2 . 1  o6 callkg of propellant, that is ,  131 times as  much 
a s  in the previous case. Dynamite can provide only 1/47,300 of this power, 
while radium gives 43.2 t imes a s  much. The power needed is  

BS?.l(P* = 4 760 000 HP. 

Let us assume that we use this means to  fly to  the nearest planets. The 
durations of these t r ips  and the maximum velocities will be: 

for Venus: 42,000,000 km in 35 hr 40 min; 643 km/sec = 2,320,000 kmlhr; 
,, for Mars: 78,000,000 km in 49 hr  20 min; 885 km/sec = 3,180,000 krn/hr. 
1 1  

At first  glance, these velocities may seem to be astonishing. However, 
some celestial bodies, such a s  Halley's Comet, have s imilar  speeds. 
Consequently, it is clear that only atoms can provide us with the required 
forces and velocities. 

Note. Figure 8 shows a general view of one of Esnault -Pe l te r ie t s  
rockets. This model was on display at the Interplanetary Travel Exhibition 
in Moscow in April 1927. It is not known to  us what data were used for the 
construction of this model [note added by Rynin]. 

Chapter V 

INTER EST IN INTERPLANETARY T R A V E L  

We should not expect to  discover any new elements on our neighboring 
celestial bodies. Helium, which was detected on the sun when it was stil l  
unknown here on earth, was later found on our planet a s  well, and, from the 
chemical point of view, the sun does not offer us anything which we do not 
have in the laboratory. Furthermore, since we a r e  now familiar with the 



laws of radioactivity, it can be concluded that on bodies having the same 
origin as the earth the distribution of different elements should be almost 
the same. Not only i s  there little hope of discovering new elements, but 
those which are  raf-e on earth cannot be expected to  be more  prevalent 
either.* 

Why should we be interested in visiting other celestial bodies ? 
Similar questions naturally were asked by sceptics, who accompanied them 
with their customary sarcast ic  smiles, in times past when steam power, 
the automobile, and, within my own memory, aviation came on the scene. 
Perhaps they feel that "this time the situation i s  somewhat different." 
Naturally it is  "different. " However, I will answer these sceptics 
just as ,  t ime and again, they have been answered in the past. Scientific 
studies which appear to be completely useless have a way of ultimately 
turning out to be useful in some quite unexpected manner. In addition 
to  such unforseeable advantages, however, interplanetary travel is  of 
very great interest. 

ARE OTHER PLANETS INHABITED ? 

Life i s  the subject which interests us the most, since we ourselves a r e  
living beings and must compete with other beings for survival. However, 
we a r e  only familiar with life in its t e r res t r ia l  forms. If we became 
acquainted with extraterrestr ial  forms of life, would this not widen our 
understanding of life ? Would we not find answers to certain a s  yet 
unresolved questions ? Naturally, the answer is yes. 

WHAT IS LIFE ? 

I think that the following definition i s  a satisfactory one: "Life is  a 
process by which certain chemical compounds of 'living matter1 grow due 

78 to  the intake of various external chemical compounds." Clearly, the basic 
principle of life i s  assimilation; other factors a re  secondary. The growth 
and reproduction of cells, which at first  glance seem to be very important, 
a r e  seen, after some reflection, to be instead a result of an equilibrium of 
osmotic pressures.  Prof.  Leduc has succeeded in reproducing quite similar 
phenomena in compounds which could not be considered "living matter," 
since they did not exhibit actual assimilation** o r  unlimited reproduction. 

The field of "organic chemistry" originally was so named in order  to 
demonstrate the difference between it and the chemistry of minerals.  Now, 
however, this science is just the chemistry of carbon, and, although it is  a 
complex field, it obeys the general laws of chemistry and physical chemistry. 

The number of natural organic substances which can be produced in the 
laboratory has r isen considerably since Marcellin Berthelot f i rs t  used a 
voltaic a r c  to  convert acetylene into benzene and obtained, with the aid of 

* This is not completely true, since the densities of the planets decrease from Mercury outward, which is 

similar to the situation in a nebula, the center of which is more compressed. 
* *  Their chemical composition was altered slightly by ,the absorption of water, which caused a volume increase 

or "growth." 



"mineral" carbon and hydrogen, a certain elementary substance of similar 
nature. He left it to his son, Daniel Berthelot, to car ry  out an analogous 
experiment using ultraviolet light. The beginning of life on earth may well 
have come about a s  a result  of reactions of this type, which occurred under 
the influence of light at a time when the physical conditions on the earth 
made these, at present impossible, conditions possible. 

Consequently, we a r e  indebted to our sun for originating, a s  well a s  
maintaining, life. In any case, this explanation sees  the phenomena of life 
as being very unusual, and a s  being a consequence of unique conditions. 
These conditions led to  the creation of a substance with special properties, 
and all living beings ultimately developed from this basic substance. F rom 
such a point of view, it would seem highly unlikely that the same exceptional 
conditions could have existed in some other place, and it is not to be expected 
that future interplanetary t ravelers  will find life on other planets. 

The idea that the phenomena of life and those of chemistry and physics 
a r e  completely different has come to dominate our minds s o  much that it 
has seemed necessary t o  explain the origin of life on earth either as an act 
of divine will o r  a s  an importation from another system, a s  proposed by 
Svante Arrhenius. Arrhenius's theory appears to solve the problem, so 
let me  consider it here in some detail. 

It i s  known that when light encounters an obstacle it exerts  on it a 
pressure proportional to  the amount of luminous energy per  second received 
at the place. By our standards this pressure i s  very minute, but for very 
small particles the ratio of the particle surface to the mass  becomes greater  
and greater,  until finally the light pressure exceeds the weight of the particle. 79 

Arrhenius considers plant seeds and spores, which a r e  lifted into the 
upper atmosphere by a i r  currents,  and which, because they weigh very little, 
can escape into interplanetary space and reach other worlds. In this way, 
life may be transported into outer space by light. Apart from its poetic 
attraction, this theory i s  based on the concept of vitalism, which I have 
referred to above. According to  the vitalistic point of view, life i s  a unique 
phenomenon depending on special profound causes, and it develops on its 
own, having nothing in common with other phenomena. However, if 
Arrhenius's hypothesis i s  subjected to mathematical analysis, there a r e  
numerous objections to  it. 

1. Let us consider a spherical particle composed of a white substance 
which reflects 60% of the incident light; the particle i s  assumed t o  be at a 
height of about 200 km. Calculations show that the solar radiation will 
exert on a particle a pressure equal to the particle weight for diameters not 
exceeding 0.00000048 mm. It will be seen below that this size corresponds 
to  molecules which, although large, a r e  not complex (chloroform, benzene). 
All known seeds which a r e  visible with a microscope have diameters at 
least 300 times a s  great, and conditions a r e  not such that they a r e  able to  
escape from the earth into space. 

We do not know of any seeds the size of chloroform molecules, and it 
appears to me that none could exist. Such a small mass  would not include 
enough atoms t o  make up an organic substance as complex a s  protoplasm. 

2. If we consider spores 0.0002 m m  in diameter, on the other hand, we 
see  that they can ascend into the atmosphere in two ways: by Brownian 
movement or  via  a i r  currents.  Calculations show that, if the entire earth's 
surface were covered with such spores to a density of one per  mm2 (which 



would amount to 5.1 loz0, or  510,000,000,000,000,000,000 spores), the 
Brownian movement would lift only 34 spores per  million to  a height of 
1 mm. Even though this i s  an impressive number of spores 
(17,300,000,000,000~ OOO), as we go higher the number drops very rapidly. 
For  instance, only one particle will be lifted 4.8 mm, lo-'* will be lifted 1 cm, 
and 10-400'000~000 will be lifted 200 km.* 

Consequently, it cannot be assumed that Brownian movement will lift 
even one seed into the atmosphere. If we consider particles with diameters 

a s  great (that is, which weigh 1/27,000,000 a s  much), we obtain a distribution 
with height s imilar  to that of a gas, which is quite natural, since such 
dimensions a r e  already the dimensions of molecules. However, f rom the 
point of view taken by us, this case i s  of no interest,  because it is  absolutely 
impossible for living seeds to be a s  small a s  this. 

Air currents can lift seeds of normal dimensions very high, but the 
number of seeds diminishes quite rapidly with height. Unfortunately, I do 
not possess accurate data on the number per cm3, but the experiments of 
Pasteur show that their number at the levels of a field, at 850m in the Jura 
Mountains and at 2,000 m at Montanvert, and at the shore of a sea covered 
with ice, will be, respectively, 8.5 and 1. Assuming a power law, we obtain 

Thus at 11,000m we have "-= 0.00125 (we will see later  why I have chosen no 
this height),and at 200,000m we have 1.6 Since the a i r  of a field 
does not contain many seeds per  cm3, there will definitely not be any at 
200 krn (perhaps one for the entire earth).  

It should be noted that Pasteur indicated the presence of strong winds 
at lower places, with the exception of Montanvert. The proportion given 
should actually thus be higher there, so  that the number of seeds per unit 
volume at a height should be even less  than the number on a mountain. 

The following should also be noted: up to  a height of 11,000 m the 
temperature variation obeys, albeit approximately, the adiabatic law, which 
means that the a i r  is mixed vertically. Above this level, on the other hand, 
the temperature remains unchanged, which obviously excludes the possibility 
of vertical currents.  Therefore, even assuming that seeds can be lifted to 
an altitude of 11,000 m, it would appear to be very unlikely that they could 
go any higher. 

3 .  Although any one of the foregoing objections rules out the possibility 
of seeds traveling into space, I would stil l  like to go a bit further and 
formulate a hypothesis. Let us assume that a seed of 1/1,000 the size ascends 
to  a height of 200 km, and that it i s  subjected to  a solar-radiation pressure 
equal to  its weight, which, let me repeat, will not be true. Then the particle 
falls at an angle of 45Oto the vertical. In order for the particle to escape 
from the earth, its diameter will have to be reduced to  l/l,oOO, o r  at least Yo 
l/lOo, but in such a case it would be smaller  than a molecule, o r  even than an 
atom, and repulsion could not take place. Interestingly enough, Arrhenius 
mentions this difficulty. 

* Actually, such a particle will experience only a very slight pressure; its size is not great enough to allow 

i t  to reflect or absorb light, and i t  can only refract it. Later I will mention this fact, which is unfavorable to 
Arrhenius's hypothesis. 



He writes that "if a spore 0.00016 mm in diameter has a charge of 5.10-I 
electrostatic units, then a field of 140 V/m2 i s  enough to overcome its weight 
and lift it. Such an electric field i s  typically observed at the earth 's  surfact 
in clear weather." However, at a height of 200 km, the atmospheric pressure 
i s  only two billionth's of the standard value, and above 60 km the a i r  is s o  
tenuous that it stops being a conductor. Thus the latter possibility is also 
eliminated. 

4. Although the barr iers . to  it a r e  insurmountable, stil l  I would like to  
suppose that a seed has left the earth and travels into space at an ever 

81 increasing velocity. Calculations show that, if it departs from the earth 
under a pressure equal to  i ts  weight, the greatest velocity it can attain will 
be 1,700 km/sec. It will arr ive a t  Mars with a velocity of 1,000 km/sec. 

What will happen if a seed enters  the atmosphere of a planet at such a 
speed? To find out, let us  make the following comparisons. Let us 
consider a spore 0.0002 rnm in diameter arriving at the earth from some 
other system. We assume that the solar  radiation imparts to  it a velocity 
of only 170 krn/sec. Calculations show that it begins to  decelerate markedly 
at a height of 200 km, and that this deceleration reaches a maximum at a 
height of 167 krn, where the force will be equal to  53,000 times the weight of 
the spore. It will stop completely at a height of 156 km. 

In order  to give some idea of the force of this retardation, let me just point 
out that at 171 km it amounts to 6,000 kW, o r  92,000 HP, per  gram. A particle 
with a diameter 1/300 as great suffers the same fate, but there is no reason t o  
repeat such calculations for i t .  In the following I will apply a different study 
method. The a i r  ahead of a moving projectile becomes compressed, and the 
indicated retardation can be attained for a pressure with an absolute value 
which is comparatively quite low, but which will be enormous compared to 
the pressure at the place in question. Moreover, for simple adiabatic com- 
pression, a i r  heats up t o  a temperature of 45,000°. It is easy to imagine 
what would happen to the projectile under such conditions, even if most of 
the heat developed were absorbed by the a i r  itself. 

We do not know the density of the Martian atmosphere, but it can be 
shown that, even if it i s  equivalent just t o  the te r res t r ia l  atmosphere at a 
height of 100 km (that is ,  0.000046 of that at the ground), any spore entering 
it would burn up. If the Martian atmosphere is even thinner than this, then 
a spore which does not burn up will probably disintegrate when it s t r ikes 
the surface. 

Consequently, the assumption of fertilization of the earth from Venus, o r  
of.Mars from the earth o r  Venus, has absolutely no basis in fact. In his 
memoir, Arrhenius did not consider these difficulties. 

5. Ultraviolet rays from the sun would inevitably kill any seeds which 
were not protected by an absorbing atmosphere. Arrhenius considers this 
and concludes that, in the absence of humidity and oxygen, some seeds would 
survive. However, the experiments on this do not seem t o  me to have been 
exhaustive, and, moreover, ultraviolet light is such a strong ster i l izer  that 
a number of corroborating experiments will stil l  be necessary in order  to 
show that it loses i ts  power under certain conditions. 

6. Arrhenius does not consider possible the arr ival  of seeds aboard 
meteorites, the surfaces of which become baked during the descent. But 
couldn't seeds be situated inside of deep pores, where the heat cannot reach 



them? I think that Arrhenius was correct  in rejecting this possibility, 
82 since the origin of a bolide is ,  in any case, catastrophic and any 

seeds in it would have burned up at the beginning. 
Finally, if they were hidden in deep crevices, seeds would inevitably 

catkh fire a s  a result of the violent retardation, and all  life on the surface 
of the bolide would thus be destroyed. 

On the other hand, Arrhenius assumes that seeds wandering about in 
space may encounter "dust particles 1,000 times larger ,"  on their way to  
the sun, and that, obeying the laws of attraction, the seeds may adhere to 
their surfaces and travel  with them. I confess, however, that I do not 
understand how a seed traveling at 1,000 km/sec can collide with a grain 
of dust without being smashed and becoming dust itself, o r ,  finally, what 
happens during an encounter between one particle going to  the sun and one 
coming from the sun. 

7. If seeds migrate from one celestial system to  another, they must 
exist in outer space for thousands of years  at a temperature of absolute 
zero (-273°C). How will this affect them ? 

Arrhenius i s  an optimist. He assumes that the simplest forms, and in 
particular spores, can stand very low temperatures and furthermore that 
the ra te  of chemical reactions decreases with temperature. And anyway, 
the retarded vital processes of the seeds a r e  slowed down even more,  so  
that for them "three million years  at a temperature of -220°C a r e  like a 
day at 10°C.. . I t  He cites a s  proof experiments at -252°C lasting 20hr and 
at -200oC lasting six months. However, the last 200 of cold a r e  more 
dangerous than the entire f i rs t  252O, since there is  a r ea l  difference between 
mo~ecular  motions whieh a r e  reduced t o  lJl2 and motions which a r e  halted 
completely; between eight months and three million years,  of course, the 
difference i s  even greater.  

8. Finally, I would like t o  offer one more objection, which has apparently 
not yet been put forward by anyone. Assuming that all the foregoing 
objections a r e  shown to be unfounded, let us consider what the probability 
would be that one of the seeds covering the earth 's  surface with an average 
density of one seed per  mm2 will succeed in getting to  some other world. 
This probability would seem to  me to  be zero. But let us assume that the 
particle has left the earth and is flying through outer space. 

I have already shown that it cannot fertilize a planet in our system. Let 
us suppose that it flies to  one of the s ta rs .  In order  to  determine the 
probability of an encounter with the s tar ,  we must find the ratio of the sum 
of all  the solid angles subtended by all the s t a r s  to  the total angle (that is, 
t o  4n ) .  

We can get an idea of this rat io by comparing the light incident on the 
earth from all the visible s t a r s  to  the light of a sun which would replace 
them. Fo r  the s t a r s  of a hemisphere this corresponds to  a brightness of 
92,000 suns. The probability will be of the order  of 1.7 . 10-13 to  4 - 10-15. 
However, let us go further and assume that a spore flies to  a s t a r  during the 
course of millions of years  spent at a temperature of -273°C. The light 

83 of the s t a r  will gradually slow the spore down and, under the influence of 
this pressure, it will describe a hyperbola about the s t a r  and fly for  stil l  
more millions of years  through the icy reaches of interplanetary space. 
If the s t a r  has cool satellites, an encounter between the seed and one of 
them i s  possible, but there will again be little certainty that conditions on 
the satellite will be suitable for  the seed to  live. 



However, first  it will be necessary for the orbital plane: of the satellite 
to pass through the path of the seed, and this i s  a lso of low probability. 
Finally, the satellite itself will have to situated in the path of the seed, 
another improbable,occurrence. 

A spore entering the atmosphere of the satellite must not burn up. Thus 
it has to  move obliquely in the orbital plane in the right direction, rather 
than directly toward the center of the satellite, and the velocity of the spore 
must equal that of the satellite in i ts  orbit. 

The probability that this  entire set  of circumstances will be realized is 
equal t o  the product of the probabilities of each of them, and this is, most 
likely, about the same a s  the probability that a brick will be lifted to the 
second floor of a building by Brownian movement. According to  Jean Perr in,  
we would have to  wait for  1010'~ years  before one instance of either of these 
phenomena would occur. Compared with this time, geological periods, and 
even the lifetime of the solar  system, a r e  negligible. 

If the number of seeds transported by light to  the surface of a planet 
were great,  and if at the same time the number of planets from which seeds 
could migrate were also great,  then very likely there would be same slight 
possibility that ArrheniuB1s theory is true.  However, a s  the foregoing 
shows, the number of such seeds is essentially zero, and Arrheniusls idea 
of panspermism i s  highly improbable. 

Moreover, according to  Arrhenius, two kinds of material exist in nature, 
living and nonliving, and I, personally, do not believe this. Each phenomenon, 
considered in one of i ts  characteristic forms, seems to be completely 
different from another. When Thales of Miletus noted that amber attracts 
straw when rubbed, he did not doubt but that other substances possess a 
s imilar  property, though to  a different degree. 

Even in recent years it was thought that radioactivity i s  just a property 
of radium. Now, however, it i s  assumed that any substance may be radio- 
active, even if our sensitive instruments cannot detect it. Very different 
degrees of radioactivity a r e  recognized, from substances 200,000 times a s  
strong a s  radium to  substances with 1/3,,0,,0 of the power of uranium. 

It is also difficult to  differentiate between animals and plants. Fo r  
instance, some plants (heliotrope, sunflower, o r  catchfly) a r e  able t o  close 
their leaves over a fly which settles on them, pierce it with their sharp 
pinnas, and eat it. If we consider simpler species, the difference becomes 
even less .  

We recognize differences between things solely on the basis of the theory 
of Certain probabilities, however, a r e  so  great that they 
correspond in practice t o  certainty. Fo r  instance, I release a pencil that I 

84 have been holding in my hand. Will it fa l l?  The kinetic theory of gases 
replies: it is not definite, but the probability is s o  great that it can hardly 
be expressed using the decimal system. Thus I consider the falling of the 
pencil to  be practically certain. 

With respect t o  the beginning of life, I would reason in a similar manner 
The probability that such a widespread phenomenon as life had a chance 
beginning is very  low. Consequently, with a low probability of erring, 
I assume that such a beginning is  just a s  common (exceptionally uncommon) 
as life itself. 

Before the microscope was invented, people assumed a spontaneous 
genesis of living species, since they could not view them on a small  scale. 



After i t s  invention, on the other hand, they began to  deny this possibility, 
even though it was still not possible to see all  the species. There is a 
remarkable analogy between living beings and crystals.  (Here Esnault- 
Pelterie devotes ,a page to  this [Rynin]). 

The s izes of the most minute particles making up minerals,  living beings, 
and other objects are:  

diameter of electron 0.000 000 000 00372 mm 
diameter of hydrogen molecule 0.000 000 21 7 mm. 

The formula for the hydrogen molecule i s  H-H; the oleic acid molecule is 
one of the largest,  with a length of 0.0000022 mm, although even larger  
molecules exist. The s izes of the smallest bacteria (B. i nf l u  e n z a e )  range 
from 0.0002 to 0.0005 mm, that i s ,  they a r e  100 t imes greater  than the 
foregoing. The largest bacteria (B. B ii t s c h 1 i i)  have the following 
dimensions: widths from 0.0004 to  0.005mm and lengths from 0.050 to 
0.060mm. Living cells range from 0.001 to 0.02mm. The smallest 
visible bacteria have diameters 100 million t imes greater  than electrons 
(for comparison, we should note that the diameter of the earth i s  a mere  
6 million times greater  than we are) .  These bacteria, however, a r e  only 
100 t imes greater  in linear size than a large organic molecule. 

All the foregoing pertains to  the linear dimensions. The corresponding 
masses  (in grams) a re :  

Electron 
Hydrogen atom 
Hydrogen molecule 
Nitrogen atom 
Oleic acid molecule 
B. i n f l u e n z a e  min. 
I !  I I  m a .  
B. B i i t s c h l i i  min. 
I  I l I max. 

0.000 000 000 000 000 000 000 000 000 9 
0.000 000 000 000 000 000 000 001 66 
0.000 000 000 000 000 000 000 003 32 
0.000 000 000 000 000 000000023 3 
0.000 000 000 000 000 000 000465 
0.000 000 000 000 008 
0.000 OGO 000 000 125 
0.000 000 000 008 
0.000 000 001 5 

This table gives an idea of the difference between the weights of the 
oleic acid molecule and B. i n f 1 u e n z a e;  the former weighs only ~/aomooo 
of the latter.  
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To show the complexity of a molecular cell, I will make a comparison 

with a nitrogen atom, which weighs 14 t imes more than a hydrogen atom. 
This choice was dictated by the fact that the atomic weight of nitrogen i s  
equal to that of the CH, group, which is usually the basic element of organic 
substances. The above-mentioned bacilli may contain the following numbers 
of atoms or  groups of atomic weights, taken as a basis: 

B a c i l l u s  i n f l u e n z a e  min. 343 000 000 
I  I  I  I  max 5 400 000 000 

~ . B i i t s c h l i i  min 345 000 000 000 
I  I  I  I  max 646 000 000 000 000 

If we take only the cell  nucleus into account, then this number can be 
divided by ten. However, even in this case a colossal number of combina- 
tions in the groupings of individual elements will be possible, even for  
12 varieties.* The latest discoveries indicate that even smal;er living 

* Here we omit half a page of unessential discussion of the compositions and properties of minute substances 
[Rynin]. 



things exist. Finally, if we assume that a further reduction of their dimen- 
sions i s  possible, then their compositions will also have to  become sim- 
plified, until, at the limit, their properties will approximate purely physico- 
chemical processes. ' Life continually reproduces itself, once it has 
originated in physicochemical phenomena; this theory is known a s  
"physicochemical aidiogenesis" (from the Greek WWS, meaning 
"eternal, I '  and ydrcEaq, meaning "origin"). 

In this way countless substances originate, perhaps in part under the 
influence of light. Some of these possess only normal osmotic properties, 
others have an increased sensitivity. Relative to  external interactions, 
development and further complication occur. Of the trillions of molecules 
s o  produced on the earth, almost all decay, but of these there will never- 
theless be many from which new species originate, and a new strain of 
living things. The process i s  analogous to  the transition from bacteria to 
plants and to  the higher animals, and it requires geological periods for its 
completion. 

If this theory is valid, then the existence of living beings on Mars and 
Venus enters the realm of possibility, and, although the chemical composition 
of such beings will be the same a s  on earth, other species may exist, but in 
essence they will be s imilar  to te r res t r ia l  beings, since the principles of 
their genesis were the same.  

To conclude this discussion, I should say a bit more about the means of 
transporting life from planet to  planet. Given the present state of our 
knowledge, it seems to me  that we will be able to visit our neighbors in 
the solar system only after several  centuries. Then we will introduce 
microbes there and, if these worlds a r e  fertile, the latter will reproduce. 

However, the reverse may have already occurred. Could not the 
Martians themselves have visited us several  hundred million years  ago? 
Are we not the descendents of them or  of their microbes ? I must admit, 
however, that this explanation seems to me to  be very unlikely. 
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C ONCL USION 

It i s  c lear  from the foregoing that we a r e  stil l  fa r  from achieving inter- 
planetary travel o r  even flying to  the moon. If it were possible to use atomic 
hydrogen as  a fuel, the only remaining problem would be to  construct an 
engine capable of operating at a temperature of at least 6,000°C and with a 
velocity of gas ejection of about 10 m/sec .  

What would be the weight of a manned spaceship with al l  the necessary 
equipment (for oxygen recovery, C02 absorption, etc.) ? How will an 
organism stand the absence of gravity? Will it not be necessary at all  
t imes to create an artificial gravitational field, and what portion of the 
earth's field should it be equal t o?  Will this not require an excessive 
amount of fuel? It may be that, in order  to reduce the required reserves,  
it would be advisable to anesthetize the travelers,  for instance, with a 
mixture of nitrous oxide (protoxyde dlazote) and oxygen, during the entire 
flight. Interplanetary t ravel  will be realized without any risk, once we have 
atomic energy at our disposal. 



Unfortunately, in spite of remarkable progress in this direction, namely 
in the study of the s tructures  of the simplest atoms (hydrogen and helium), 
science has been stopped by the complexity of the lithium atom. What, then, 
will happen when we study more complex atoms ? It may be that radiated 
atomic energy, like thermal energy, will be utilized according t o  principles 
s imilar  to  that of Carnot. However, even in this case the energy will be 
about 100,000 t imes greater  per  unit mass  than for atomic hydrogen. If we 
could use all the energy of matter,  which i s  even 10,000 times greater,  new 
possibilities would present themselves, including the possibility of destroying 
the world, and ourselves with it. 

It is hard to say how many of these hypotheses a r e  realizable. In any 
case, it i s  desirable t o  give every possible support to studies which might 
promote the advancement of "Astronautics," a t e rm suggested by J. N.Rosny. 
Moreover, I have suggested to my friend Andre Hirsch that he join with me 
in establishing an annual prize of the Astronomical Society of France. This 
annual international prize will be called the REP-Hirsch Prize and it will 
be awarded for the best original technical work of the year  which brings us  
closer to one of the stages of astronomical knowledge. 

In order  to coordinate the studies, we have requested the Astronomical 
Society to set  up an Astronautics Commission, whose activities will deal 
with the following subjects: atomic theory, transmutation of elements, 
development of an atmosphere suitable for breathing, ultralight alloys, 
physiological effects of changes in acceleration, equipment for inter- 

87 planetary navigation, etc.  
In the same way as ,  prior to the age of aviation, a number of investigators, 

Col. Charles Renard in particular, showed that flying would be possible with 
a light motor of a certain weight, so  should the Astronomical Society of 
France promote the elucidation of all  subjects related to future flights. 

It i s  necessary to be completely ready for the day when physicists will 
place at the disposal of mankind the powerful energy whose existence we 
now foresee, unless some insurmountable difficulty compels man to  be an 
eternal prisoner of the earth. 

It i s  my  hope that this study will stimulate other investigators to  deal 
with these questions, and that it will serve a s  a point of orientation in 
indicating the most important points remaining t o  be clarified. 

APPENDIX 

Let us assume that the curve for the fuel a s  a function of (V, y), as  given 
by equation (121), is extended until it intersects the critical curve of escape. 
We next divide y l a  into successive intervals. For  one of these intervals 
we have: 

yo and y, a re  the initial and final values of y,  
d y = y l - y o  is the amplitude, 
Vo and V, a r e  the initial and final velocities, 

+ v .  v,= 1s the mean velocity, 

Atis the duration of the interval. 



We can use the approximate formula 

For  the f i rs t  interval this formula gives an unsatisfactory result (y,=O; y,), 
and so  for this interval I will use another formula, obtained in the following 
way: 

We assume that the motion i s  determined by the equation 

Here 

d y=O and f =0fort=0. (129) 

We next expand function J(y) in a se r i e s  for y=O and assume that 

J(0)+0~(0)*0.  

88 I fwe take  

then for  y, =+ we have the following result for t e rms  up t o  P: 

Theref ore 

However, from (1 15) we have 



Second approximate method. On the basis of equation (11 5), and noting 
that during the entire burning time y < a ,  that is,  

we have 

and we retain only the indicated te rms .  Let us  set  g = z .  In this case 

This approximation will be better, the lower the value of k .  
Equation (138) is a linear second-order equation in z .  Its solution, 

taking into account the initial conditions 

will be 

89 We can simplify (139) by setting 

Then (139) becomes 



and ~ $ = a = ~ / p . .  (143) 

In order to determine the critical elements, it is sufficient to set 

z=z,= k. (144) 

By this means quite simple expressions a re  obtained. 



Third Paper 

ASTRONAUTICS AND THE THEORY OF RELATIVITY* 
I 

My studies of the subject of space flights have indicated how unfeasible 
such fligfits will be as long as we have available only existing, known 
chemical reactions to provide the required energy. The situation will be 
otherwise, however, when physicists a r e  able to place atomic energy at our 
disposal. 

New advances in science compel me to consider how the new theory 
will affect the force of an ordinary action, and I will make use of 
mathematical analysis for this. Let us consider two systems: the first 
system (0) with its axes fixed to the observer will not be designated by any 
index, and the second system, moving relative to the first,  will be designated 
by indexes (1). 

The axes a re  oriented a s  usual and may coincide at the beginning: 
t=t l=O; x=x'=O. The velocity of motion of system (1) relative to system 
( 0 )  i s  directed along OX and i s  such that axes OX and OX1 coincide when 
extended. 

Let us assume that at a moment t a ship moves with a velocity v in the 
direction of positive x, and that system (1) has an equal and constant 
velocity. In system (1) let there now be a material point which i s  at res t  
at moment t .  Its mass  is designated a s  m,. We apply to  it a force which 
i s  designated a s  F1 in system (1) and which i s  directed toward positive 
x and xl. Then, in system (1) we  have . 

The equations of the Lorentz transformation a re :  

1 e x .  
t= ; ( t -3) .  

* In 1928,in Nos.8-10 of the journal "Die Rakete," a paper by R.Esnault-Pelterie appeared (translated from 

French by J.Winkler). Later this paper was included i n  the collection of Esnault-Pelterie's works entitled 
"L'Astronautique" (Paris, 1930). A translation of this paper follows. 



Here v i s  the velocity of the body, c is  the velocity of light, and 

From (1) and (4), we obtain 

and 

If we consider the motion during an infinitesimal time interval dt ,  
immediately following t, then, a s  an approximation (to infinitesimal 
quantities), 

However, according to Lorent z 's  equation, 

Therefore (6) becomes 

Let us assume that, for physiological reasons, the pilot can tolerate a 
constant acceleration g (the acceleration of gravity). To simplify the cal- 
culations, we suppose that the reaction engine i s  so  regulated that 



We assume that the ship leaves the earth with an acceleration of 2g, 
that is,  a person aboard will feel twice as heavy. Then, for (9), we have 

for the interval ,&. This indicates that the velocity 2 changes very little, 

and that in system (1) the velocity $ will be very small. 
93 This can always be attained, since dt may be arbitrarily short. Passing 

to the limit, we see that relation (11) remains valid for any given moment, 
d 1 if system (1) moves with the ship. Since now $=0,from (4) and (4') we 

have 

dtl - dt - -a and - = A .  
dt dtl a 

However, a i s  a function of t ,  so  that 

This holds true for any moment, with acceleration of the system's  motion. 
In addition, for the given system, with a constant acceleration (8) in 

this system, we have 

Assuming $=o for the initial conditions, we find that for t=O the constant 

of integration i s  also 0. Consequently, for  the system moving with the rocket, 

since &=v, we have dt 

v = gat. 

From (8) it follows that 

Equation (17) can be rewritten as 



For  initial conditions x=O and t = 0 ,  

so  that for very large ti we have x= c t .  
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Equations (8) and (17) give 

For  initial conditions t l = O ,  we have for t = O ,  

Proof. Elements of distance in space should have the same values in 
both systems, s o  that 

must be equal to 

and thus 

8 (dp -d t l ' )  =dXP. 

However, from (21) we obtain 

that is ,  equation (1 9) is obtained. 



Now let us suppose that the pilots a r e  not familiar with the laws of 
relativity. They only know that they have an acceleration g=const., 
and they believe that their motion obeys the law 

In order  to  t raverse a distance X, the following time would appear to be 
required: 

Fo r  sufficiently long distances, they think that in a time tl=c/g (for 
instance, in a year,  o r  in 354.2 days, for  g =981 cgs units) they will attain 
the speed of light o r  even exceed it. 

Actually, however, according to equation (20), in the system of the observer 
their t ime will be 

95 that is ,  in their own system, according to  (23), 

Consequently, the ratio of the actual t ime in their system to the apparent 
time will be 

If X i s  very large, then 

'I Z(y) and, at the limit, 0. mi=- * 
On the other hand, if X goes to 0, then 

'.r(s'l)and, at the limit, 1.  Tlim= V T  



It i s  noteworthy that the apparent duration of the voyage in the system 
of the pilots will be shorter  than the duration according to the data of 
classical mechanics, when the flight speed exceeds the velocity of light; 
the difference will be greater,  the longer the flight is  in time and space. 

Numerical resul ts  

In order  to simplify the calculations, we take a s  a unit of length 

This length unit has the advantage that it is close in value t o  the astronomical 
unit [1.5 . 1013 cm] and the light year (9.467 10'' cm). 

Let us  compare the various times required to  cover certain distances in 
the system of an observer, away from whom the pilots a r e  flying. The 
t imes involved are: 

T (formula (29)) ,  the t ime which they would measure if they were not 
familiar with the laws of relativity theory; 

t, the time according to  their opinion, in a system moving with the 
observer; 

t', the time which they assume in the system of their ship. 
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All these times a r e  reckoned in tropical years  (1 year = 3.1556. l o7  sec) .  

These figures indicate an amazing gain in time not only in system (O), 
but in the Euclidean system a s  well, assuming that the flight velocity exceeds 
the speed of light. Consequently, when we obtain the velocity in space, we 
also obtain the velocity i n  time, but this will be possible only in the future. 

WORK AND CONSUMPTION OF MATERIALS 
I 

Now let us assume that the system of the observer coincides with the 
system of the ship, and that the moving system, from the beginning of motioni 
coincides with some atom (electron o r  nucleus). Then equation (13) can be 
used, and the thrust in the system of the ship, for each moment, can be 
expressed a s  



Let us designate a s  v the final velocity of a particle during i ts  ejection 
from the engine, and let us find the wbrk performed by it. Then it will be 
possible to  calculate the thrust imparted by it to  the ship at a given moment. 

At a time t ,  a total of v atoms a re  assumed to  be present between 
surfaces A and B of the nozzle, along a normal to the direction of motion, 
these atoms being at r e s t  relative t o  the engine. Surface A i s  traversed 
by particles with a very low velocity. However, at surface B the particles 
have acquired the exhaust velocity v .  

During a time t+d t  particles which were earl ier  between A and B move 
to  surfaces A' and B L ,  which a r e  infinitely close to A and B. For  steady 
motion the number of atoms between surfaces A' and B will be constant, 
and their momentum will a lso be constant. However, the number of atoms 
between A and A' will not be equal to  the number between B and B'. 

Let us designate their  total res t  mass  a s  dm,. The process takes 
place a s  if this mass m, had, during a time interval a t ,  zero velocity relative 
t o  velocity u. Then the momentum would not obey the law F=f (t) . There- 
fore, it can be calculated using formula (13), assuming F constant and equal 
t o  i t s  mean value. Summation over a time t and in the proposition 

gives 

97 Moreover, 

If we set  

then 

j 7 = .  t- 
The radiated energy, according to  the classical formula, i s  

This energy is  obtained in a time d t  . 



Next let us  determine the energy required to produce a unit of reaction 
force [thrust]. This will be 

This formula shows that, if the velocity varies from 0 to c for  a constant 
ejected mass  p,,, the force will increase from 0 to w and the quotient 
P will increase from 0 to  c .  

Reaction due t o  ejection of energy. According t o  the classical equation 

we obtain 

P P  F=--; ~ = c .  

This i s  the upper limit for the case of energy ejection. 

EJECTED MASS REQUIRED TO PRODUCE UNIT FORCE 

Ejection of matter.  From equation (38) we have 

"Ejection of energy." The mass of the energy i s  

98 Thus we obtain 

and from (41) 

From this we see that, in the case of matter,  a s  v varies from 0 to  e ,  
the amount of ejection required to  produce a unit of force varies  from oo 
t o  0 .  In the case of the ejection of energy, however, it will be constant at 

+, for  v=L. The latter i s  considerably less  than the velocity of electrons 
fi 

from radioactive substances, and is even lower in comparison with the 
velocities of Q rays.  



CONSUMPTION FOR CONSTANT ACCELERATION 
IN THE SHIP'S SYSTEM 

We designate a s  m,, th'e m a s s  of the  ship in  i t s  own system, that is ,  i t s  
m a s s  at  r e s t .  The init ial  m a s s  of the ship is M,. The equation fo r  the 
acceleration constant in the ship 's  sys tem can be written as 

P r=- 
mo 

(46) 

and, f rom (38), 

f r o m  which 

(48) 

The m a s s  consumption for  the energy obtained will be, f rom (44) and (39), 

and the total  ejected m a s s  will be 

r -dmn-T  - -- dtI 
d! v mu I' 

f rom which, for initial conditions m,=M,, and r =O , 

- rt 
3 = e V  . 
Mn 

(52) 
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Eje'ction of energy only. F r o m  equations (46) and (45) we have 

mo (53) 

and 

- dmn- -- mo f' 
dt  PI=^ - (54) 



and finally 

Consequently, the consumption of matter during i t s  ejection i s  always 
considerably greater  than during the ejection of [just] energy, and the two 
would become equal only if the velocity of ejection of matter  were to  reach 
the velocity of light. 

Let us calculate the ratao 9 for this limiting case of consumption, for 
Mu 

different distances. Keeping in mind that t in equation (56) denotes the 
local t im t  of the ship and that it is given as t' in equation (32), we obtain, 
after substitution, 

Taking L=;, a s  previously, to be the unit of length, we obtain 

If, a s  previously, we assume an acceleration g, then L will be equal to  
one light year, giving 

If the pilot has covered the given distance and wishes to  slow down, then 
in order  to  cancel the velocity he must turn the ship and ca r ry  out al l  the 
operations in reverse.  Fo r  the flight away, the mass ratios will be 



l o 0  F o r  a round- t r ip  flight, where  no new fuel supply is obtained a t  the  end of 
the  flight away, the  r a t i o s  a r e  

The nea res t  s t a r ,  Alpha Centauri ,  is 4.5 L away, and the  distance t o  S i r ius  
is 1 0  L . Therefore ,  with r e spec t  to  these  s t a r s ,  the  f igures  obtained a r e  not 
v e r y  comforting. However, if we consider Neptune, which is 4.905 - 1 0-I4 L 
f r o m  the  sun, a flight to  i t  with accelera t ion over  the  f i r s t  half of the  path and 
re tardat ion over  the  second half r e q u i r e s  an  amount of fuel  equal t o  0.0434 M,. 
However, if the  accelera t ion w e r e  constant, t he  flight t i m e  would b e  3 days 
1 2  h r ,  fo r  a velocity of 3,000 m m / s e c  and a fuel supply of 0.039M,. 

Such considerations induce u s  t o  make  a study of a c a s e  where  the ship  
is accelera ted t o  a c e r t a i n  velocity, but with the  specia l  condition that  the  
duration of the t r i p  i n  t h e  s h i p ' s  s y s t e m  b e  as shor t  as possible.  

In th i s  case ,  re turning t o  equations ( B ) ,  (12), and (17), we have 

fo r  

f r o m  which 

r= ta - l - l .  -- 
CP a' 

Moreover,  taking (52) and (23) into account, 

-f. + . . ( - f t + r n )  
9 

o r ,  f r o m  (61), 



and finally 

F o r  

and 
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and for 

and 

It is interesting that this expression does not depend on f, that is ,  no 
additional expenditures a r e  necessary if the ship flies with an acceleration 
greater  than g. Then the flight gains time a s  a result of an increased 
velocity, without increasing the fuel expenditure, naturally provided that 
the human organism can stand the overload [the g -load]. 

The numerical resul ts  obtained from (65) show, however, that even in the 
optimum case, when v=c, we have 

that i s ,  the ratios a re  very unsatisfactory. 
Consequently, using atomic energy, it will be comparatively easy to reach 

the limits of the solar system, but visiting other solar systems will not be 
possible, in view of the enormous distances involved. On the other hand, it 
is impossible t o  se t  l imits to human knowledge. Perhaps physiology will 
present us with a means of prolonging life and rejuvenating an organism, s o  
that this problem will a lso be capable of solution. 



lo3 R O B E R T  G O D D A R D  

FORE WORD 

In 1912-1913 the American Professor  Goddard presented a theory of 
rocket flight and formulated equations describing rocket motion. These 
equations were published in a paper entitled "A Method of Reaching Extreme 
Altitudes" (Washington, 191 9). 

He poses the problem in the following way: "The problem was t o  
determine the minimum initial mass  of a n  ideal rocket necessary, in order  
that on continuous loss  of mass,  a final mass  of one pound would remain, at  
any desired altitude. "* Here a continuous consumption of the mass,  f o r  
instance in the form of propellant, i s  assumed. 

F i r s t  Goddard derives accurate formulas [rigorous solution] and shows 
that the use of these leads t o  an  insoluble problem in the calculus of 
variations. Then he presents an approximate calculation method, suitable 
for  practical work. 

Robert Goddard published his studies of rocket flight in 1919. He was 
apparently the f i rs t  t o  c a r r y  out scientific experiments determining the 
efficiency of a rocket and optimum rocket construction. Below we present 
a brief biographical note on Goddard (sent to  us by him), the essential part 
of his paper "A Method of Reaching Extreme Altitudes," and a description 
of some patents on new types of rockets which were taken out by him. 

* [Goddard, R.H. A Method of Reaching Extreme Altitudes, page 1.- Smithsonian Insritution, Washington. 1919.1 



SOME INFORMATION ABOUT R. GODDARD 

Robert Goddard (Figure  9) was k 
5 October 1882. His parents  were 
Louise (Hoyt) Goddard. He obtaine 

lorn in  Worcester [Mass.], USA, on 
Nahum Danford Goddard and Fannie 
d a B. Sc. degree f rom the Worcester 
Polytechnic Institute in  1908, and 
advanced degrees  f rom Clark University: 
an M. A. in 1910 and a Ph. D. in  physics 
in 1911. In 1908-1909 he was an 
inst ructor  in physics at  the Worcester 
Institute, and in  1912-1913 he worked a s  
a r e s e a r c h  fellow in  physics a t  Princeton 
University. In 1914-1915 Goddard 
was a n  inst ructor  and an  honorary 
member  of the Physical Society a t  
Clark University, and in 1915-1919 he 
served a s  an  ass is tant  professor  of 
physics there .  In 1919 he became a 
professor  of physics a t  Clark, and in 
1923 he took over a s  director  of the 
physics laboratories at  th is  university. 

During the World War in  1918, 
Goddard served a s  a r e s e a r c h  director  
fo r  the  US Signal Corps, at  the Worcester 
Institute, and for  the Mount Wilson 
Observatory. His affiliations include: 
member ,  AAAS; member ,  American 

FIGURE 9. RGoddard. , Physical Society; member ,  American 
Meteorological Society; American 
Institute of Social Sciences; Sigma Xi, 

and Sigma Alpha Epsilon. In June 1924 he mar r ied  E s t h e r  Christine 
Kisk. 

In 1929 Goddard began t o  work for  the  American War Department, his 
se rv ices  having been enlisted by a colonel (Signal Corps of the US Army).* 
His experiments were financed principally by the D. Guggenheim Foundation. 

* [Col. Charles A.  Lindbergh] 



Goddard's chief scientific studies deal with: electrical conduction in 
powders, crystal rectifiers,  mechanical strengths of dielectrics in a magnetic 
field, interference colors in clouds, balancing of airplanes, gas production by 
electrical discharges in vacuum tubes, and a method of reaching high 
altitudes for research purposes.* 

* [The parts of Goddard's paper given by Rynin have here been copied directly from English rather than 

retranslated from Russian. In Rynin's text only rhe most essential parts of the paper were presented, and 
the sections given were rearranged considerably. The order in the Russian book has been followed, and in 
addition some of the section headings are those of Rynin rather than Goddard. Otherwise, the following 
represents an abridged version of Goddard's historic work. 

Comments interspersed by the Soviet editor or Soviet aansiator are given in smaller type, to distinguish 
them from the paper itself. The Soviets have added an  extra table, as well as brief descriptions of some of 
Goddard's studies and four of his rocket patents. The solution of a relevant problem in rocket theory, by 
the German mathematician Hamel, is also included, a t  the end of the section on Goddard.] 



lo5 THEORY OF ROCKET FLIGHT 

DERIVATION O F  DIFFERENTIAL EQUATION OF 
ROCKET MOTION AND APPROXIMATE METHOD 
FOR ITS SOLUTION 

Referring t o  Figure 10, a mass  H, weighing one pound, is  to be raised a s  
high a s  possible in a vertical direction by a rocket formed of a .cone, P ,  of 

propellant material,  surrounded by a casing 
K. The material P is expelled downward 
with a constant velocity, c. It i s  further 
supposed that the casing,K, drops away 
continuously as  the propellant material P 
burns, s o  that the base of the rocket 
always remains plane. 

Let us call 
M the initial mass of the rocket; 
m the mass  that has been ejected up to the 

time, f ; 
v the velocjty of the rocket, at t ime t ;  
c the velocity of ejection of the mass  

expelled; 
R the force, in absolute units, due to a i r  

resistance; 
g the acceleration of gravity; 
dm the mass expelled durin,g the time dt ; 
k the constant fraction of the mass  dm 

FIGURE 10. Theoretical rocket of that consists of casing K, expelled with 
Goddard zero velocity relative to  the remainder of 

the rocket; and 
~ T J  the increment of velocity given the remaining mass of the rocket. 
The differential equation for this ideal rocket will be the analytical 

statement of Newton's Third Law, obtained by equating the momentum at a 
time t to that at the time t + d t ,  plus the impulse of the forces of a i r  
resistance and gravity, 

lo' If we neglect t e rms  of the second order,  this equation reduces to  



A check upon the correctness of this equation may be had from the 
analytical expression for the Conservation of Energy, obtained by equating 
the heat energy evolved by the burning of the mass of propellant,dm (1 -k), 
to  the additional kinetic energy of the system produced by this mass  plus the 
work done against'gravity and a i r  resistance durihg the time dl. The equation 
thus derived i s  found to be identical with equatibn (1). 

In the most general case, it will be found that R and g a re  most simply 
expressed when in t e rms  of w and s [the flight altitude]. In particular, the 
quantity R ,  the a i r  resistance of the rocket at time t ,  depends not only upon 
the density of the a i r  and the velocity of the rocket, but also upon the cross  
section, S ,  at the time t .  The c ros s  section, S, should obviously be a s  small  
a s  possible; and this condition will be satisfied at all t imes, provided it is 
the following function of the mass  of the rocket (M-m), 

where A i s  a constant of proportionality. This condition i s  evidently 
satisfied by the ideal rocket, Figure 10. Equation (2) expresses the fact that 
the shape of the rocket apparatus is at all times similar to the shape at the 
s tar t ;  or ,  expressed differently, S must vary as  the square of the linear 
dimensions, whereas the mass(M- m )  varies a s  the cube. Provision that 
this condition may approximately be fulfilled i s  contained in the principle 
of pr imary and secondary rockets. 

The resistance, R ,  may be taken as independent of the length of the 
rocket by neglecting "skin friction.'' Fo r  velocities exceeding that of sound 
this i s  entirely permissible, provided the cross  section is greatest at the 
head of the apparatus. .  . 

The quantities R,  g ,  and v ,  a r e  evidently expressible most simply in t e rms  
of the altitude s ,  provided the c ross  section S i s  also s o  expressed, giving, in 
place of equation (1) 

The success of the method depends entirely upon the possibility of using 
an initial mass,  M,  of explosive material that i s  not impracticably large. 
It amounts to  the same thing, of course, if we say that the mass ejected up 
to  the time t (i. e., m )  must be a minimum, conditions for the existence of a 
minimum being involved in the integration of the equation of motion. 

That a minimum mass ,  m ,  exists when a required mass  is to be given 
an assigned upward velocity at a given altitude i s  evident intuitively from 
the following consideration: if, at any intermediate altitude, the velocity of 
ascent be very great, the a i r  resistance R (depending upon the square of the 

107 velocity) will also be great.  On the other hand, if the velocity of ascent be 
very small, force will be required to  overcome gravity fo r  a long period 
of time. In both cases the mass necessary to  be expelled will be 
excessively large. 

Evidently, then, the velocity of ascent must have some special value at 
each point of the ascent. In other words it i s  necessary to  determine an 
unknown function f ( s  ), defined by 

such that m is  a minimum. 

102 



It i s  possible to  put f(s) and q' ds in place of v and dv, in equation (3 ) ,  

and to obtain m by integration. But in order  that rn shall be a minimum, 
6 m  must be put equal to zero, and the function f(s) detern-iined. The 
procedure necessary for this determination presents a new and unsolved 
problem in the Calculus of Variations.* 

In order  to  obtain a solution that will be sufficiently exact to show the 
possibilities of the method, and will at the same time avoid the difficulties 
involved in the employment of the rigorous method just described, use may 
be made of the fact that if we divide the altitude into a large number of 
parts, let us say, n ,  we may consider the quantities R, g, and also the 
acceleration, to  be constant over each interval. 

If we denote by a the constant acceleration defined by v=4t in any interval, 
we shall have, in place of the equation of motion (3) ,  a linear equation of the 
f i rs t  order  in m and t ,  a s  follows: 

the solution of which, on multiplying and dividing the right number by (a-cg) 
i s  

where C is an arbi t rary constant. This constant i s  at once determined as  
-1 from the fact that m must equal zero when f=0.  

We then have 

This equation applies, of course, to each interval, R, g, and a being con- 
sidered constant. We may make a further simplification if, for each 

I interval, we determine what initial mass,  M ,  would be required when the 
final mass  in the interval i s  one pound. The initial mass  at the beginning 
of the f i rs t  interval, o r  what may be called the "total initial mass, " 

lo8 required to propel the apparatus through the n intervals will then be the 
product of the n quantities obtained in this way. 

If we thus place the final mass  ( M - m )  , in any interval equal to  unity, 
we have M = m  + 1 and when this relation i s  used in equation (5), we have 
for the mass at the beginning of the interval in question 

* Later this problem was solved by Hamel in Germany, and a translation of his paper is given below [at the 

end of this selection of Goddard's works]. 



Now the initial mass  that would be required to give the one pound mass 
the same velocity at the end of the interval, if R ang g had both been zero, 
is,  f rom (6) 

The ratio of equation (6) to equation (7) is a measure of the additional 
mass  that is  required for  overcoming the two resistances, R and g ;  and 
when this ratio i s  least, we know that M i s  a minimum for the interval in 
question. The "total initial mass" required'to raise one pound to any 
desired altitude may thus be had a s  the product of the minimum W ' s  for 
each interval, obtained in this way. 

From equations (6) and (7) we see at once the importance of high 
efficiency, if the "total initial mass" i s  to be reduced to a minimum. Con- 
s ider  the exponent of e.  The quantities a ,  g ,  and t depend upon the particular 
ascent that i s  to  be made, whereas c (I-k) depends entirely upon the 
efficiency of the rocket, c being the velocity of expulsion of the gases, and k, 
the fraction of the entire mass  that consists of loading and firing mechanism, 
and of magazine. In order  to see  the importance of making c (I-k) a s  large 

a t  
as possible, suppose that it were decreased tenfold. Then e * (1-4 would 
be raised to the 10th power, in other words, the mass  for each interval 
would be the original value multiplied by itself ten times. 

According to Goddard's experiments the velocity of expulsion of gases in an improved rocket can be raised 
to a value 6 or 7 times greater (2,434 m/sec) than the gas velocity in, for example, a ship rocket (314 m/sec), 

7 
and thus the mass of the former rocket may be reduced to 1/ of the mass of the latter. The mass of propellant 
has to be as large as possible,relative to the remaining mass of the rocket. In Goddard's experiments with 
steel rockets, the rocket walls were made very thick, corresponding to the outer shaded section in Figure 10. 
However, these walls could have a thickness extending out as far as the solid outer lines (k) in the drawing. 
Goddard assumes that the minimum mass of the casing in his experiments could be  raised to 120 grams per gram 
of powder. 

NUMERICAL EXAMPLE O F  ROCET-MOTION CALCULATION 

As already explained, this method consists in employing equations (6) 
and (7)  to obtain a minimum M in each interval, where 

M=the initial mass,  for the interval, when the final mass  is one pound, and 
R=the  a i r  resistance in poundals over the c ross  section S, at the altitude 

of the rocket. If we call P the a i r  resistance per  unit c ross  section, we 

shall have forR=P. S. 2, where P is the density at the altitude of the rocket, 
PO 

and Qo is the density at s e a  level. 
109 a = the acceleration in ft per sec2, taken constant throughout the interval; 

g= the acceleration of gravity; 



t - the time of ascent through the interval, and 
c (1-k)= what will be called the "effective velocity," for the reason that 
the problem would remain unchanged if the rocket were considered to  be 
composed entirely of propellant material, ejected with the velocity c (1 -k). 
It will be remembered that c actually stands for the t rue velocity of ejection 
of the propellant, and k for the fraction of the entire mass  that consists of 
material  other than propellant. The effective velocity i s  taken constant 
throughout any one calculation. 

The altitude is divided into intervals short enough to  justify the quantities 
involved in the above equations being taken a s  constants. The equations 
a r e  then used to find the minimum value of M for each interval - the mean 
values of R andg , in the interval, being employed - and the "total initial 
mass" required to raise a final mass of one pound to a desired altitude i s  
then obtained as the product of these M1s. 

VALUES O F  THE QUANTITIES OCCURRING 
IN EQUATIONS (6) AND (7) 

On the basis of his experiments, Goddard assumes c = 7,500 ft/sec. Then, for k = %5, we have C (1-k) = 7,000 
ft/sec. In order to calculate the air resistance, Goddard divides the height of ascent into 7 intervals (Figure 11) 
and determines coefficient Pusing the following formula. 

The coefficient, for projectiles with pointed heads, becomes 

"1 3 n S  
P=O.000064 30 -I- 480 (poundals), (8) 

where 11' i s  the velocity with which a wave i s  propagated in the a i r  immedi- 
ately in front of the projectile; which equals the velocity of the body when 
that velocity exceeds the velocity of sound in the undisturbed gas; and a is  
the velocity of sound in the undisturbed gas.:: 

Beyond 120,000ft the density i s  calculated by the empirical rule which 
assumes the density to become halved at every increase in altitude of 
3.5 miles. A comparison was made between the values obtained in this 
way and those obtained from the very probable pressures deduced by 
Wegener, in the following way: the mean density between two levels for 
which Wegener gives pressures was obtained by multiplying the difference 
in pressure by 13.6, and dividing by the difference in level in cm. A 
comparison showed that the densities used in the present calculations 
beyond 125,000 ft were from three to  twentyfold larger  than those derived 
from Wegenerls data, so  that the values used in the present case were 
doubtless perfectly safe. Densities beyond 700,000 ft must be negligible. . . . 

* Ratios P / ~ , ,  are shown in Figure 11, and data for the various selected intervals are shown in Table 1 [Ryninl 
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CALCULATION OF MINIMUM MASS FOR EACH INTERVAL 

Length of interval 

Tables 2 and 3 a re  calculated for a star t ,  respectively, from sea  level 
and from an altitude 15,000 ft, i .  e., the beginning of s3. The procedure in 
each case is ,  however, identical. 

The process of calculation i s  a s  follows: at the beginning of any interval 
we have the velocity already acquired during the previous intervals, let us 
say v,. This velocity is ,  of course, zero at the beginning of the f i rs t  interval. 
Assume any final velocity at random, v,, fo r  the interval in  question. 

The value of may be had f rom the equation 

feet 

5,000 
10,000 
10,000 
20,000 
40,000 
40,000 
75,000 

300,000 
3,415,000 
8,810,000 

and t is at once obtained from the relation 

meters 

1,524 
3,048 
3,048 
6,096 

12,192 
12,192 
22,860 
91,440 

1,040,900 
2,685,000 

Height of upper end of 
interval above sea level 

Mean density 
in terms 

Of 

0.928 
0.730 
0.520 
0.278 
0.080 
0.015 
0.0026 
0.000025 
. . . . . . . . 
. . . . . . . . 

feet 

5,000 
15,000 
25,000 
45,000 
85,000 

125,000 
200,000 
500,000 

3,915,000 
9,310,000 

Mean gravity 
chosen, in terms 

of graviv  
a t  sea level 

1 
1 
1 
1 
1 
1 
1 
1 

0.839 
0.684 

meters 

1,524 
4,572 
7,620 

13,716 
25,908 
38,100 
60,960 

152,400 
1,193,300 
2,837,400 



(112: TABLE 2. 

Interval 

s1 

* 

s2 
* 

s3 
* 

s4 

* 

Ss 
" 

s6 
* 

a =  150 
',{a= 50 

a =  150 
S8{a= 50 

a d 5 0  
''{a = 50 

vl' 

ft/sec 

500 
800 

1,000 
1,200 
1,500 
2,000 

1,100 
1,200 
1,400 

1,300 
1,400 
1,600 

1,500 
1,600 
1,700 
1,800 

1,700 
1,800 
2,000 

1,900 
2,000 
2,200 

5,160 
3,333 

10,790 
6,833 

33,790 
30,533 

at 

500 
800 

1,000 
1,200 
1,500 
2,000 

100 
200 
400 

100 
200 
400 

100 
200 
300 
400 

100 
200 
400 

100 
200 
400 

3,160 
1,393 

5,630 
2,840 

23,000 
23,100 

t  , 
sec 

20.0 
12.5 
10.0 

8.34 
6.7 
5.0 

9.54 
9.16 
8.33 

8.0 
7.7 
1.15 

13.8 
13.33 
12.9 
12.5 

24.25 
23.1 
22.24 

21.1 
21.1 
20.0 

21.0 
21.8 

37.5 
55.8 

153.5 
472.5 

a  

25 
64 

100 
144 
226 
400 

10.47 
22.0 
47.9 

12.5 
25.8 
56.4 

1.23 
15.0 
23.24 
33.25 

4.125 
8.45 

18.0 

4.62 
9.50 

20.0 

150 
50 

150 
50 

150 
50 

* .. el{ 
0.0716 
0.1145 
0.143 
0.112 
0.215 
0.281 

0.0143 
0.0286 
0.0574 

0.0143 
0.0286 
0.0514 

0.0143 
0.0286 
0.0429 
0.0574 

0.0143 
0.0286 
0.0574 

0.0143 
0.0236 
0.0574 

0.4523 
0.199 

0.804 
0.399 

3.29 
3.38 

at 

1.074 
1.120 
1.153 
1.185 
1.242 
1.332 

1.014 
1.034 
1.060 

1.014 
1.034 
1.060 

1.014 
1.034 
1.046 
1.060 

1.014 
1,034 
1.060 

1.014 
1.034 
1.060 

1.572 
1.218 

2.23 
1.49 

26.9 
29.13 

.. 
A 

soa  $1, I 

0.1630 
0.1720 
0.1890 
0.212 
0.2415 
0.309 

0.0578 
0.0704 
0.0954 

0.0508 
0.0631 
0.0906 

0.0175 
0.0898 
0.1022 
0.1170 

0.1258 
0.1366 
0.159 

0.1135 
0.1255 
0.1490 

0.5452 
0.3216 

0.976 
0.652 

3.89 
4.85 

' O + ) t  - 
1.176 
1.186 
1.207 
1.235 
1.276 
1.362 

1.061 
1.013 
1.100 

1.052 
1.066 
1.096 

1.080 
1.094 
1.107 
1.123 

1.133 
1.146 
1.173 

1.12 
1.133 
1.16 

1.125 
1.387 

2.65 
1.92 

48.8 
129.0 

p, 

persq. P O U ~ ~ ~ U  in 

7.36 
20.0 
31.25 
61.4 

104.6 
202.5 

153.3 
166.6 
216.0 

250.0 
262.8 
294.5 

339.0 
312.0 
394.0 
424.0 

439.0 
480.0 
535.0 

567.0 
603.0 
669.0 

1,878.0 
1,122.0 

10,600 
4,000 

- 
- 

R, 

(P. s.: 

6.85 
18.5 
29.0 
57.0 
98.0 

188.0 

112.1 
121.6 
158.7 

130.0 
136.9 
152.6 

94.3 
101.5 
109.4 
118.0 

35.1 
38.4 
42.8 

8.50 
9.01 

10.02 

4.84 
3.1 

0.27: 
0.09! 

- 
- 
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TABLE 3. 

Interval -qT sec 



p ,  R , R M, - 4. 7Wa+g)t m, : 2 b + d t  poundals 
(P.S.;) ZG lbs 

e C ( ' - * )  lbs ~ 0 - k )  lbs 

11.53 
30.7 1 46.7 

1 165.0 

\ 95.7 

i 108.8 
165.0 

: 305.0 

150.1 
4 170.0 
" 195.0 
3 218.8 
: 243.5 
: 417.0 

343.0 
406.0 
430.0 
460.0 
510.0 

" 34.0 

I 

5.97 
16.00 
24.3 
83.3 

21.1 
31.4 
46.25 
87.90 

12.0 
13.55 
15.65 
11.49 
19.45 
33.4 

5.16 
6.10 
6.43 
6.90 
7.65 
8.02 

0.134 
0.250 
0.295 
0.510 

0.164 
0.761 
0.794 
0.908 

0.347 
0.362 
0.384 
0.391 
0.520 
0.623 

0.1203 
0.1186 
0.1150 
0.1134 
0.1165 
0.1115 

1.329 
1.300 
1.341 
1.499 

1.232 
1.242 
1.318 
1.455 

1.278 
1.293 
1.306 
1.325 
1.372 
1.501 

1.206 
1.230 
1.248 
1.260 
1.218 
1.295 

1.236 
1.162 
1.165 
1.207 

1.216 
1.200 
1.221 
1.263 

1.261 
1.255 
1.250 
1.252 
1.280 
1.340 

1.153 
1.147 
1.142 
1.140 
1.142 
1.151 

1.514 1 
1.293 I 
1.495 I 
1.522 I 

1.118 

1.518 

1.685 

1.581 

5.225 

2.581 

4.32 

4.66 

6.545 

3.794 

5.594 

5.075 



i. e. ,  

whence, of course, a i s  at once known. 

The calculations of expc* t and expc& call  for no comment; and R 

i s  obtained a s  P, the mean ordinate between v, and u,, from the curves a s  

already explained, multiplied by S and: 

The value of M ,  the initial mass,  for the interval, necessary in order 
that the final mass  in the interval shall be one pound, i s  then obtained from 
equation (7); and finally, the ratio of equations (6) to (7) (i .  e., 

is calculated. This i s  the ratio of the initial mass  necessary, including 
losses due to both R and g , to the mass necessary to give the one pound 
the same velocity,r , without overcoming R and g ;  and the entire calculation 
must be repeated until a minimum value of this ratio i s  obtained - when 
the corresponding mass,  M , will be the minimum mass  for  the interval in 
question. Each minimum M i s  marked in the tables by an asterisk. 

This process i s  carr ied out for each interval beginning with the f i rs t .  
It should be noticed that, although P and the density a r e  not really constant 
in any interval, the result obtained by taking the mean of the q~an t i t i e s  must 
nevertheless give resul ts  close to the truth, owing to  the fact that P increases 
during the ascent, whereas the density decreases. 

EXPLANATION OF T A B E S  2 AND 3 

It should f i rs t  be explained why no minimum M has been calculated for 
the intervals s, and s, . Although the minima for the preceding intervals 
a r e  clearly defined, a t r ia l  will show that a minimum M can occur, for s, 
and s, , only for extremely high velocities u,; although for s, , a secondary 
minimum occurs for v, =8,00Oft/sec. Even for  v, =30,000 f t / sec  the 
minimum has not yet been attained for this interval, although the accelera- 
tion required to  produce this velocity i s  6,000 ft/sec2. The reason for this 
s tate  of affairs is evident at once from the fact that the density ratio, 

eo , 

is very small  for s,, and also from the fact that a occurs in  the denominator 
of the t e rm containing R in equation (6), s o  that the large acceleration 
counterbalances the increase in R . 

Thus, in order  that the initial mass  for s, shall be a minimum, the 
acceleration must become very large, with consequent severe s trains in the 



rocket apparatus and instruments carr ied by the rocket, to  say nothing 
of the difficulty of firing with sufficient rapidity to produce such large 
accelerations. It thus becomes advisable t o  choose a moderate acceleration 
in s, and s,, and not to  assign a velocity v, a s  was done in the preceding 
intervals. Two accelerations a r e  chosen: 50ft/sec2 and 150 ft/sec2, 
respectively. The interval s,, also calculated for assigned accelerations, 
will be explained in detail below. In all cases, when either one of these 
accelerations i s  mentioned in connection with s, and s,, this acceleration 
will be understood as  having been taken also in the preceding intervals, 
beyond q. 

In order  to see  how fa r  the effective velocity, c (I-k) may fall short of 
7,00Oft/sec and stil l  not render the rocket impracticable, a few additional 
columns for M a r e  calculated. 

In the first  of the additional columns, M,, the effective velocity is taken a s  
3,500ft/sec, namely, half that of the preceding calculations. This allows of 
considerable inefficiency of the apparatus, in a number of ways. Fo r  
example, the product 

may be given by the same proportionality, k ,  a s  before, but with a velocity oi  
ejection of the gases a s  low a s  3,750 f t /sec.  On the other hand, the velocity 
of ejection may be as  large a s  before (i. e., 7,50Oft/sec); and the proportion- 
ality, k ,  increased to  0.533; meaning, of course, that the rocket now consists 
more of mechanism than of propellant. 

The second additional calculations, MA,, a r e  carried out under the 
assumption that a reloading mechanism i s  used, with k a s  in  the original 

1 calculations (k=i3), but that the velocity of expulsion of the gases is  the 

mean found by experiment for the Coston ship rockets, namely 1,029.25 ft/sec. 
In this case the effective velocity is 

The third additional calculations, MR., a r e  carried out for the case of a 
rocket built up of Coston rockets in bundles (shown in section in Figure 12), 
the lowest bundle of which i s  fired f i rs t  and then released; after which the 
bundle above is fired and then released,and s o  on. For  the Coston ship 

117 rocket (having a range of a quarter of a mile, with the charge of red  f i re  
removed, as  already stated) the ratio of the powder charge to the remaining 
mass  of the rocket is found to be closely Hence the "effective velocity" 
in this case i s  only 

The M 1 s  in the last two cases a r e  calculated only for the accelerations 
that make M minima for the f i rs t  case (effective velocity 7,500 ft/sec).  
Hence in these cases, the M's  a r e  not minima, although only in the last two 
cases is there probably much discrepancy from the actual minima. 

The cross-section, throughout any interval, is taken a s  one square inch 
except for intervals,. It will be seen from the table that this is justifiable, 
a s  the largest mass  in intervals s, to  s, does not differ much from one-pound. 



CALCULATION OF MINIMUM MASS TO RAISE ONE POUND 
TO VARIOUS ALTITUDES IN THE ATMOSPHERE 

The "total initial masses" required to  raise one pound from sea  level to . 

the upper end of intervals s,, s, and s, a r e  given in Table 4. They a r e  
obtained by multiplying together the minimum masses (marked by s t a r s  in 
Table 2), from s, up to  and including the interval in question, and represent,  
a s  already explained, the mass  in pounds of a rocket which, starting at sea  
level, would become reduced to one pound at the altitude given. 

The highest altitude attained by the one pound mass  is not, however, the 
upper end of the interval in question, but i s  a very considerable distance 
higher. This, of course, follows from the fact that the one pound reaches 
the upper end of each interval with a considerable velocity, and will continue 
to  r i se  after propulsion has ceased until this velocity i s  reduced to  zero, by 
gravity and a i r  resistance. 

If we call r: the velocity with which the pound mass reaches the upper 
end of the particular interval where propulsion ceases, h the distance beyond 
which the one pound will r i s e  (the c ross  section stil l  being one square inch), 
and p the mean air  resistance in poundals over the distance h ,  we have by 
the Principle of Work and Energy, 

The values of p a r e  small, owing to small atmospheric density, being 
1.59 poundals for  the h beyond s,; 0.28 beyond s, ( a =  150). For  se the low 
density makes this quantity negligible. 

The altitudes obtained by adding to  the interval the corresponding h, are  
called the "Greatest altitude attained" in Table 4. 

Obviously if the s ta r t  i s  made at a high elevation, the "total initial mass" 
required to reach a given height will be less  than for a s ta r t  at sea  level, 
due not only to the fact that the apparatus i s  not raised through so  great a 
height, but also to the fact that the denser part of the atmosphere i s  avoided. 

120 Table 3 gives minimum masses, M, calculated for a s ta r t  with zero velocity 
from thebeginning of interval s, (i. e., 15,000ft ) , the effective velocity being 
7,00Oft/sec, a s  in Table 2. 

It happens that the velocity q for minimum M in the interval s, of Table 3 
i s  the same a s  the V, for the same interval in Table 2. The calculations 
that have been made for the intervals beyond s, apply therefore to  the 
present case, and the only difference between the two cases is that the 
masses required to reach s, will be greater ,  for the s ta r t  at sea  level, than 
for the s ta r t  at 15,000ft. 

The calculations beginning at 15,000 ft have been carr ied out in Table 4 
for all but the lowest "effective velocity"; and it will be observed that the 
s ta r t  f rom a high elevation becomes important only for the lower "effective 
velocities. " 

The most striking a s  well a s  the most important conclusion to be drawn 
from Table 4 i s  the small  "total initial mass" required to raise one pound 
to very great altitudes when the "effective velocity" i s  7,000 f t /sec,  the mass  
for the height of 437 miles  (2,310,000ft) for example, being but 12.33 lbs, 
starting from sea level. Even for an "effective velocity'' of 3,500 ft/sec, 
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AUXILIARY TABLE. Data for various rockets [added by Ryninl 

Interval 

S6 

S, (a = 50) 
(a = 150) 

S, (a = 50) 
(a = 150) 

Sg (a = 50) 
(a = 150) 

Altitude 03 upper 

end of interval 
in feet 

125,000 

200,000 
200,000 

500,000 
500,000 

9,310,000 
3,915,000 

ft/sec 

Initial weight 
......... i n k g  

Weight of charge 
in kg ......... 
a/. ........... 
a .......... 

Greatest altitude 
attained 

(feet) 

184,5 00 

377,500 
610,000 

1,228,000 
2,310,000 

w 
w 

Small common 
rocket 

0.120 

0.223 

'4 

'/0.8 

Time (sec) to 
reach greatest 
altitude from 

sea l eve l  

144.13 

217.73 
265.93 

380.53 
475.23 

m 

w 

Coston ship 
rocket 

0.640 

0.130 

'4 

' 4 . 8  

Total initial masses (in lbs) 

Starting from 

Goddard's large 
steel rocket 

19.1 

0.082 

'/,,so0 

1 

c ( 1 - k ) = m  

3.665 

5.14 
6.40 

9.875 
12.33 

1,274.0 
602.0 

c(1-k)=3500 

12.61 

24.36 
38.10 

89.60 
267.70 

1.497 x l o 6  
6.370 X 10' 

Hydrogen +oxygen start 
4,572m 

54.000 

53.546 

%.os 

%19 

19.7 

19.246 

lh.02 

'43.5 



(119) 

for one pound final mass 
, 

sea level 

ft/sec 

c m/sec .. . . . . ... 

c (1-k) m/sec . . . 
Height of ascent . . . 
Flight range (m) . . . 

Starting from 15,000 feet 

Small common 
rocket 

292 

58 

meter 

- 

Coston ship 
rocket 

1,029 

78.4 

149 

402 

Goddard's large 

steel rocket 

- 

- 

0.05 

- 

Hydrogen + oxygen start 
4,572m 

2,865 

- 

Q, 

- 

3,627 

- 

m 

- 



which allows of considerable inefficiency in the rocket apparatus, the mass 
i s  sufficiently moderate to render the method perfectly practicable, for in 
this case an altitude of over 230 miles from sea level, practically the limit 
of the earth's atmosphere, requires under 90 lbs; and an altitude of 
118 miles, close under the geocoronium sphere, only 38 lbs. For  a s ta r t  
at 15,000 ft, the masses a r e  of course, less ,  namely 49.3 lbs and 20.9 lbs, 
respectively. 

The enormous difference between the total initial masses  required for 
low -efficiency rockets, compared with those for high, may at f i rs t  appear 
surprising; but they should be expected from the exponential nature of 
equations (6) and (7). Thus if the "effective velocity" i s  reduced from 
7,00Oft/sec to  half this value, the minimum masses for each interval, 
neglecting a i r  resistance, will be those for 7,000 f t /sec squared; and 
including air  resistance, stil l  greater .  Similarly for an effective velocity 
of 960 ft/sec which is that for reloading rockets having the same velocity of 
ejection a s  Coston ship rockets, the minimum masses will be those for 
7,000 f t /sec raised to the 7.28th power; and for bundles o r  groups of ship 
rockets, a s  shown in Figure 12, the minimum masses  will be those for  
7,00Oft/sec, raised to  the 27.2th power. Even when a i r  resistance i s  
entirely neglected in the calculations fo r  the last case, the masses a r e  of 
much the same magnitude, a s  shown in Table 4. The large values of the 
masses  MR, and Mnl simply express the impossibility of employing rockets 
of low efficiency. Attention may be called to the p a r t i ~ u l a ~  case under 
MR, (the groups of ship rockets indicated in Figure 12) in which one pound 
i s  raised to the altitude of 1,228,000 feet (232 miles); the "total initial 
mass" in this case, even neglecting a i r  resistance entirely, i s  2.89 X 1018 lbs, 
o r  over sixfold greater  than the entire mass  of the earth. 

These large numbers, to be sure,  agree with one's f i rs t  impression a s  
to the probable initial mass  of a rocket designed to reach extreme 
altitudes; but the comparatively small initial masses, possible with high 
efficiency, a r e  not intuitively evident until one realizes what an enormous 
reduction i s  involved in extracting anything a s  large a s  the 27th root of a 
number. 

It should be observed that the apparatus i s  taken a s  weighing one pound. 
Strictly speaking, i f  the recording instruments have a mass of one pound, 
the entire final mass of the apparatus must be at least th ree  o r  four pounds. 
The mass  for the recording instruments may be considered as  being very 

121smal1, yet many valuable researches could, of course, be performed with 
an apparatus weighing no more than this. The entire final apparatus 
should if possible be designed to weigh not over 3 o r  4 lbs at most, unless 
the efficiency of the apparatus i s  so  high that the "effective velocity," 
c (I-k), i s  at least in the neighborhood of 7,00Osft/sec. An examination of 
Table 4 makes very evident the necessity of securing maximum effective- 
ness of the apparatus before a rocket for such a purpose a s  meteorological 
work, for example, is constructed, in order  to make the method a s  
inexpensive a s  possible. It should be remarked, however, that the "total 
initial mass" will really not be increased in a s  large a proportion as the final 
mass  if the latter i s  made greater  than one pound by virtue of equation (2).  

Before proceeding further it will be well to consider carefully the question 
of a i r  resistance a s  dependent upon the c ross  section of the rocket during 
flight. It has already been assumed that the c ross  section, in the calculation 



of the minimum M for each interval, was one square inch. If we make the 
apparatus a s  long, narrow, and compact, a s  possible, the assumption of a 
cross  section of one square inch for an apparatus weighing one pound 
will not be unreasonable. A glance at Tables 2 and 3 will show that, for 
"effective velocities" of 7,000 f t /sec and 3,500 ft/sec, the mass  at the 
beginning of any interval (except s,) does not greatly exceed one pound - 
the mass  at the end of each interval being one pound - s o  that-the com- 
putations a r e  in agreement with this assumption of a r ea  of c ross  section. 
Fo r  the two cases of the adapted Coston rockets, the masses  at the beginning 
of the intervals a r e  much larger;  and hence we see  that the "total initial 
masses" in Table 4, large a s  they are ,  would have been even larger  if a 
proper value of cross  section had been employed. 

The important point is,  however, that c ross  -sectional a r ea s  of even less  
than one square inch should have been used. The reason for  this i s  obvious 
when one remembers that in calculating the "total initial masses,"  when 
we multiply minimum masses,  M ,  together we a r e  also multiplying the 
c ross  sections in the same ratio. In other words, we a r e  considering 
numbers of rockets, each of one square inch cross  section, grouped 
together side by side, into a bundle. But such an arrangement would have 
its c ross  section proportional to its mass and not to the 2/3d power of its 
mass,  a s  would be the case if the shape of the rocket apparatus were at all  
t imes similar to  the shape at the s tar t  (as  in the ideal rocket, Figure 10). 
This constant similarity of shape is,  a s  we have seen (equation 2), one of the 
conditions for a minimum initial mass.  Hence the "total initial masses" 
that have been calculated a r e  really larger  than the t rue minima, which 
would be obtained only by repeating the calculations, assuming a smaller 
c ross  section except in the last few intervals, in which the rocket has 
become s o  small  that the condition of one-square-inch-per-pound i s  
approximately satisfied. 

Before leaving the subject of a i r  resistance, attention should be called 
to  the fact that the velocities (Table 2),  do not exceed that for which a i r  
resistance has been studied by Mallock until in s,, for a = 150ft/sec2, and 
in s,, for a =  50 ft/sec2; and furthermore, that the velocities do not become 
much in excess until the densities have become almost negligible. 

CHECK ON APPROXIMATE METHOD O F  CALCULATlON 

A simple calculation, involving only the most elementary formulae 
instead of equations (6)  and (7) will show that the "total initial masses" 
i n  Table 4 cannot be f a r  f rom the truth. 

Consider, for simplicity, a rocket of the form shown in Figure 10, and 
suppose that one-third of the mass  of the rocket is fired downward, with 
a velocity of 7,000 f t / sec  at the f i rs t  shot; one-third of the remaining 
mass, at the second shot; and so  on, for  successive shots. From the 
principle of the Conservation of Momentum it will be evident that the mass 
that remains i s  given an additional upward velocity of 3,500 f t /sec after 
each shot. 

Thus, after the fourth shot, the mass that remains is16/81, 01" practically 
of the initial mass, and the velocity i s  14,000 f t /sec.  This velocity i s  



sufficient, if we neglect a i r  resistance, to  ra i se  the part of the rocket that 
122 remains to  an altitude of 580 miles (by the familiar relation 4 =2 gh) .  

Although the rang9 would be much reduced if a i r  resistance were considered, 
it should nevertheless be remembered that the values in Table 4 a r e  
calculated for the condition under which a i r  resistance i s  a minimum. 

The above simple case i s  not realizable in practice because of the large 
mass  of propellant for each shot compared with the total mass, i. e., 
provision i s  not made for  the mass  of the chamber. The result will be 
the same, however, if smaller  charges a r e  fired in rapid succession, a s  will 
be evident from a calculation similar to  the above, . . . under the assumption 
of smaller  charges for successive shots. 

CHECK ON APPROXIMATE METHOD OF CALCULATION, 
FOR SMALL CHARGES FIRED IN RAPID SUCCESSION 

Consider a rocket weighing 10 lbs, having 2 lbs of propelling material, 
fired two ounces at a time, eight times per second, with a velocity of 
6,000 f t /sec - much less  than the highest velocity attained in the 
experiments, either in a i r  o r  in vacuo. 

Let us suppose that, for simplicity, the rocket i s  directed upward and 
that each shot takes place instantly ( a  supposition not far  from the truth); 
the velocity remaining constant between successive shots. 

After the first  shot, the mass,  9 lbs, has an upward velocity u, due to 
the downward velocity of the lb expelled. This velocity, vo, i s  at once 
found by the Conservation of Momentum. But it i s  decreased by gravity 
until, at the end of sec, it is reduced to  

the space passed over during this t ime being 

We have then, v:= 71.8 ft/sec, and s=9.23 ft. 
At the beginning of the second interval of 'I8 sec, an additional velocity i s  

given the remaining mass,  of 76.8 ft/sec, and the final velocity and space 
passed over may be found in the same way. By completing the calculations 
for the remaining intervals we shall  have 
for  time just under '12 sec: v: = 291.1 ft/sec; s = 91.98 ft 

11 1 1  I 1  1 1  1 " v: = 603.8 ft/sec; s = 335.48 ft, and 
I 1  1 1  I! I 1  2 " v,' = 1,284.1 ft/sec; s = 1,315.68 ft 

These figures compare well with those in Table 2, for  s, . In the present 
check, a i r  resistance would doubtless be unimportant until the velocity had 
reached 1,00Oft/sec o r  so; but the velocity would, even if decreased some- 
what by a i r  resistance, compare favorably with that of a projectile fired 
from a gun. 



CALCULATION OF MINIMUM MASS REQUIRED TO RAISE 
ONE POUND TO AN "INFINITE" ALTITUDE 

From the fact that the preceding calculation.;. leads us to conclude that 
such an extreme altitude a s  2,310,000ft (over 437miles) can be reached 
by the employment of a moderate mass,  provided the efficiency is high, it 
becomes of interest to speculate a s  to  whether o r  not a velocity as high a s  

123 the "parabolic" velocity for the earth could be attained by an apparatus of 
reasonably small initial mass.  

Theoretically, a mass  projected from the surface of the earth with a 
velocity of 6.95 miles/sec would, neglecting a i r  resistance, reach an infinite 
distance, after an infinite time; or ,  in short, would never return. Such a 
projection without a i r  resistance, is ,  of course, impossible. Moreover, the 
mass  would not reach infinity but would come under the gravitational 
influence of some other heavenly body. 

We may; however, consider the following conceivable case: i f  a rocket 
apparatus such as  has here been discussed were projected to  the upper end 
of interval s,, either with an acceleration of 50 o r  150ft/sec2, and this 
acceleration were maintained to  a sufficient distance beyond s,, until the 
parabolic velocity were attained, the mass  finally remaining would 
certainly never return. 

If we designate a s  the upper end of s, the height at which the velocity of 
ascent becomes the "parabolic" velocity, it will be evident that this height 
will be different for the two accelerations chosen, inasmuch a s  the 
"parabolic" velocity decreases with increasing distance from the center 
of the earth. 

If we call u = the  "parabolic" velocity at a distance H above the surface 
of the earth; 

V, =the  velocity acquired at the upper end of interval s,; 
 the height of the upper end of s, above sea-level, 

we have, taking the radius of the earth a s  20,900,000 feet, 

and also the equation relating "parabolic1' velocity to distance from the 
center of the earth 

On putting the values of u and H from (11) and (12), in (13), we have 

[Here the results in Table 4 are meant.] 



Equation (14) i s  a biquadratic in t ,  from which t may easily be obtained 
(by t r ia l  and er ror ) .  The values of I ,  for the two accelerations chosen, 
given in Table 2, enables u and the initial masses for s,, to  be at once 
obtained. 

The effect of a i r  resistance in s, is negligible, if we accept Wegenerls 
conclusicns, above mentioned, concerning the properties of geocoronium. 
But even i f  we use the empirical rule of a f a l l  of density to  one-half for 
every 3.5 miles we shall  find the reduction of velocity very small  on 
passing from the upper end of s, (500,000 ft) to  1,000,000 ft (beyond which 
the density i s  negligible). 

124 PROOF THAT THE RETARDATION BETWEEN 500,000 ft 
AND 1,000,000 ft IS NEGLIGIBLE 

The falling-off of velocity, W ,  due to a i r  resistance, is given by 

where P = t.he mean air resistance in poundals per square inch between 
the altitudes 500,000 and 1,000,000ft from the previously mentioned velocity 
curves, the pressure being considered a s  atmospheric; e = the mean 
density over this distance; s = t h e  mean area  of cross  section of the 
apparatus throughout the distance, taken a s  25 square inches in view of 
the average mass,  M,, throughout the interval, and h =the  distance traversed: 
500,000 ft. 

It i s  thus found that the loss of velocity w i s  l ess  than 10 ft/sec (for 

a = 150 ft/sec) even when 2 is  taken a s  constant throughout the distance 
h 

and equal to that at 500,000ft (i. e., 2.73 . lo-'). 
The "total initial masses,"  to ra i se  one pound to an "infinite" altitude, 

for the two accelerations chosen, a r e  given in Table 4. It will be observed 
that they a r e  astonishingly small, provided the efficiency is high. Thus with 
an "effective velocity" of 7,00Oft/sec, and an acceleration of 150 ft/sec2, 
the "total initial mass,"  starting at s ea  level is 602 lbs, and starting from 
15,000 ft i s  438 lbs. The mass required increases enormously with decreas- 
ing efficiency, for, with but half of the former "effective velocity" 
(3,500 ft/sec) the "total initial mass, " even for a s tar t  from 15,000 ft, is  
351,0001bs. The masses  would obviously be slightly less  if the accelera- 
tion exceeded 150 ft/sec2. 

Attention is called to the fact that hydrogen and oxygen, combining in 
atomic proportions, afford the greatest heat per unit mass  of all  chemical 
transformations. For  this reason, if the calculations a r e  made under the 
assumption that hydrogen and oxygen a r e  used . . . the velocities would be 



9,400 and 11,90Oft/sec; and the total initial masses  for a s ta r t  from 
15,000 feet, respectively, 119 pounds and 43.5 pounds. 

For comparison with the data on powder rockets, calculated using the formulas of the approximate method 
and presented in Table 4, an auxiliary table is given with the latter table. The auxiliary table presents 
Goddard's data on other rockets: a common small rocket, a Coston ship rocket, a large steel rocket used by 
Goddard in his experiments, and rockets using a hydrogen-oxygen mixture as propellant instead of powder. 

TYPES OF ROCKETS AND CORRESPONDING EXPERIMENTS 

Goddard's compound rockets 

There is no need for a rocket to continue carrying the part of its casing which housed the propellant which 
has already been consumed. Thus, in order to reduce the amount of fuel required during a Right, Goddard 

125 proposed using a compound rocket, the unnecessary parts of which would gradually fall away as the propellant 
was used up. A rough example of such a compound rocket is shown in Figure 12, i t  being just made up 
of bundles of conventional ship rockets (Coston ship rockets). Goddard also gives examples of more 
improved types: powder rockets for which the total initial mass must be large, because of the height of the 
flight. 

There are,  under any circumstances, two possibilities: either the 
secondaries may be small, so that each time a secondary rocket, o r  group 
of secondaries, i s  discarded, the total mass  i s  not appreciably changed, a s  
indicated schematically in Figure 13; o r  a se r ies  of a s  large secondaries 
a s  possible may be used, Figure 14, inwhich case the empty casings constitute a 
considerable fraction of the entire weight at the time the discarding takes place. 

In s o  f a r  a s  avoiding difficulties of construction a r e  [s ic]  concerned, 
the use of a smaller  number of larger  secondaries is preferable, but they 
should be long and narrow, a s  otherwise the air  resistance on the nearly 
empty casings will be greater  for the same weight of propellant than would 
be the case if groups of small  secondaries, Figure 13, were used, in  a s  
compact an arrangement a s  possible. It should be explained, also, that if 
very small  secondaries were  employed, the metal of the magazines and 

126 casings would become a considerable fraction of the entire weight, a s  the 
amount of surface enclosing the propellant would then be a maximum. 

Possibility of employing Figure 14. A rough calculation shows at once 
the possibility of using a comparatively small  number of large secondaries 
(or groups), provided, a s  is ,  of course, to be expected from dimensional 
considerations, that the larger  any individual rocket, the less ,  in proportion, 
need be the ratio of weight of metal to weight of propellant. 

Such a calculation can be made by finding the number of secondary 
rockets, for the case in Figure 14, that would be required for the same 
total initial mass,  other conditions being the same, a s  for continuous loss 
of mass  with zero relative velocity, which i s  practically the case in 
Figure 13. 



For  the latter,  equation (7), in which R and g a r e  neglected, i s  evidently 
sufficient for the purpose, for the reason that the form of the expression, 
so  far  a s  (I-k) i s  concerned, i s  the same whether or  not R and g i s  [sic] 
included. 

FIGURE 12. FIGURE 13. FIGURE 14. 

Goddard's compound rockets. 

Let us now find what conditions must hold for Figure 14, in order  that 
the total initial mass  shall  equal that for  Figure 13.  Assume, f i rs t ,  that 
the casings a r e  discarded successively at the end of n equal intervals of 
time, no mass  being discarded except at these times; the velocity of gas 
ejection being C, a s  before. The total initial mass is  obtained a s  the 
product of the initial masses for each interval, from equation (7) with 
&=O, assuming the final mass  for each interval i s ,  a s  before, 1 lb, after 
f i rs t  multiplying the initial masses by a greater  factor than unity, the 
excess over unity being the weight h, of the casings which a r e  discarded 
at the end of the intervals. 

If, in Figure 13,  we divide the t ime into n equal intervals in the same 
way, we shall have, as the condition that the total initial masses  a r e  the 
same in the two cases, 



We obtain, then, on combining (15) with (7), 

Mit = (1 + h)", 

from which 

n=k log M . 
log (1 + h) 

Let us assume, for Figure 13 (many small  secondary rockets), as well a s  
for Figure 14 (large secondary rockets), that the ratio of mass of metal to 
mass  of propellant is  the minimum reasonable amount that can be expected, 
which may be put tentatively, at least,  a s  'Il4 and 'Il8, respectively. 

Two cases will suffice for purpose of illustration: one in which the ratio 
of initial to  final mass i s  moderately large, e. g., 40, and the other in which 

127 the ratio is extreme, e. g., 600. 
The numbers of secondaries (or separate groups) for Figure 14, for  these 

two cases, are ,  from (16), 5 and 9 respectively, n being necessarily an 
integer. 

It i s  to  be understood that the numbers could be made even smaller,  
although this would necessitate larger  total initial masses.  

GODDARD'S EXPERIMENTS ON ROCKET EFFICIENCIES 

Between 1915 and 1918 Professor Goddard carried out a number of experiments with rockets of different 
types, so as to determine their efficiencies. The efficiency is here defined as the ratio of the kinetic energy 
of the gas ejected from the rocket to the thermal energy of the propellant. The experiments were carried 
out in a vacuum as well as under atmospheric pressure, and powders of various kinds were used. The 
velocities of gas ejection were also determined. 

Types of experimental rockets. Figure 15 shows four kinds of rockets: 
a) common rocket with total weight of 120 grams,23g of which is a powder charge, 
b) large Coston ship rocket, 640 g in weight,including 130g powder charge; 
c) small steel rocket, three models of which were tested: short-nozzle type (gem), medium-nozzle type 

(14.2 cm), and long-nozzle type (19.2cm);* 
d) large steel rocket. 
In rockets c and d the nozzles are conical, with a taper of 8O. The powder charge is placed ahead of the 

nozzle, and its length C can be varied with the aid of a bushing. 
The experimental results are given in Table 5, which clearly shows the common rocket to have the lowest 

1 2 9  efficiency. The efficiency of a ship rocket is a little higher, and that of a steel rocket is much higher 
(up to 64.53%). 

There are three factors which may influence the efficiency of a rocket in a positive way: 1) the thermo- 
dynamic properties of the propellant and the selection of a proper shape and length for the conical nozzle 
through which the gases are ejected, so as to convert all the energy of ghs expansion into kinetic and so as to 
effect total burnmg; 2) possible lightening of the rocket by putting maximum propellant weight in a very 
small volume, with minimum weight of casing and rest of load; 3) use of compound [secondary] rockets, 
the casings of which would fall away one after the other, as the propellant in them is burned up. 

* Goddard does not give the exact lengths of the nozzles in his paper, but since photos with scales indicated 
were given, we were able to determine the nozzle lengths appr~ximately. 
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FIGURE 15. Diagrams of Goddard's rockets 

USE O F  PARACHUTE DURING ROCKET DESCENT 

In his "Method of Reaching Extreme Altitudes," Goddard discusses the possibility of lifting recording 
instruments to the upper atmosphere with the aid of a rocket and indicates that i t  may be possible to use a 
parachute to effect a safe, gradual descent of the instruments to the earth. 

Some means will, of course, be necessary to  check the velocity of the 
returning instruments. It might not appear, at f i r s t  sight, that a parachute 
would be operative at a velocity of 10,00Oft/sec o r  more; but it should be 
remembered that this velocity will occur in a i r  of very small  density, s o  
that the pressure, or force per  unit a r ea  of the parachute, would not be 
excessive, notwithstanding the high velocity of the apparatus . . . 

If the parachute i s  s o  large that the velocity will be decreased greatly 
when the denser a i r  i s  reached, the descent will be so slow that finding of 
the apparatus will not be s o  easy as  would be the case with a more  rapid 
descent. For  this reason, part of the parachute device must be lost 
automatically when the apparatus has fallen into a i r  of a certain density; 
o r  else the parachute must be small  enough to facilitate a rapid descent, 
with additional parachute devices rendered operative a s  the rocket nears 
the ground. Such devices a r e  not described in the present paper, but can 
be of simple and light construction. 



11 28) TABLE 5. Velocities of gas ejection from rocket (according to Goddard) 

a) Experiments in atmosphere I 
Common rocket 

Notes 

Coston ship 
rocket 

Small steel 
rocket 

Efficiency Rocket 
Gas-ejection velocity 

Large steel 
rocket 

Propellant 
ft/sec 

1 powder 1 951.6 

m /sec 

1 powder 1 2.21 1 1,029.25 

powder 

Du Pont 
powder 

"Infallible" 
powder 

"Infallible" 
powder 

44.13 

41.88 

44.78 

b) Experiments in a vacuum 

Du Pont 
powder 

Small steel 
rocket powder 

powder 

55.90 

1) Efficiency defined as ratio of 
kinetic energy of gases expelled 
from rocket to thermal energy 
of propellant. 

64.53 

2) In a vacuum velocities are some- 
what higher, for same charge length 
and powder mass, than in atmo- 
sphere. Du Pont powder gives high 
velocity in vacuum for medium 
and short nozzles. No difference 
for long nozzles. 

1,515 

3) "Infallible" powder gives higher 
velocity in vacuum (up to 22 %). 

4) Nozzles of medium length give 
higher velocities than short or 
long nozzles. 

5) There is reason to believe that 
the velocities in a vacuum are 
actually somewhat higher than 
those shown in the table, due to 
the inaccuracy of the experiments. 

c) Velocities using hydrogen-oxygen mixture as propellant I 

The effectiveness of a parachute of even moderate size, operating in a 
region where the density i s  small, may be demonstrated by the following 
concrete example. Suppose that an apparatus weighing one pound and having 
a parachute of one square foot a rea  descends from the altitude, 1,228,000 ft. 
(over 200 miles), and does not encounter any atmospheric resistance until 
it i s  level with the upper limit of s6 (125,000ft). This condition will not, 
of course, be that which would actually obtain in practice, for a continually 
increasing resistance will be experienced as  the apparatus descends; but 
if a sufficient braking action can be shown to exist in the present example, 
the parachute device will a fortiori be satisfactory in practice. 

The velocity acquired by the apparatus in falling freely under the 
influence of gravity between the two levels i s  

Hydrogen+oxygen 
(liquid or solid) 

Now the a i r  resistance in poundals per  square inch of section at 
atmospheric pressure for this velocity is,  from the plot of Mallockls 
formula, 360 32 poundals per square inch, making the value of R for  the 
a r ea  of the parachute 

5,500-7,500 

R= 1,653,000' poundals /in2. 
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But the actual resistance i s  R ,  multiplied by the relative density at 

125,00Oft, which i s  approximately 0.01, giving for the resistance, 

A retarding acceleration must therefore act upon the apparatus, of amount 
given by 

a=-- 'F hf 1 6 ~ - 1 6 $ 3 ~ f t / s e c  

Hence it i s  safe to  say  that, long before the apparatus had fallen t o  the 
125,000ft level, the velocity would have been reduced to, and maintained at, 
a safe value, with the employment of even a small  parachute. This case, 
it should be noticed, i s  entirely different from that of a falling meteor; in 
that the apparatus under discussion falls from rest ,  at the highest point 
reached, whereas the meteor enters the earth 's  atmosphere with an 
enormous initial velocity. 

If it i s  considered desirable, for any reason, to dispense with a sufficiently 
large parachute,* the retarding of the apparatus may be accomplished to any 
degree by having the rocket consist, at i ts highest point of flight, not merely 
of instruments plus parachute, but of instruments together with a chamber, 
and considerable propellant material. Then, after the rocket has descended 
to  some lower level,. . . this propellant material can be ejected, s o  that the 
velocity i s  considerably checked before the apparatus reaches as  low an 
altitude as, say, 5,000 ft . . . But. . . this method can hardly be a s  satisfactory 
a s  the parachute method; for if the "final" mass to be elevated i s  made a 
number of pounds, let us say n, the "total initial mass" (which is  la rge  even 
for one pound final mass)  will be n fold larger ,  and the apparatus cor-  
r espondingly more  expensive.** 

RECOVERYOFAPPARATUSONRETURN 

A point of considerable practical importance i s  the question of finding 
the apparatus on i ts  return, and of following it during flight, both of which 
depend in a large measure upon the t ime of flight. 

Concerning the times of ascent, Table 4 shows that these a r e  remarkably 
short.  For  example, a height of over 230 miles is reached in less  than 
6 minutes . . . 

The short t ime of ascent and descent is ,  of course, highly advantageous a s  
regards following the apparatus during ascent, and recovering it on landing. 

* [Here the Russian translation varies somewhat from the original, in that it reads: " ... if the parachute 
descends together with the rocket..."l 

*' In 1926 a successful descent of an airplane, with a flight weight (including pilot and equipment) of 740kg, 
was accomplished using a parachute, a t  the Naval Air Station in San Diego [California]. The pilot stopped 
the motor a t  an altitude of 750 m,  and the craft began a descent lasting 1.5 min, a t  an initial speed of 
about 11 m/sec. A parachute attached to the airplane immediately opened, and the craft descended to 
the ground safely, striking It a t  about 6 m/sec. Although the chassis was damaged in the process, the 
experiment was considered to be a success. 



The path can be followed, by day, by the ejection of smoke at intervals, and 
at night by flashes. Any distinctive feature, a s  for example, a long black 
s treamer,  could assts t  in rendering the instruments visible on the return. 

PROBABILITY OF COLLISION WITH METEORS 

The probability of collision with meteors of "visible" s ize i s  negligible. 
This can be shown by deriving an expression for the probability of collision of 
of a sphere with particles moving in directions at random, al l  having constant 
velocity, the expression being obtained on the assumption that the speed of 
the sphere i s  small  compared with the speed of the particles. 

The probable number of collisions here calculated i s  the sum of the 
probable numbers obtained by taking the velocity of the spherical body, and 
of the meteors, separately equal to  zero. 

Let v =velocity of the spherical body; 
V =velocity of the meteors; 
n = the number of meteors per unit volume, which number is,  

of course, a fraction (mutual collisions between meteors 
being neglected), and 

S = the a rea  of c ross  section of the spherical body. 
13' 

For  v=O,  the meteors, if any, which strike the sphere during the time t 
to t+dt, will have come from a spherical shell  of radii  Vt andV(t+dt), 
neglecting the diameter of the spherical body in comparison with that of 
the spherical shell. Further,  the probable number in any small  volume, 
in this shell, which a r e  s o  directed a s  to strike the body, i s  

being the ratio of the solid angle subtended at the element, by the spherical 
body, to the whole solid angle, 4n. Hence the probable number of collisions, 
N, from all  directions, between the time t ,  and t ,  is,  evidently, 

Fo r  V=0, an expression of the same form i s  obtained for the probable 
number of meteors within the space swept out by the spherical body. 

If we accept Newton's estimate of the average distance apart of meteors 
a s  being 250 miles, we have by considering collision between very small 
meteors of velocity 30 mileslsec,  and a sphere one foot in diameter of 
velocity onemile/sec, moving over a distance of 220,000 miles, the 
probability a s  1.23 . which is ,  of course, practically negligible. The 
value would be slightly greater  if the meteors were considered a s  having 
a diameter of several  centimeters, rather  than being particles; but the 
probability would be less ,  however, if meteor swarms were avoided. 

Attention i s  called to the fact that, even if meteor swarms were not 
avoided, the probable number of collisions would be reduced if the direction 
of motion were substantially that of the swarm. 

In general, for any values of 2, and V, the meteors reaching the spherical 
body a t  successive instants come from a spherical surface of increasing 
radius, VP, with moving center distant vt in front of the initial position of the 
spherical body. 



It should be explained that when v differs but little from V, the relative 
velocity of the body and meteors i s  small  enough to be neglected, for 
meteors on this expanding spherical surface lying outside a certain cone, 
the vertex of which coincides with the moving center of the spherical body. 

NOTE BY N.RYNIN 

It is the opinion of Prof.Graff (Hamburg) that the  probability of a collision between a spaceship and a 
meteor is very smal1,since the number of meteors in a unit volume of space is negligible, equivalent to 
one gram of mass for a volume of 100 km3 (Scheiner-Graff: Astrophysik, 1922, S.305-306 ). 

Moreover, i n  a paper entitled "Kometen und hleteore" (Stuttgart), p.68, K.Meier notes that i n  the  Leonid 
shower of 1866 the  meteors were separated by 110 km, even in the densest part of the shower. 



WORKS A T T R I B U T E D  T O  GODDARD 

In writ ings i n  Russian,  a s  well  a s  in  o ther  languages, r e fe rences  have 
d t e n  been made  t o  Goddardfs  studies.  Without vouching fo r  the i r  
authenticity, we now present  s u m m a r i e s  of a few of these  r e fe rences .  

132 GODDARD'S MANNED ROCJXET 

I s sue  No. 7 of the  journal "Ekho" for  1923 (5?) contained a br ief  
description,  with an  i l lus t ra t ion (F igure  16), of a plan fo r  a manned rocket,  
at tr ibuted t o  Goddard; t h e  rocket was  ostensibly designed with a t r i p  to 
M a r s  i n  mind. It was  provided with a buffer at the  top, s o  a s  to  mit igate  
the  shock during launching, and t h e  passengers  w e r e  t o  r i d e  amidships  
i n  a f r e e l y  rotating sphere ;  the  s p h e r e  was  to  include a cabin and a chamber  
for  observations.  

FIGURE 16. Manned rocket attributed to 
Goddard. 

FIGURE 17. Interplanetary 
radio transmitter attributed 
to Goddard. 

GODDARD'S INTERPLANETARY RADIO TRANSMITTER 

In 1925 "Vestnik Znaniya" (No. 8, p. 581) contained a r e fe rence  t o  a plan 
by Goddard for  sending rad io  signals f r o m  a rocket t o  t h e  ground (F igure  17). 

According t o  th i s  plan, the  rocket is to  b e  equipped with a radiotelegraphic 
t r ansmi t t e r ,  which i s s u e s  s ignals  automatically during flight. The rocket is 



described a s  a steel projectile, about 20 meters  in length, divided into two 
parts  by an insulating ring. The upper part serves a s  an antenna, and the 
lower part a s  a copnterweight for the radio transmitter.  The idea i s  that, 
when the rocket approaches the limit of the earth 's  atmosphere, radio 
signals will begin to be  transmitted automatically. In this way, radio 
stations on the ground will be able to ascertain directly how radio waves 
coming in from outside a r e  propagated. 

133 
Since 1926 no information on Goddard's more recent work has appeared 

in print. However, he i s  apparently (according to German technicians) 
continuing his work, but now for the United States War Department, for 
which he i s  constructing rocket torpedo bombs capable of bombarding 
London, Paris ,  o r  Berlin from America. Figure 18 shows an a r t i s t ' s  concep- 
tion of such a rocket. 

FIGURE 18. Rocket torpedo bomb attributed to Goddard . 



GODDARD'S ROCKET 

A model of the large compound steel  rocket originally proposed by 
Goddard in  1919 (See Figure 19) was on display at the exhibition of inter- 
planetary apparatus in Moscow in 1927.  The propellant for  this rocket 
was alcohol diluted with water, which, a s  i t  burned was to  lift the rocket 
to  a certain altitude. Then liquid hydrogen in the sphere of an oxygen spray  
in a second rocket, located in  the same chassis, was to  burn. After the 
operation of these two rockets,  their casings were to  fall away, leaving the 
forward part of the rocket to  f ly  alone, charged by a smokeless powder 
(nitrocellulose). Later Goddard turned away from liquid propellants and 
manned rockets and used d ry  propellants instead. 

FIGURE 19. Compound passenger rocket attributed to Goddard 
[Moscow exhibition]. 



In his most recent experiments Goddard has returned to  a liquid 
propellant (gasoline plus liquid oxygen). His test  rockets a r e  cylindrical, 
with conical heads and with tail  groups having four fins. 

"GODDARD'S SHOT" ON 17 JULY 1929 

Under the above title a description of Goddardls test flight of his rocket 
was published in the "Bulletin of the American Interplanetary Society." In 
1928 Goddard had improved his rocket nozzle and had determined by 
experiment the composition of a suitable mixture of liquid hydrogen and 
liquid oxygen. Pr ior  to his main experiment, he carried out a number of 
preliminary tests  at Auburn, Mass. When these produced satisfactory 
results,  Goddard shifted his work to Worcester, where he prepared a rocket 
equipped wihh a barometer and a parachute. The experiment known a s  the 
"July 17 Shot" was also carried out there.* 

Goddard constructed a steel tower 1 2 m  (40ft) high; ra i l s  led from the 
base of the tower to the top, to aid in lifting the rocket. The latter was 

134 2.74 rn (9 ft) long and 0.71 m (28 in) in diameter. The rocket bursts were to  
take place at intervals, rather  than continuously, and each burst could be 
heard for 3km. The experiment was a brilliant success. Althoughthe 
ascent was not high, the parachute brought the casing and the barometer to 
a safe landing. 

The most important consequence of this experiment was financial support 
for Goddard's work. F rom 1919 to 1929 the Smithsonian Institution spent 

135 12,000 dollars on the experiments, in addition to  the money spent by Goddard 
himself. Then, in july 1930, D. Guggenheim offered 100,000 dollars to 
finance the continuation of the experiments. Accordingly, construction was 
begun on a large rocket provided with stabilizing and descent equipment 
and with an instrument compartment a s  well. Ascents to  heights from 
75 to 300 krn a r e  proposed. The experiments a r e  to be carried out near 
Roswell, New Mexico, where atmospheric conditions a r e  better than at 
Worcester. 

FUEL CONSUMPTION O F  THE ROCKET AND 
HEIGHT OF ITS ASCENT 

Professor Goddard has calculated that, under the most favorable con- 
ditions, the following amounts of powder a r e  necessary to ra i se  each kg of 
an empty rocket to  the heights indicated: 

Powder Height of ascent 

(kg) (km) 

12.5 55 
89 368 

167.7 693 
802 Beyond range of gravity 

* [Actually, the July 17  flight was also made  a t  Auburn,(Translaror).] 
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FIGURE 20. FIGURE 21. Moon-flight 
rocket attributed to  
Goddard. 

This relationship i s  expressed graphically in Figure 20. F o r  a velocity 
of f ree  flight equal to  12,00Om/sec, a velocity of gas ejection of 2,00Om/sec 

136 will be a s  great,  while a velocity of gas ejection of 1,800 m/sec  will be 
nearly a s  great. Consequently, the initial mass  must be either ee=403.4 
o r  e7=1096.5 t imes the final mass.  Goddard assumes a velocity of gas 
ejection of 1,90Om/sec and obtains an initial mass 802 t imes greater  than 
the final mass.  

GODDARD'S MOON-FLIGHT ROCKET 

One of the newspapers printed a picture of a rocket, supposedly designed 
by Goddard for a flight to the moon. Upon hitting the moon, this rocket was 
to  produce an explosion visible from the earth. Figure 21 shows a small  
diagram of this rocket, with an explanation [in Russian]. 

GODDARD'S P A T E N T S  FOR NEW T Y P E S  OF ROCKETS 

Along with his theoretical and experimental studies, Goddard was also 
responsible for a number of inventions connected with the improvement of 



ordinary rockets, and he took out several  patents on these. Drawings and 
brief descriptions of these patented rockets a r e  given below, taken by us 
from American patent publications (United States Letters Patent). 

Goddard's compound rocket 

(Patent 1102653, 1 Oct. 1913) 

The rocket a s  a whole consists of two parts:  a large lower rocket and 
a small  upper rocket (Figures 22 and 26). Each of these has a combustion 
chamber with propellant and a conical nozzle, the length of which is a t  least 
th ree  t imes its .diameter. At its top the lower rocket has a tube into which 
the upper one i s  inserted, and, when the lower rocket stops burning, the upper 
one separates from this tube. In order  to  stabilize flight, the rocket is 
made t o  rotate by means of bursts in curved horizontal ducts located at the 
head of the  rocket. 

Goddard's revolver rocket 

(Patent 1103303, 15 May 1914) 

Rocket bursts  a r e  brought about via a successive downward feeding of 
cartridges to the nozzle. The spent cartridges a r e  removed to a special 
chamber inside the rocket (Figure 23). 

FIGURE 22. FIGURE 23. FIGURE 24. FIGURE 25. FIGURE 26. 

Goddard's rockets. 
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Goddard's revolver rocket 

(Patent 1191299, 8 Nov. 1915) 

Rocket bursts  ape brought about via a successive downward feeding of 
cartridges to  the nozzle. By means of a special mechanism, spent car t-  
ridges a r e  removed from the combustion chamber and ejected outward 
through a special opening (Figure 24). 

Goddard's revolver rocket 

(Patent 11 94496, 23 Dec. 191 5) 

Cartridges a r e  fed automatically to the nozzle along the rocket, their 
removal, and opening and closing of the chamber where the cartridges 
explode, being effected by a spring mechanism. Used cartridges a r e  
ejected outward (Figure 25). 



Appendix 

A PROBLEM IN THE CALCULUS OF VARIATIONS 
RELATED TO ROCKET THEORY 

Georg Hamel (Prof.  Math., Berlin-Charlottenburg 
Institute of Technology, Germany) 

Let us  consider a rigid body acted upon by the earth 's  gravity and the 
138 a i r  resistance W. The body, which has an instantaneous (in general variable) 
. mass  M, i s  lifted vertically by the reaction force of a s t ream of gas (that i s ,  

by a rocket). According to Newton's law and the law of conservation of 
mass,  we can write the following differential equation: 

where i s  the path traversed, 1 i s  the time, u = ds ldt i s  the flight velocity, 
and C i s  the relative velocity of the exhaust. 

In the subsequent calculations we introduce the following simplifications: 
1) since the ascent is only to 100 o r  200 km, we assume that g is  constant; 
2) in calculating the a i r  resistance W, the effect of the exhaust s t ream i s  
neglected; 3 )  momentum changes inside the rocket, due to  variation of the 
combustion surface (in the case of powder, etc.), a r e  neglected, a s  well a s  
other s imilar  minute phenomena; and 4) the earth 's  rotation i s  neglected. 

We introduce the following notation: h!, i s  the final mass  (that is,  the 
mass  of the empty rocket), Ma is the initial mass,  and 9=(Ma-&)/Ma is the 
mass  ratio. Our goal will be to  determine the minimum value of Me, that is, 
the minimum amount of fuel (and thus minimum q ) ,  for certain previously 
specified conditions: Me, total height of ascent h, initial velocity ua for 
t,=O, se=O, and C constant (constant relative exhaust velocity) .>: 

This problem was posed by the American Professor R .  H. Goddard,** 
who also made an attempt at solving it, but using a method that is,  mathem- 
atically, very questionable. Here this problem will be solved using the 
methods of the calculus of variations. 

Taking equation (1) to  be a linear differential equation in M, we can 
integrate it and solve for M, by substituting in the final (in the sense of the 
end of the ascent process) values. This gives 

* The condition that C be constant was first demonstrated by Tsiolkovskii; i t  is a fundamental condition. 
" A Method of Reaching Extreme Altitudes. Washington, USA. 1919. Publication of the Smithsonian Institurior 



The values 1,. a,, and s, pertain to  the end of burning (that is, to the beginning 
of flight by inertia), and it i s  c lear  that s,<h, where h i s  the total height of 
ascent. Since I am considering the problem for a rocket alone (without a 
catapult, so  that the initial velocity i s  zero), we can write ua=O. However, 
a consequence of this condition i s  the absence of a real  minimum; there 
is only a lower limit (boundary), which can be approached to any degree, 

139 and it is sufficient to consider that the velocity u increases rapidly from 
u,=O (at t ,=O) to the specified value. In the following, the "minimum" will 
be understood to  refer  to  this lower limit, which i s  the actual minimum. 

Hence our problem can be stated a s  

with the values s, and t# f ree  (u=ds/dt ) .  There will then be a relation 
between U, and re . With the consumption of all the propellant (M=Me), the 
rocket will ascend due to  the kinetic energy developed. This f r e e  (motorless) 
ascent should b e  used, and i t  can be expressed by the equation 

db Me-T+ W (s, rr)+M, g=O, 

which is identical to the condition f+(f l /&)dt)=O.  This equation has the 
form u (du/dr)=f, (u, s), and it i s  integrable when the final values u=O and 
s= h a r e  substituted in 

Because of the low value of the a i r  resistance at great heights (for high h 

and r ), it will be approximately t rue  that 

Consequently, we must stil l  take into account the boundary condition 
u,=y, (sJ. This expression can be substituted directly into function F, s o  
that the additive t e rm will have the form F [ y  (s& t,$ 

However, while seeking a minimum value for  Ma, we have no right to 
substitute the boundary condition into the integral, since it is known that, 
for the limiting values of the function of the boundary condition ~ ( 4 ,  it i s  
always possible to substitute another value of w; the value of the integral 
can vary from it to any small degree. 

Therefore, the integral in equation (3) should become a minimum for 
certain values of s, and t, . 

This is an ordinary problem in the calculus of variations, corresponding 
to  Euler t s  equation and giving regular limiting values without a conjugate 
p ~ i n t .  Thus we have, if the conditions 



a r e  always satisfied, the inequality 

where an equals sign can be used only for u = O .  Assuming still that 
(dW/ds)<O, we can obtain resul ts  which a r e  more and more  general. 140 

Consequently, in itself the integral has a marked minimum. Difficulties 
a r i s e  only for  variations of s, and I,  or  of a, and u, . In this case the 
following results a r e  obtained: 

1) only a single stationary point exists, at s,= so, u,= u, for which condition 
(alW,/dt,)=Oand (dMa/ds,)=O is satisfied. This point l ies on the u = y  (s) curve, 
s o  that it is a final (end) point (condition), in the sense of a Courant natural 
point. 

2) For  variation of se, ue along the u =y, (8) curve, point so, u, corresponds 
to  a r ea l  minimum-. 

3) For  any variation the discriminant of the second-order te rms  

s o  i t  i s  possible that pointed regions, in which Ma reaches values lower than 
at point so, u,, may be a s  low as  the values ds,, dt,. 

4) However, such a pointed region can reach the u = p  (s) curve only from 
outside. But these outer points do not have a physical meaning, like the final 
values s, u,, since in this case the retardation of the speed of the rocket 
should occur via a sudden increase in i t s  mass,  which i s  physically 
impossible. A minimum is guaranteed mathematically by the inequality 

Consequently, a t rue  minimum does exist. For  the numerical calculations, 
we used the following formula for the a i r  resistance: 

where 5, i s  the a i r  density at sea level and /=6.666 km, that is, at a height of 
6.666 km the a i r  density is c=2.?l t imes the density at the ground (sea level). 
Calculations show that u, (= u,) depends only slightly on C, for  = 1,000 and 
2,000 m/sec  and, for the corresponding possible values of Cd, and Me, it 
depends only slightly on these quantities a s  well. Here, for a total ascent 
height h=100krn, we have u, (=u,)= 1,000 to 1,100 m/sec  and s,=0.5 h. 
The actual minimum (Ma) ,in and also l im u ,  were not calculated. During the 
calculations Dipl. Eng. Rossmann, assistant to Prof. Cranz, was kind enough 
to  help me, and it was on his suggestion that the rocket problem was dealt 
with in a report to  the mechanics seminar at the Berlin-Charlottenburg " 
Institute of Technology. All the equations proved to  be easily integrable. 

Note. This paper was published in German in: "Zeitschrift fih angewandte Mathematik und Mechanik," 
Vol.7, Book 6,Nov.-Dec.192l,pp.451-452. 
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H E R M A N N  O B E R  T H  

SOME INFORMATION ABOUT @BERTH 

Hermann Oberth (Figure 27) was born on 25 June 1894 in  Hermannstadt, 
Transylvania. He completed the gymnasium in 1912 in Schgssburg, and for 
two semesters  he studied medicine in Munich. Later Oberth studied phys- 
ics  and astronomy at Klausenburg, Munich, Gottingen, and Heidelberg. 

During the World War (1914-1915) he 
served in the infantry and later in the 
medical corps. In 1923 a study by Oberth 
entitled "The Rocket Into Interplanetary 
Space" was first published. At present 
(since 1925) H. Oberth i s  a teacher in the 
town of Medias (Mediasch) in Rumania. 

A second edition of the above-mentioned 
work (Hermann Oberth, " ~ i e  Rakete zu den 
~ l a n e t e n r ~ u m e n " )  was published in  1925, 

' and our version of i t  will be given below. 
In his work, Oberth presents quite 

complex mathematical arguments to prove 
that, given the present state of technology, 
it is possible to leave the earth with the 
aid of a rocket. The rocket would later 
either fall back to earth, begin to revolve 
about the earth a s  a satellite, o r  go off 
into interplanetary space. In the first 
case the rocket could be used to study the 
upper atmosphere, by placing recording 
instruments aboard it. In the second case, 
in which the rocket revolves around the 
earth, it could serve a s  a station for other 

FIGURE 27. H.Oberth. rockets passing between it an.d the earth. 
Such a rocket could reflect solar radiation 

142 to the earth, melt the ice in polar regions, and increase the amount of arable 
land in the world. However, the author himself admits that the latter plan i s  
still  in the realm of fantasy and will only be possible in the distant future. 
Now, however, Oberth suggests constructing a rocket of the first type and 
launching it without passengers, although he gives drawings of another rock- 
et to be used for manned flight a s  well. 

A basic feature of Oberth's rocket is that it consists of two, and in some 
cases even three, individual rockets. As the propellant burns, the individual 



rockets fall away one by one, the lower one first and then the middle one. 
During the return descent, the upper rocket also separates, and only the 
nose of this rocket remains. This nose section includes the parachutes, 
and the instruments o r  passenger compartment, which a r e  to descend to 
the earth. In spite of the fantastic nature, and even the lack of basis, of 
many of Oberthls suggestions (for example, the use of stabilizers during 
flight in the vacuum of space, and the advisability of using a parachute), 
i t  must still  be admitted that his approach to the solution of the problem 
of rocket flight i s  of great significance, since i t  i s  based on mathematical 
analysis and physicomechanical laws. Therefore, we present below 
Oberth's main calculations, together with a description and some drawings 
of his rocket. Finally, in conclusion, we also quote the author's hopes con- 
cerning the possible application of his rocket.;: 

In 1929 in Berlin the UFA motion-picture company produced a film en- 
titled "The Girl in The Moon" ["Frau im Mond"], the subject of which was 
a manned rocket flight to the moon and back. Oberth helped work out the 
technical aspects of this film, by giving advice on rocket construction. 
Figure 28 shows the rocket ready for launching. In Figure 29 a mcdel of 

FIGURE 28. Oberth's rocket a t  launching (from "The Girl in the Moon"). 

the inside of this rocket is shown, and in Figure 30 the control panel and 
conditions aboard the rocket during launching a re  shown. Figure 31 shows 
a future rocket flight with observers aboard (from " ~ i e  Umschau"). 

After the production of this film in May 1929, the company drew up a 
contract with Oberth to aid him in his studies of rocket construction. 
Oberth began carrying out experiments, with the assistance of an engineer 
named Nebel. At first he tried various kinds of liquid propellants: C,H,, C8H,,, 
and gasoline+ Q4; CN, -I- Q2, and gasoline +- N2o4 Mixtures of gasoline and 0, and 

* The well-known German balloonist, August von Parseval, believes that the flight of a rocket to the moon 
or to Mars, which in Oberth's opinion will not take place soon, may actually be realized earlier, since 
technology is developing a t  a rapid pace. 



C&+Os turned out to be preferable. The experiments were carried out on 
a small island in Haffe (Greifswalder Oie, near Stettin). The rocket weighed 
9.8 kg empty and the propellant weighed about 10 kg. 

FIGURE 29. Internal construction of Oberth's rocket (from "The Girl i n  
the Moon"). 

In July 1929 near Berlin the construction of two Oberth liquid-propellant 
rockets was begun: one of these was wingless and 1.5m long, and the other 
had wings and was 1.9 m long. The work was carr ied out under the direction 
of Oberth, by A. B. Shershevskii, and a group of young engineers. In October 

a reaction engine was already op- 

FIGURE 30. Control compartment of Oberth's rocket (from was liquid at room temperature 
"The Girl in the Moon") was poured into a container along 

with liquid methane, and the r e -  
action engine operated well. The 

rockets were made of Elektron. However, late in 1929 Oberth was compelled 
to discontinue his work, due to a shortage of funds. 

On 21 December 1929 Oberth left for Rumania (Mediasch, or  Medias, 
Hermannstadterstrasse, 9) after having a serious disagreement with the UFA 



Company over the contract. UFA had spent, together with a donation, about 
27,000 marks on the research  and construction work. 

The contract specified that UFA 
would, for 100-1 = 99 years ,  receive 
33i7'0 of the net profit for all rocket 
projectiles which would be constructed 
by Oberth or  his representative. Since 
Oberth was bound by this contract and 
was required to pay these sums where - 
ever the rockets might be built, he de- 
cided to return no sooner than 1 April 
and to s ta r t  legal proceedings against 
UFA to dispute the contract. The work 
had continued until 20 December 1929. 
At that t ime an almost completed 
rocket lay in the construction depart- 
ment of the Elektron Werke S. G. Fa r -  

FIGURE 31. Flight of rocket attributed to Oberth. benindustrie at Bitterfeld. The rocket 
was 70 to 80% finished. Completed 
were: the casing, the reaction engine 
with control panel, the fuel injectors, 

and the nozzle. Oberthts immediate co-workers were: A. B. Shershevskii, 
Dipl. Ing. Rudolf Nebel, Dipl. Ing. Max Langgut, and a design engineer named 
Alfred Krontz. 
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On 20 July 1929 the work had reached a standstill, and Nebel had con- 

ducted negotiations with Alfred Frommherr  (Berlin), a representative of the 
Magdeburger Werkzeug und Maschinen Aktien Gesellschaft (MAG) concern- 
ing continuation of the work. MAG agreed to provide 20,000 marks to  com- 
plete the f i rs t  rocket, but only with very stringent conditions in the contract, 
namely that MAG would receive a considerable part of the net profits for a 
long period (about 50 years)  and also that the contract with UFA would be 
broken. 

A further condition of the contract required Oberth to  plan and demon- 
s t ra te  to Lauff, the director of MAG, a flight of the first  rocket to a height 
of 50 km. For this Oberth required approximately another 4,000 marks.  At 
f i rs t  he preferred to  complete the construction in Mediasch, but la ter  he 
decided to ca r ry  on his work at the Zurich branch of MAG (Switzerland). 

Figure 32 shows a general view of a rocket for studying the stratosphere, 
constructed by Nebel, in  cooperation with Professor Oberth, in the town of 
Tegel. This rocket was 2 m long, and was provided with a recording instru- 
ment a s  well a s  a parachute, with the aid of which it could make a gradual 
descent to the earth. The stand for the launching of the rocket i s  shown in 
Figure 33, and Figure 34 gives a representation of the proposed parachute 
descent. This descent will take about an hour. Since parachutes a r e  often 
carr ied long distances by the wind, making it difficult to find them, Oberthts 
rocket is to  be provided with a flashing red  light, to facilitate observation of 
the rocket descent. 

In 1929 Oberth published a third edition of his book, under the title "Wege 
zur Raumschiffahrt." In this completely revised work he analyzes three 



t ~ ~ e s  of problems: physical and engineering problems, s t ructural  
problems, and problems of rocket applications. Since th is  ent i re  
study has  been t ransla ted by u s  under the  direction of Gostekhizdat, 
who will publish i t  in the near  future, we will not d iscuss  i t s  contents 
here .  

FIGURE 32. Oberth's FIGURE 33. Stand for launching 
Miralc rocket. of Oberth's rocket. 

FIGURE 34. Descent of Oberth's 
rocket by parachute. 

In 1929 the  l a t t e r  work won for  Oberth the f i r s t  REP-Hirsch 
prize, which had been s e t  up in F r a n c e  fo r  the  Astronomical Society 
there .  The main reason  for  awarding the  p r ice  t o  Oberth was that 
he  had succeeded in increasing the velocity of g a s  ejection f rom a 
rocket t o  4,000 m / s e c ,  by increasing the amount of hydrogen used in 
the hydrogen-oxygen mixture.  Consequently, "only" 24 tons of 
propellant were  needed fo r  each ton of useful load, in o r d e r  t o  escape 
into outer  space.  



147 

WORKS OF HERMANN OBERTH 

Part I .  Theory of Rocket Flight 

FUNDAMENTAL EQUATION OF MOTION 
AND OPTIMUM ROCKET VELOCITY 

A longitudinal section of a rocket is shown in Figure 35. When an ex- 
plosion [burst] occurs inside of it ,  gases a re  ejected through the nozzle at 
the bottom, and the recoil pushes the rocket upward. The following sym- 
bols will be used: P i s  the recoil, dt is the duration of the burst, c i s  the 
velocity of gas ejection, and dm is the mass ejected from the rocket. 

From the law of momentum, we have 

The fuel consumption over a period of time is found from equation (1) by 
integration: 

1 i1 m,-m,=TI  Pdt. 
to 

Now let us introduce the following notation: L i s  the air  resistance to 
flight of the rocket, C is the rocket weight (force of gravity), Q= L-e C , v is 

&I the flight velocity at a given moment, b is the acceleration R= P- Q 

is the force imparted to the rocket by acceleration b ,  and m is the mass of 
the rocket. 

NOW we can write R = r n . b z m  dV. From (1) we have 
dt 

Rdt + Qdt = - odm 

14' This is the fundamental differential equation of motion, connecting the 
mass,  velocity, time, fuel consumption, and resistance. 



Let us consider the motion of a rocket within the earth 's  atmosphere. 
We wish to determine the velocity of motion for which: 1)  the momentum 

mdv determining the flight stays at  a speci - 
fied value, and 2)  the fuel consumption dm rn is a minimum. This velocity will be called 
the optimum velocity. 

-f-ym&-;t The rocket, located at a height s above 
the earth (Figure 36), t raverses an a i r  

iS layer ds, which is so  thin that during the 

1::~ traversal: 1) the a i r  density does not 
',,'% 

: ,:s - change, 2 )  the rocket mass m also does 
not change,:% and 3) the momentum in- 

FIGURE 35. FIGURE 36, creases constantly by an amount mdv. 
Then the time required to t raverse the 

layer will be dt =$ , and from equation (2) we have 

mdv Q dm -+-+c--0. d v ds - 

Quantities mdv and ds a re  assumed to be constant. Differentiating with r e -  
spect to v gives 

Oberth assumes that the velocity of gas ejection c of his rocket is con- 
stant. Thus the second te rm in (3) goes to zero. The condition that the fuel 
consumption dm be a minimum gives 

so  that equation (3) becomes 

However, Q = L  + C , where C is the force of gravity mg, g being the 
acceleration of gravity at a height s .  For the layer ds we assume constant 
g, so that the a i r  resistance L is 

where F is the area  of the midship section of the rocket, p is the a i r  density, 
and Y is the a i r  resistance, a function of the rocket shape and the velocity v. 

Substitution of these quantities into the expression for Q, gives 

* Here the author makes a contradictory statement. The mass m will not remain constant, but rather will 
decrease. 



and, after substituting into (4) and differentiating, we have 

When this expression i s  equal to zero, we obtain the optimum velocity, 
a s  determined by the condition 

Everywhere in the following this optimum velocity will be assumed, and 
this simplifies all the calculations considerably. 

From (5 )  we have 

Here all  the variables a re  functions of just one independent variable, a. 
Differentiation gives 

If the quantity 

i s  called r ,  then from (4a) and (5a) we have 

Dividing (5c) by (5a), we obtain 

This quantity will be called y. 



RELATION BETWEEN FLIGHT TIME, MASS, FORCE, DISTANCE, 
AIR RESISTANCE, AND OPTIMUM FLIGHT VELOCITY 

Equation (2), or  its other form (2a), relates the mass, flight time, force, 
distance, fuel consumption, and velocity of a rocket flight. Now let us r e -  
write this equation, in terms of the optimum flight velocity(6)rather than 
the velocity 0 .  
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When all the terms of equation (2a) are  multiplied by dS, we obtain 

m.c 

a;r Qdt -*-+dm=o. 
c m.c m (6)  

However, from (5a) and (5b) we have 

Moreover, from (5d), 

so that (6) can be rewritten as 

, Next Oberth expresses all the variables of equation (6a) in terms of G 
and t .  

The acceleration of gravity g is inversely proportional to the square of 
the distance from the earth's center. If r i s  the radius of the earth and s i s  
the flight altitude, then 

and 

In the second term of formula (6a), as  a first approximation, let us take 
a value of 9.7 m/sec2 for g (the average value for %= 5 km and s1=50 km). 
This term then becomes 

9.7 g y d t  =T ydt. 

In order to determine the third term of (6a), for convenience Oberth 



integrates the approximate expression for the air density as a function of 
height: 

where e is the base of natural logarithms, and )P i s  a constant. 
Differentiation with respect to s, gives 

and thus 

Substitution of these expressions into (6a) now gives 

If we designate 

Z-E=(L-L)G HI r M r 

l5' as  then we obtain R ' 

Flight time. If we have a velocity E greater than 460 m/sec, ballistic 
experiments indicate that the air  resistance (?)can be assumed constant. 
Then, from (5d), we obtain 

y=2;  Q=2rng=L+C=L+mg, 

giving L=C; so that equation ( 7 )  can be written as  

Integration then gives 



The acceleration b is found from (7a) to be 

Determination of mass. If we substitute into (6) the quantity 

and assume, as  previously, that y=2,  then we obtain 

dii -+2f .dt-1-$=0 

and, after integration 

t n ~ = [ + ~ - - ~ ~ + 2 ~ ( t - t ~ )  .] 

The recoil force P is found from equation (1): 

pdt= -cdm. 

However, from (8) we have 

dm=-m($+$dt)  

so that 

or 

Pdt = m (&+ ygdt); 

and for v>460 m/sec  

P= m.(b+2g). 
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The height of ascent ds=Z.dt, taking (7a) into account, will be 

&,H .*. 
c - 2," dc v-- 

for i; > 460 m/sec. 
Integration then gives 



Sample calculation. We assume that H=6,300m, vo= 500 m/sec,  
ul=ll,OOO m/sec, c=3,000m/sec, and g=9.7 m/sec2. In this case the 
terms in formula (10a) will have the following values: 

The fuel consumption i s  found from (8a): 

where 0 . 4 3 4 3 = - 2  i s  the modulus of the logarithms. 
2.3026 

The time interval tl --to i s  found from (7b): 

however, 

L= 309.28sec 
8 

6-35 - 
log -A -3 = 0.03530; "o-IH Y1 

that is, for the assumptions made, in order to ascend from a height so, corres-  
ponding to a velocity %=500 mlsec  to a height s,-so=62.23 km, it will be 
necessary to use an amount of fuel (or, in general, to lose a mass) equal to 

153 nearly $ of the entire mass of the rocket. The ascent time will be 13.8 sec. 

The following air-density ratio corresponds to the height interval 
s,-so= 62,232.8 m between heights s, ands,: 

If the density 8, at height s, i s  assumed to be greater, then the flight con- 
ditions have to vary. Oberth performs the above calculation and obtains, for 
a density Pl which is 60 times greater, the following figures: 



(t, -to) 0.4343 = 24.309 c; s0=5000m; 
s, = 67,233 m; 

Next he demonstrates that, even though the values assumed for the air  
density, air  resistance, and acceleration of gravity g may not be perfectly 
accurate, the results obtained are still precise enough (deviations not ex- 
ceeding f 7 or 870). 

Results. For an ascent from a height so= 5,000 m to a height s,= 67,233 m, 
with an initial rocket mass mo and an initial velocity vo=500 m/sec,  we obtain 
the following figures: 

1)  The rocket mass at height s, i s  m,= 0.023 mo; 
2 )  The velocity 5, at height s, is 11,000 m/sec; 
3) The ascent time i s  about 19 sec. 

ENGINE AND VELOCITY OF GAS EJECTION 

Figure 37 shows a drawing of the propelling (lower) part of a rocket. 
Liquid oxygen and a liquid fuel are  used as  a propellant. Oberth assumes 
his rocket to be compound, that is ,  consisting of two parts: an upper part 

and a lower part. Each of these i s  a separate 
rocket. When the propellant in the lower rocket 

detai l=  is used up, this rocket falls away and the upper 
one begins to operate. For the upper rocket the 
fuel used is liquid hydrogen, and for the lower one 
it i s  a mixture of water and alcohol. The fuel is 
mixed with oxygen in the combustion chamber. 
The gaseous oxygen i s  heated to 700°C and sprayed 

154 into the chamber through the side walls of tubes E 
(a detail of the tube walls from the side of the com- 
bustion chamber is shown separately in Figure 37a). 
On the outside, from above, these tubes have liquid 
fuel flowing around them at a pressure of 3 or 4 
atm. The group of small tubes E represents the 

FIGURE 37. oxygen injector. It has a length of 3 to 5 cm. Be- 
low the injector, in the combustion chamber, the 
mixture i s  ignited, the motion being retarded 

somewhat during its free expansion by the throat Flm, in order to increase 
the recoil. From F m  the expanding gases escape via the nozzle and move 
outward through the nozzle orifice Fd. 

The velocity of gas ejection at any point in the nozzle i s  determined by 
Oberth using Zeuner's formula: 



where k is the ratio of the specific heat of the gas at constant pressure to 
the specific heat of the gas at  constant volume, PO is the absolute pressure 
in the combustion chamber in  kg/m2, P i s  the absolute pressure in the 
chamber at a given point in the nozzle, in kg/m2, P is taken to be >, the a i r  
pressure /I, and V ,  is the gas volume in m3. The value of Pu Vu depends on 
the gas mixture used. 

The velocity W increases with a r i s e  in the pressure P in the combustion 
chamber, and with a r i s e  in R (p.v=RT), the gas constant, or  T (the absolute 
temperature), and it decreases with an increase in k (for hydrogen k= 1.4). 
The pressure P rarely exceeds 5 atm, for temperatures up to 2,000" abs. 
Hydrogen has the largest gas constant ( R=420), whereas for oxygen 
R= 26.5, for water vapor it i s  47, and for a i r  i t  is 29.26. 

According to Zeuner, the nozzle shape is given by the formula 

where F, is the nozzle section at  the given place. 

Oberth assumes that the outer section of the nozzle Fd i s  705 cm2. If k and 
Pd $ a re  constant, then - will also be constant, Pd being the gas pressure at the 
PO 

nozzle exit. 
Here, according to (12), the velocity of gas ejection from the nozzle ori-  

fice, that i s ,  C,,will also be constant and independent of the internal gas 
pressure Po. However, with an increase in Po, Pd will also increase, a s  well 
a s  the recoil P and the mass of expelled gas. 

The recoil is defined a s  

155 From this formula it follows that at great heights, where is zero or  
nearly zero, the recoil is greater by an amount F. 

However, this statement is not completely accurate. The recoil will 
actually not be so much greater,  for the following reasons: 1) with a de- 
crease in there will be an expansion of the gas beyond the nozzle, so that 
(p) drops and thus pdF also decreases; 2) the velocity of ejection c at the 
throat increases; and 3)  more gas flows through Fm.  

Oberth assumes the lowest value of the exhaust velocity c to be from 
1,530to1,700m/sec. Asanexample, Oberth assumes the propellant mix- 
ture to consist of: 46 g ethyl alcohol for 96 g oxygen o r  1 g hydrogen for 8 g 
oxygen. 

The amount of heat required to heat H kg of liquid hydrogen to the flash 
point T,, determined according to the formula, is H-3.4 (TI + 12) cal, where 
3.4=cp i s  the specific heat of the gas at constant pressure. 

In order to heat S kg of liquid oxygen to this same temperature, we need 

S. 0.218 (TI + 144) cal. 



If liquid air i s  used instead of oxygen, then the nitrogen in the air  must 
also be heated, so that an amount of heat (for N kg of nitrogen) 

, N. 0.244. ( TI+ 121) cal. 

is required. 
In order to calculate the velocity of gas ejection, it i s  first necessary to 

know the values of k. For the lower (alcoho1)rocket we take k= 1.30, and 
for the upper rocket, which burns hydrogen and water vapor with oxygen, 
the value of k is determined for various weight ratios of the component gas- 
es, as  shown in the following table. 

For a diatomic gas (oxygen) k=1.406. 

FREE FLIGHT OF ROCKET 

1.9 

After the fuel has been used up, free flight of the rocket in space begins 
at some velocity v, . This velocity consists of the rocket's own velocity v 
plus the tangential velocity u1 imparted to the rocket by the earth's rotation 
and the wind. It should be noted that, while the rocket flies through the 

15' earth's atmosphere, the air  resistance reduces the rocket's free-flight 
velocity. However, this reduction will be inconsiderable at great heights, 
and, according to Oberth's calculation for a velocity Z,= 1,000 m/sec, it will 
be only 69 m/sec; for &=10,000 m/sec,this reduction is  only 2.2 m/sec,  * 
which is  negligible. Oberth also derives some formulas giving the altitude 
of a rocket for a vertical launch or for a launch at some angle to the earth's 
surface. 

Let us assume that a rocket of mass m,at a height h above the center of 
the earth moves over a distance dh (Figure 38), the acceleration of gravity 
at height h being g. Then the work done against gravity over this distance 
will be 

1.8 

* This deceleration is found by Oberth using the formula 

1.7 

where LI is the air resistance and H has the value indicated previously. 

1.6 1.5 1.4 1.2 1.1 1.3 1.0 Wt.of oxygen 
Wt. of hydrogen 

0.8 0.9 



where r , the radius of the earth, is equal to h, ,  and go is the acceleration of 
gravity at the earth 's  surface. 

When the rocket ascends from height h, to height h,, the 
work done against gravity will be 

Since such an ascent occurs at the expense of kinetic 
EARTH energy of the rocket, therefore 

FIGURE 38. 1 A=-ml.(v,2-v:).  2 

These two formulas combine to give 

In the derivation of this formula i t  was assumed that other celestial 
bodies do not affect the flight of the rocket. For v,2 < 2 g,h,, the rocket will 
describe an ellipse in space, for v I 2 = 2  g,h,,  it will describe a parabola, and 
for vIZ> 2 g,h,, it will describe a hyperbola. 

157 According to Kepler's second law, during equal time intervals the areas  
swept out by the radius vectors of the rocket orbit will be equal (Figure 39). 

Using this law we can determine the flight altitude: 

FIGURE 39. 

In the figure the sides of triangle A I are:  v, .dt ;  h,, and 
hl+uldt. sin a, where a i s  the angle between velocity 
and the horizontal. 

The area  of t r i a ~ g l e  A I is bl. hl.cos a .  $ , the sides of 

triangle A l l  a re  v2 dt; h,; and h,, and the area  of triangle A 11 
dt is h 2 v Z T -  

If we set these areas  equal to one another, we obtain 

(v? -v:)=v: ( 1  - ~ c o s s a )  . 
and from (16) i t  follows that 

W: ( 1 - ( ~ c o s ~ a ) = 2 ~ ,  h : ( i - a -  



For an elliptical orbit this equation has two roots, one of which in our 
case is imaginary (inside the earth o r  under it)  and the other is 
real,  determining the highest point of the ascent. This height is found from 
an expression given,previously. 

If the rocket is launched perpendicularly with respect to the earth's sur -  
face, a s  assumed by Oberth for his rocket, then the foregoing formula be- 
comes 

where 

The rocket will not return to the launching point, because of 1) the effect 
of the wind, 2 )  the rotation of the earth, and 3 )  the conditions of the rocket 
flight. 

Actually, let u s  assume that the rocket is launched vertically from a 
point a on the earth 's  surface (Figure 40), the velocity of rotation of the 

FIGURE 40.  FIGURE 41. FIGURE 42. 

earth (and the point) being W .  Moving upward to a height b, the rocket is 
under the influence of velocities fj and w, and'it travels in the plane of these 
velocities; the latter plane passes through the earth's center and intersects 

58 the earth 's  surface along one of the great circles. When it returns to earth, 
the rocket should descend somewhere on this great circle, that is, it will 
come down at some point located south of the parallel through point a .  At 
the same time, a rocket leaving the earth at point a will have the same 
angular velocity a s  the earth (Figure 41), and this quantity will decrease 
steadily a s  the rocket ascends. Therefore, when the rocket falls back to 
earth, it will lag somewhat to the west of the launching point, and i t  will not 
land at the shifted launching point al, but rather at a point a2 tothe west of 
it. As a result of the motions depicted in Figures 40 and 41, the rocket will 
descend somewhere along a curve lying to the south and west of the launch- 
ing point a (Figure 42). 



EFFECTOFACCELERATION 

We measure the weight of a body in terms of its pressure on some sup- 
porting object, such as  the pan of a balance. This pressure is  proportional 
to the product of the mass of the body times i ts  acceleration. A body located 
at the earth's surface is acted upon by a gravitational acceleration g s 9 . 8  
to 9.83 m/sec2. If the support were to be taken away,the body would fall. 

Let us call the influence of the acceleration on the body the "effect of the 
acceleration." According to the law of relativity of motion, such an effect 
will be observed: 1) when all the molecules of the body experience accel- 
eration but the body itself i s  at rest  (an example is  the pressure of a weight 
on the pan of a balance), and 2) when all the molecules of the body are at 
rest  but the body moves with accelerated motion (an example i s  the effect 
of inertia on passengers during sudden accelerations or  decelerations of a 
streetcar). The effect of acceleration i s  measured in the same units as the 
acceleration itself (that is, in m/sec2). 

As an example, let us calculate the effect of acceleration when an ivory 
billiard ball falls onto a marble slab. The relevant data are: height of fall, 
20 cm; velocity of descent, v=2 m/sec; deformation on impact, s=l mm. 

The effect of acceleration will be denoted as  U ,  and the time during 
which the deformation takes place as  t . The formulas used in the calcu- 

59 lation are 

from which we have 

Another example of an acceleration effect i s  the squeezing of the bicycle 
wheels at the high point of a "devil's wheel," along which a cyclist (or an 
aviator) moves rapidly, describing a "loop." Here the reason for the effect 
is the centrifugal acceleration. The result of the effect disappears when the 
inertia of the body becomes equal to i ts  weight, for instance, when the body 
i s  in free flight. If a rocket falls freely toward the earth, persons aboard 
it will lose their weight and will be suspended freely in the air  inside the 
rocket, liquids will assume a spherical shape and cease pressing against 
the walls of their containers, etc. On the other hand, when a rocket acquires 
a considerable acceleration, liquids will press more forcefully against the 
vessel walls, and this must be kept in mind when testing the strength of the 
containers, so  as  to avoid rupturing them. 

CONCLUSIONS 

Formulas were derived above for the flight time (1,-t,,)(7a), the accel- 
eration b (7c), the fuel consumption and general reduction of rocket mass 

P log 2 (8a), and the specific recoil - (9). In these equations the velocity 
"'a 



of gas ejection c ,  the initial velocity v,, the initial height Hand the accel- 
eration g can all be assumed to be given and constant. In this case 

1,-to, b, 2 , and P are ,functions of v and may be calculated for different 5. 
"'1 mo ' 

The results of such calculations are  given in the table, for ==,I ,400 m/sec 
and H=7,200m. 

This table can be used to determine the mass ratio 2 for any velocity 

range and for some initial velocity. Let us suppose, for example, that we 
wish to determine the mass ratio for an initial velocity v,=800 m/sec and 
a final velocity vb= 3,000 m/sec. 

Since 

Notation 

p, is mass of loaded 
rocket 

m is mass of rocket 
in general 

P is recoil 

Velocity 
' m/sec 

500 
600 
700 
800 
900 

1000 
1200 
1400 
1500 
1700 
2000 
2200 
2400 
2600 
3000 
3400 
3800 
4000 

mwa 
log3=log  ma - log m, +log m, - log mb =log % -log -1 

mb "'SOOO mix 

therefore, according to the table, log - =  1.006- 0.191 = 0.815, and 3 will 
mb "'b 

be 6.5. The flight time will be 38.2 - 16.1 = 22.1 sec. 

Flight 
duration 

( t  --to) sec 

0.0 
7.3 

11.9 
16.1 
21.5 
21.5 
25.2 
27.7 
29.0 
31.2 
33.6 , 

35.0 
35.9 
36.5 
38.2 
39.3 
40.3 
40.7 

160 Composite rocket 

Since the ratio 3 increases very rapidly with an increase in  the velocity 
"'1 

Acceleration 
b m/sec2 

11.7 
17.0 
23.3 
30.1 
37.8 
40.0 
64.1 
84.3 
95.0 

117.1 
153.7 
179.5 
206.0 
234.0 
291.5 
351.0 
414.0 
447.0 

and flight time, and since, for technological reasons, a limit will soop be 
reached, Oberth suggests making the rocket composite, with one rocket in- 
side another. Each rocket will have its own engine and propellant, and when 
the latter burns up the corresponding rocket will fall away, causing a new 

log !!?2 
m 

0.0000 
0.0754 
0.134 
0.191 
0.240 
0.286 
0.371 
0.448 
0.486 
0.560 
0.625 
0.735 
0.808 
0.872 
1.006 
1.138 
1.267 
1.330 

11p 
m 

1.000 
1.190 
1.362 
1.552 
1.738 
1.931 
2.349 
2.803 
3.062 
3.631 
4.217 
5.434 
6.427 
7.446 

10.139 
13.74 
18.49 
21.38 

- P 
mp 

31.4 
30.9 
31.4 
31.4 
33.0 
34.1 
35.6 
37.0 
37.2 
37.8 
41.2 
36.7 
35.1 
34.1 
29.9 
26.9 
23.4 
21.8 



increase in the ratio 2 of the remaining rockets; in this way a high velocity 

will be attained. 
If M, and rn, ape the masses of the loaded rockets, and M, and r n j ,  are the 

masses of the rockets without fuel, then we can substitute the following 

quantity into equation (8a) instead of 2 : 

This quantity can be made a s  large a s  desired, by employing a number of 
rockets situated one inside the other (Oberth assumes two rockets for his 
apparatus). Each outer rocket (Figure 43) must be greater than the sum of 
the remaining rockets, and the last rocket should weigh as  little a s  possible. 

FIGURE 43. FIGURE 44. FIGURE 45. 

An excess pressure inside the rocket i s  advisable, in that it increases 
the stress on the rocket walls and the fuel containers, and thereby also in- 
creases their resistance to bending, as  is the case, for instance, for the fuel 
tanks of soft dirigibles. Such an excess pressure i s  particularly advisable 
when the acceleration of the rocket i s  to be increased considerably. 

According to equation (12), the velocity of gas ejection c for given 9 and 
Po 

k will be higher, the greater i s  the product P,V,.  In turn, the latter product 
will be greater, the lower the specific weight of the expelled gas and the 
higher its temperature. The velocity c i s  highest for hydrogen. 

Methods for increasing flight velocity. It is evident from expression (5) 
that the velocity of the rocket will be higher: 1) the lower the air pressure, 
and 2) the greater the load per unit area F of the rocket cross section, that 

i s ,  the greater the ratio.?. 



The latter quantity will be more appreciable when: a )  the rocket is quite 
long, and b) the specific weight of the rocket is considerable. However, if 
the rocket i s  long, then measures must be taken to ensure that the force of 
a i r  resistance will not cause it to  break up. To do this, the point of appli- 
cation of the recoil force P could be moved upward (Figure 44), by moving 
the fuel tanks downward to form a tail section ( a ,  6, c. . .) and discarding 
them as  they become empty. However, this design has a number of struc- 
tural shortcomings. On the other hand, the engine could also be placed at 

162the bottom, a s  was suggested by Oberth for his rocket. Such an arrange- 
ment is shown in Figure 45. 

If the flight is not perfectly straight, there may be a transverse a i r  pres- 
sure on the forward part of the rocket. Then, because of the combination of 
forces acting on it, the rocket may break up at some section AB. The 
strength of the rocket can be ensured by maintaining an internal excess 
pressure and by providing special ribs. During flight through the lower lay- 
e r s  of the atmosphere, when the velocity i s  still  low, the a i r  density consider- 
able, and the flight time long, the exhaust velocity c should be increased, so 

a s  to give a higher flight velocity and ratio &. For  his composite rocket, 

Oberth assumes values of c=1,530 to 1,70Om/sec for the lower, alcohol, 
rocket, and c=3,800 to4,250 m/secfor  the upper, hydrogen, rocket. Here 
the specific weight of the fuel for the first rocket will be eight times a s  
great. If two hydrogen rockets were employed instead, the entire apparatus 
would have to be five times a s  long, i ts  volume would have to be 125 times 
a s  great, and it would have to be 18 times a s  heavy. 

Advantages of launching the rocket from a great height 

Let us assume that a rocket begins i ts  [powered] upward flight from 
some height where the a i r  density i s  only l / n  of that at the ground. In this 

case the following conclusions can be drawn: 
a )  the initial velocity will be higher, or ,  for the 
same v, , the load per unit a rea  of rocket cross 
section will be l / n ,  a s  great. The fuel consump- 
tion will be reduced accordingly. Oberth pro- 
poses lifting his rocket to a height of 5,500m 
with the aid of two dirigibles (Figure 46), and 
then launching it on i ts  way from there; b) 

FIGURE 46. since the a i r  resistance per square unit of 
cross-sectional a rea  will be only l / n  a s  great, 

the excess pressure inside the liquid-fuel tanks need only be l / n  a s  great. 
Thus the mass of the rocket can be reduced considerably; c )  the a reas  of 
the nozzle orifices need only be l /nP a s  great, and the length of the com- 
bustion chamber can be reduced. 



Reasons for making lower rocket run on alcohol 
and upper rocket on hydrogen 

Oberth demonstrates that an alcohol rocket should be used in the lower 
atmospheric layers, where the air  density i s  high. The velocity of gas 
ejection(c)and the flight velocity v, of this rocket will be relatively low. 
At greater heights, where the air  density is low, a hydrogen rocket, for 
which c and v, are  higher, should be employed. 

Oberth gives the following justification for his use of different types of 
rockets at different heights: - 

The ratio 2 may be greater, the lower the air  pressure at the beginning 
m1 

of the rocket ascent. 
If b, is  the weight of the propellant and m, i s  the weight of the empty 

rocket, then it will be approximately true that 5 - where k is a pro- 
portionality f actor. m1-a7  

The fuel for an alcohol rocket weights q times as  much as  the fuel for a 
hydrogen rocket. If we use capital letters for the alcohol rocket and lower- 
case letters for the hydrogen rocket, then we can write 

Considering the elementary effect of the recoil force, we can also write 

where c i s  the exhaust velocity, dm i s  the fuel consumption, m is the rocket 
mass, anddv, is the velocity increment. Integration gives 

For the two cases in question we have: 

for the alcohol rocket, 

for the hydrogen rocket, 

Since V, <us, therefore 

and 



The ratio is constant and equal to about 

Let us denote the left side of inequality (20) a s  f. The limiting values of 

f will be: at the earth's surface,where is high but &=is low, f = q  ; at 
"'1 

infinity, where p = 0 ,  

164 
Therefore, where it is necessary to satisfy inequality (20), a hydrogen 

rocket is used. This will be the case for heights where +=2.3 or above 

(where f < 2.3 and approaches unity at the limit). Below this, an alcohol 
rocket is employed, for which +<i7 . We have plotted an illustrative diagram 
(Figure 47) indicating the limits of applicability of the two types of rockets 
(this drawing does not appear in Oberth's paper). 

FIGURE 47. 

The ratio 9 of the mass of the loaded rocket to the mass of the empty 
ml 

rocket could be made arbitrarily large in the absence of air resistance and 
terrestr ial  gravity. 

The altitude of the rocket depends only on velocity v, (formulas (16) and 
(17) ), and it will be finite as  long as  ~ , ' ~ < 2 g ,  h , .  When sl= a , t h e  velocity 
will be parabolic, and at a height of 70 km above the equator it will equal 
11,160 m/sec. In addition, the flight altitude will be influenced by the latitude 
of the place (according to formula (l7a), ~ L J  is a function of the latitude). 



Optimum Flight Direction 

According to formula (16), the greatest flight altitude h corresponds to the 
largest difference v,2-v,2 . Therefore, in order  to increase h , it i s  necessary 
to ra i se  v, and to  reduce v, . 

Velocity v, will be a minimum if the ellipse (Figure 39) i s  a s  elongated a s  
possible, that i s ,  if the initial velocity v, is directed along the vertical. On 
the other hand, if v, is to  be a maximum, then it must lie in  a direction tan- 
gent to  the earth 's  surface, since then the velocity of the earth 's  rotation 
will be added to  the rocket 's own velocity. The optimum launching direction 
will be somewhere between the two above directions and i t  will be toward 
the east. If the rocket is to  have a parabolic velocity, the launch should be 
directly eastward (along the tangent). 

Part II. Description of rlModel Bu Rocket 

GENERAL REMARKS 

Oberth does not give detailed drawings of his apparatus, only a rough 
sketch of it. In addition, he points out that the actual construction of such 
a rocket would entail many modifications. 

Purpose of apparatus: to study the height, composition, and temperature 
of the earth 's  atmosphere, to determine the law of a i r  resistance for differ- 
ent heights and velocities, and also to  study the operation of the rocket i t -  
self, which Oberth calls the "Model B" rocket. 

The apparatus consists of two rockets: an upper, inner, hydrogen rocket 
(H. R. )>% and a lower, outer, alcohol rocket (A. R. ). ** The composite rocket 
i s  5 m inlength,55.6 cm wide,and i t  weighs 544 kg,6.9 kg of which constitute the 
H. R. In addition, an auxiliary rocket is provided. The question of the rocket 
material has not been finally decided. This material must operate under 
tension because of the internal excess pressure. For the A. R. Oberth uses 
aluminum alloys having a specific weight of 3.0 g/cm3 and a tensile strength 
of 30 to 32 kg/cm2. Because the s t r e s s  is applied for only a short t ime 
(about 1 /2  minute), 20 kg/cm2 can be withstood without rupture. The oxygen 
tanks a r e  to be made of a copper-lead alloy, the contraction coefficient of 
which, for cooling to 170 o r  180°, i s  the same a s  an aluminum alloy. The 
parts  subjected to intense heating a r e  made of copper. The walls of the 
fuel injector may be made of silver (Silberblech). The H. R. is made of 
lead, the strength of which at low temperatures i s  equal to that of steel. 

ALCOHOLROCKET 

General data: The ascent begins from a height so= 7,700 m, since the 
apparatus is lifted to a height of 5,500 m by means of dirigibles (Figure 46), 

* H.R. stands for "hydrogen rocket." 
* A.  R. stands for "alcohol rocket. " 



and another 2,200 m i s  traversed with the aid of the auxiliary rocket, so  a s  
to obtain an initial velocity D,. 

The pressure in the combustion chamber is 16.5 kg/cm2 <po< 20 kg/cm2. 
The propellant is:,341.5 kg of water , to which i s  added 45.8 kg of alcohol, 

1.67 kg of purified alcohol, and 98.8 kg of liquid oxygen or  a corresponding 
amount of liquid air.  In the latter case less  water will be required. 

The combustiontemperature i s  1,700°C < To< 1,75OoC. 
The pressure at the nozzle orifice is Pd=,90=0.39 kg/cm2. 
The ratio of the nozzle-orifice a rea  to the midship-section area of the 

rocket i s  

Fd- ();329 and 2 = 5.86; 
7- 

d d7;;=c86=2.42 (Figure 3 7); 

d ~ 5 5 . 6  c 2 9 =  29.9 cm; d, =% 12.35 cm. 

The velocity of gas ejection i s  taken to be c= 1,40Om/sec. 
The container for the mixture of water and alcohol is maintained at an 

excess pressure of 3 atm. 
The sp%ce for the H. R. is maintained at this same pressure. 
The oxygen containers a r e  maintained at a pressure of Po + 1.5 atm. 
The propelling apparatus has walls 2.35 mm thick, and the walls of the 

a rea  with the oxygen tanks are  2.8 mm thick. 
The weights of individual parts of the rocket a re  shown in the table below. 
In the following this rat io will be taken to be 9. 
The load on the rocket c ross  section i s  0.225 kg/cmz. 
The initial velocity is Vo= 500 m/sec.  
The velocity after burning of all  the propellant i s  Vi= 2,800 to 2,900 m/sec.  
When the fuel has been used up, the load on the cross  section i s  0.0232 

kg/ cm2. 
The duration of the burning is 36 to 40 sec. 
The amount of fuel burned per second is 

12.01 kg/ sec  < $' < 13.21 kg/ sec. 

Mixture composition and burning (Figures 48 and 49). In the upper part 
of the combustion chamber a row of tubes is provided (in space A ) ,  the width 
at the bottom being 2.5 cm and the width at the top being 3.6 cm. These 
tubes do not reach to the top of the chamber. There is purified alcohol be- 
tween these tubes, and this i s  brought to boiling by the oxygen-rich combus- 
tible gas fed in by pump mn in the form of bubbles. The alcohol vapor enters 
the tubes, into which tubes D penetrate from above, from the bottom of the 
oxygen c o n t a i ~ e r  S; tubes D have openings in their side walls (Figure 37a). 
The pressure in space A is slightly higher than p, atm, while in the oxygen 
container the pressure is PO+ 1.5 atm, so  that oxygen i s  injected through 
tubes D along thin channels. An igniter C is placed at the ends of the tubes, 



Weights of parts of alcohol rocket 

I t e m  I Weight in kg 

A. P a r t s  

1. Propelling apparatus . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . .  2. Oxygen containers 

3. Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4. Floats . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  5. Upper part (wall thickness 0.4mm) 

6. Injector . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I. Other . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . .  8. Hydrogen rocket mo [parts plus propellant] 

B. P r o p e l l a n t  o f  A .  R .  I 
1. Water . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 1 341.5 

2. Alcohol. . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 45.8 

3. Purified alcohol . . . . . . . . . . . . . . . . . . . . . . .  . 1 1.67 

4. Liquid oxygen . . . . . . . . . . . . . . . . . . . . . . . . .  1 48.80' 

* lncorrect value. According to the text this should be 98.80 kg, giving a total of 
487.17 kg, as in the ratio given below by Oberth [Translator]. 

From the table we can find the ratio of the rocket mass before flight to 
the mass after the mixture in the A. R. has been burned: 

" *  Here Oberth commits an arithmetical error, assuming that Mo+ rno = 544 kg, giving MI + ml = 56.2 kg 
Ryninl. 
The values and notation given here are inconsistent. According to the text, the combined weight of both 

rockets with propellant (Mo+mo) is 544 kg, and the weight of the A. R. propellant (4 + ml) is 481.11 kg 
(the 1atte.r weight is given erroneously in the table as 431.77 kg; see first footnote). The weight Mo+m0 
(487.71 kg) after burning of the propellant in the A. R. is thus 544-481.17=56.2 kg, the figure given in 
Rynin's note. The ratio in question should then actually be  

If the total weight at launching is assumed to be 545.81 kg, as given in the table, then, using the correct 
notation in the denominator, we have 

Since the Soviet book is plagued with proofreading errors throughout, it is sometimes di f f icul~ to determine 
the sources of errors and inconsistencies [Translatorl. 



to ignite the fuel mixture. Since considerably more oxygen i s  injected 
through the tubes than is needed for ignition, a gas containing 95% oxygen 
and giving (at 700°C) a pressure up to 20 atm i s  obtained. This gas continues 
through tubes E to  chamber 0 ,while a mixture of water and alcohol i s  
added to i t  along the way, the latter mixture being injected through small  
openings and then ignited. 

Rocket construction (Figure 49). The upper part of the rocket has the 
form of a cap over the two rockets and i t  is kept from opening by springs 
b and b1 . When al l  the propellant in the alcohol rocket has been consumed, 
the connection between the tip of the rocket and the main part is broken, the 
tip opens up, dividing into two parts  (Figure 50), and the inner hydrogen 
rocket separates from the alcohol rocket. There is a i r  inside the two halves 
of the rocket tip ( c ) ,  to prevent these parts from sinking if they land in the 
water. For a flight velocity of about 3,00Om/sec, the rocket tip will heat up 
considerably, so  that special coolers a r e  necessary (not shown in the draw- 
ing). In addition, it will be cooled from inside by vaporizing hydrogen e s -  
caping from the nozzle of the inner rocket and rising in the space between 
the walls of A and the rocket wall. The hydrogen then leaves through safety 
valves K . 

The diameter of the space inside the alcohol rocket is 30 cm, and the 
diameter of the hydrogen rocket is 25 cm. Therefore, between the walls of 

16'the two rockets there is a gap 2.5 cm thick,which is filled with hydrogen and 
further divided by the wall of A. The tip of the H. R. is one cm below the tip 
of the A. R. Buffers f a r e  located at different places between the H. R. and 
the A. R., to protect the H. R. from shocks, which at  the very low tempera- 
tures involved could rupture it. Space e contains a mixture of water and 
alcohol. A float g is also placed in this space, and i ts  purpose will be ex- 
plained below. This mixture i s  at a pressure of 3 atm, maintained by pumps 
mn , which supply hot gas t o  the double bottom h ,  from which the gas ascends 
through a number of openings. The pressure is regulated by automatic 
valves K. The mixture of water and alcohol i s  fed through valve y and tubes 
0 in turn to chambers p, and p,, which a re  also connected to safety valves 
K, and in addition to tube k, which also feeds the mixture to injector 2. 
Chambers pl and p, have a double bottom i, through the openings of which the 
gas delivered to them by pumps mn arrives. Therefore, these chambers also 
act a s  pumps. 

The operation of valves a, is such that, when one of them is full of mixture 
from e, the other forces this mixture into the injector at a pressure of 20 to 
23 atm. The oxygen container S is maintained at a pressure of 18 to 21 atm, 
and the pressure in  space A is one atm lower. In order  to prevent buckling 
of the bottom of S, i t  i s  supported by wires leading to the top of this contain- 
er .  The top is ellipsoidal in  shape, and, for a circular rocket section, there 
a re  depressed places at the two opposite points where the top touches the 
walls. Valves 0, are  placed there, and liquid alcohol flows through them 
into injector 2. The liquid in  chamber pl is collected in the middle, at K. 
The vaporizing oxygen will be at a pressure of 21 atm, and i t  vaporizes be- 
cause: 1) a hot surface A l ies under it (Figure 48), and 2) pumps mn supply 
hot gas. This gas also contains some water vapor, which, when the oxygen 
vaporizes, is converted into ice crystals. The crystals will float above the 
surface of the liquid oxygen and, when it is used up, will be ejected through 



(16') Detail of combustion chamber of A.R. 

3/rn actual size 

Combustion chamber 

FIGURE 48. Engine of Oberrh'srocket. 

Small rocket 
%5 actual size 

FIGURE 50. Head of rocket. FIGURE 49. Oberth's double rocket. 



the wide opening m,, so  a s  to prevent clogging of the pores of the injector 
tubes. 

The oxygen container S contains a float, which maintains the proper flow 
rates  of fuel and oxygen. This float is electrically connected to float g of 
the alcohol container W ,  and also to the safety container S, which functions 
similarly to valves K. If, for example, the level of liquid oxygen drops slow- 
ly, the pressure over i t  will increase and thus more oxygen will be fed to the 
injector. 

The walls of the oxygen container a re  2.8 to 3 mm thick. The container W 
holding the liquid alcohol is joined to injector Z via tube K. Its purpose is :  
1)  to maintain here the pressure of a certain height, since the effect of pl 
and p, does not reach there. The pressure in container W itself is main- 
tained by pumps mn, which force hot gas into it. The container has a float g 
in it ,  which, in addition to i t s  previously described function, also regulates 
the operation of pl and p,. Container W is situated under the nozzle of the 
H. R. and must be protected from cooling. It i s  oval in shape. Between W 
and p, there is a space I, in which instruments can be mounted to record 
the operation of the A. R. They must also be protected from cooling. Elec- 
t r ical  instruments and a small dynamo can be placed there a s  well. 

Pumps mn operate a s  follows: (Figure 51): the small pump m1 feeds 

FIGURE 51. The rocket pumps. 

alcohol alternately to the two containers m, and m, and continuously feeds 
tank n. Containersrn,,,, like chambers PI,,, pump oxygen to n. Some lumps of 
sodium l ie  at the bottom of m,,,. When valves m,,, or m,,are open, oxygen flows 
into containers q,, . When both containers a r e  full of oxygen, these valves 
close, and alcohol flows into the oxygen through the open valves m,,, . Be- 
cause the sodium i s  present, intense burning begins and oxygen flows along 
I,,, to tank n, where an appropriate mixture of oxygen with alcohol takes 
place. There is also sodium in container n ,  and it converts all  the alcohol 
and oxygen into vapor, so that a hot, oxygen-rich gas leaves through tube 1, . 
Tank n is lined on the inside with a refractory material. On the outside, n is 
surrounded by liquid oxygen. Tube I, has valves in  it which regulate the in- 
flux of gas at h or  i . 

Note. An electrical igniter can be used instead of the sodium. 
Combustion chamber 0 (Figure 49) does not actually touch the outer 



casing; it is separated from it by a thin wall t ,  which i s  connected to the 
casing by a number of spacers. Liquid from the injector circulates in the 
space between 1 apd the casing. It is converted into vapor in this space and, 
by cooling wall t , i t  prevents it from catching fire. From this separating 
wall the vapor goes out into chamber 0 through opening L, and, flowing out- 
ward, i t  moves along walls t , shielding them from the hot gas. If an intense 
vaporization of liquid occurs at the separating wall, thermoelement P begins 
to operate, so  a s  to lower the temperature. In addition, the separating wall 

f i  has a wide part ( see section 7), where the float is situated, which, when the 
influx of liquid is too great,  r i s e s  and shuts off the flow, so  that the liquid 
will not overflow through opening L into the combustion chamber. Partition 
u at the nozzle throat Fm serves a s  a separating wall between the two parts 
Q and R (Figure 49). When all the propellant is used up, pumps mn operate 
so  a s  to s tar t  vaporization of the liquid first in K, and then in Q. If this 
construction is used, it is not necessary to line the nozzle with a refractory 

171 material, a ~ d  the weight of the rocket will be less .  The nozzle itself has 
either one orifice, if the rocket is small,  or  a number of them, supplied by 
a common combustion chamber. 

In all, there a re  four stabilizers, each of these being double. The stabi- 
lizer fins can rotate about the x axis. During ascent they stabilize the rocket 
and regulate the direction of motion, operating partly a s  controls under the 
influence of the instruments in L During descent, they a re  turned backward, 
and their resistance slows down the fall. 

The search for a rocket which has fallen to earth can be facilitated using 
the following technique. A small  compartment closed on the outside by a 
door is built into the rocket wall. A rubber balloon with gas in i t  is placed 
inside the compartment. The pressure inside the compartment is maintained 
at 10 atm. When the rocket falls to the ground, a special acid begins to act 
on the latch of the door, eating through it ,  and the door opens. The balloon, 
which has become inflated because of the drop in pressure to 1 /10 ,  leaves 
the chamber and r i ses  to a certain height above the rocket,where i t  i s  held 
by a cord and indicates the landing spot. 

Instruments required for the alcohol rocket: 
1. Constant -current generator. 
2. Gyroscope with electric motor. It i s  controlled by stabilizers. 
3. Acceleration indicator. It may consist of a weight, attached to an 

electric strip. When the acceleration changes, a pen connected to the weight 
will t race out a line on a moving str ip of paper, giving an indication of the 
velocity, and thus the flight altitude a s  well. 

4. Floats regulating the levels of alcohol and oxygen. These can also 
turn on an electric current. 

5. A manometer recording the Tnternal pressure. 
6. An instrument for  measuring the external air  pressure. An aneroid 

may be used for this, o r ,  since the latter can hardly provide reliable read- 
ings, a special instrument may be designed. The latter is connected to the 
acceleration indicator and has an indicator in the form of a roller which 
can move along a curve to the edge of a strip, the lower horizontal edge of 
which moves on rollers.  The upper edge of the s tr ip is traced out a s  a 
curve. 



7. The internal pressure,  which is higher than the external a i r  res i s t -  
ance L , may push the rocket tip off and thus plates b and b, must operate 
at a rupture, which also measures and serves  to take into account the 
resistance. 

8. All the electric currents  which can be produced in the rocket by 
various devices (floats, etc.) will affect electromagnets, and ultimately they 
will influence the operation of pumps mn and the flight of the rocket. 

9. Thermographs. One of these is mounted near the top of the rocket, 
in order  to record the properties of the air.  

72 HYDROGEN ROCKET 

General remarks  

The flight of the hydrogen rocket begins at an altitude s,= 56.2 km. 
The table shows the distribution of weight for the parts of the rocket 

and for the propellant. 

Weights of parts of the hydrogen rocket 

I t e m  Weight in kg 

A. R o c k e t  P a r t s  

. . . . . . . . . . . .  1. Weight of hydrogen container and rocket tip 

. . . . . . . . . . . . . . . .  2. Combustion chamber and injector 

3. Instruments . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . .  4. Pumps, annular container for oxygen 

5. Nozzle and its casing . . . . . . . . . . . . . . . . . . . . . .  
6. Stabilizers . . . . . . . . . . . . . . . . . . . . . . . . . .  
7. Parachute. . . . . . . . . . . . . . . . . . . . . . . . . . .  

B. P r o p e l l a n t  

1. H y d r o g e n  . . . . . . . . . . . . . . . . . . . . . . . . .  
2 .  O x y g e n  . . . . . . . . . . . . . . . . . . . . . . . . .  

1.36 

1.94 

3.3 

T o t a l  w e i g h t  
rno = 3.6 t.3.3 = 6.9 kg. 



Pressure  in combustion chamber Po= 3 atm. 
Temperature To* 1 ,700°C. 
Diameter of nozzle exit 25 cm. 
Diameter of nozzle throat dm= 7.55 cm. 
Velocity of gas ejection c= 3,400 m/sec.  
Pressure  in hydrogen container 0.24 atm, which for the initial flight 

altitude of this rocket gives an excess pressure of about 0.12 atm. 
The thickness of i ts  walls is 0.0144 mm, 

73 The flight velocity Vz=3400. 0.650=2210 m/sec .  
The acceleration in the first second is b,,= 200 m/sec2.  
The fuel consumption is 

The gas pressure at the nozzle orifice is Pd= 0.01 96 atm. 
3.30 - The duration of burning i s  m- 8.15 sec. 

When all  the propellant has been burned, the rocket velocity will be 

Here3,OOO i s  theterminalvelocity of the alcohol rocket, 2,210 i s  the hy- 
drogen rocket's own velocity, 64.3 i s  the velocity reduction due to t e r r e s -  
t r ia l  gravity and a i r  resistance, and 7 i s  the velocity reduction due to air  
resistance on the remaining path (after the term 64.3 stops h a ~ i n ~ a n e f f e c t ) .  

For a velocity of 5,139 m/sec, the rocket will ascend to a 
height of 1,960 km. 

Rocket construction. The tip a' of the H. R. (Figure 52) 
is constructed like the tip of the A. R. It opens during 
descent, and a parachute f emerges from a place under 
it. The tip flaps remain connected to the rocket. The in- 
side of the tip is lined with a porous fabric which can be 
wetted by the water in Z ,  the water being sprayed onto 
the fabric by pump 2. The other (primed) symbols in 
Figure 49 designate parts which a r e  analogous to those 
in the A. R.  he oxygen is kept in an annular container 
S , from which i t  is fed in a vapor form into tubes I? 
under a pressure of 3.1 atm. Hydrogen (IT) is forced 
into the space between tubes ,!? by pumps P:,, , a t  a pres-  
sure  of 5 atm. The space inside the annular oxygen con- 
tainer serves a s  a tank. 

Tubes (i') carrying hot gas extend into pumps pi,, . 
These a re  provided with special filters, so a s  to prevent 

FIGURE 52. Separa- 
tion of rocket head. 

ice crystals from entering injector E ; the crystals may 
form a s  a result of the presence of water vapor in the 
gases. It should be kept in mind that i t  is only at 253°C 

below zero that liquid hydrogen stops evaporating, and that for liquid oxygen 
the corresponding temperature is 183OC below zero. Therefore, a s  soon a s  



the temperature goes above these limits,  these substances begin to evapor- 
ate. Consequently, ventilators and coolers must be used. In addition, for 
such low temperatures, the metal walls become so  brittle that very likely 

174 only lead would be suitable for the wall material. Liquid hydrogen i s  made 
to flow around the,combustion chamber 01 and the nozzle. The stabilizers 
a re  so  constructed that they can be rotated. When the H. R. is still  inside 
the A. R. (section 3), these stabilizers ( W1) are  turned and they fit into 
appropriate depressions in  the rocket frame. When the H. R. leaves the 
A. R., these stabilizers move downward on special hinges and extend below 
the nozzle, directing the motion of the rocket. 

Instruments aboard H. R. 1. Electric battery; 2. gyroscope; 3. acceler - 
ation indicator; 4. instruments recording regime of fluids; 5. manometer; 
6. thermograph; 7. meter  measuring pressures at top ( b  for the A. R.). 

PURPOSES OF ROCKET FLIGHT 
(175) 

Using the rocket described above, the 
following a re  possible: 

1. Determination of the air  resistance at 
great heights and the law of i ts  variation a s  
a function of velocity. 

2. Determination of the density and spe- 
cific weight of a i r  at these heights. 

3. Determination of i ts  pressure and 
temperature. 

4. Determination of motions in the upper 
atmosphere (according to the difference be- 
tween the calculated and actual landing si tes  
on the earth). 

NOTES O N  ROCKET FLIGHT 

1. The preliminary experiments must 
include tests  of nozzle and injector op- 
eration, tests  of the efflux of fluids from 
small openings, etc. 

2. The task of the auxiliary rocket 
(Figure 53) is to lift the above-described 
composite rocket from a height of 5,550m to 
7,750 m and, after its own propellant is 
burned up, to impart an initial velocity of 
500 m/sec  to the main rocket (A. R.). Its 
weight with propellant is 220 kg and i t  op- 
erates  for 8 sec,  during which time it im- 

FIGURE 53. Lower 'IGURE 54- Oberth" parts an acceleration of 100 m/sec2 to the 
rocket. t r ip l e  rocket. A. R. The auxiliary rocket is fitted onto the 

stabilizers of the A. R., in its slots ( b ) ,  and 
i ts  oxygen tank ( a )  is located in the nozzle of the A. R. For strength, the A.R. 
is braced on the outside with rings which drop off at the same time a s  the 
auxiliary rocket does. Figure 54 shows schematically the positions of all  



three rockets: the hydrogen rocket (dashed lined), the alcohol rocket (solid 
lines), and the auxiliary rocket (shaded). 

3. Pumps PI,, will be of greater significance, the more the rocket weighs. 
175 4. The greater the rocket is,  the higher will be the weight ratio of the 

loaded and empty rockets (2). 
5. The composite rocket shown in Figure 49 is quite complex. If very 

high altitudes do not have to be reached, then by gradually excluding individ- 
ual parts of it the height can be reduced (300,250, o r  100 km). 

WHAT OBERTH CONSIDERS NOVEL 
ABOUT HIS SUGGESTIONS 

1. Use of liquid fuel instead of the solid or  powdered fuel proposed up 
till now, The advantages of a liquid fuel are:  a )  the velocity can be regu- 

lated; and b) a higher ratio "d can be obtained, a s  well a s  a greater exhaust 
ml 

velocity, so that lighter gases a re  ejected and, because of the more suitable 
nozzle shape, the fuel will be used more efficiently. 

Ta- 35 min 

Beginning of 

FIGURE 55. Flight path of Oberth's rocket. 

2. Separation of the rocket into parts. The advantages are: a )  less  dead 
weight is carried into space, and b) the individual component rockets can be 
constructed in accordance with the tasks to be performed. 



3 .  Velocity regulator, ascent technique, chamber pump, and evaporation 
by means of bubble injection. Finally, some new formulas ( 3  to 1 1 )  are 
suggested, and the effect of acceleration is studied. 

Figure 55 shows the flight path of Oberth's rocket, plotted by us on the 
basis of his data. From point (a) at sea level the rocket ascent is begun using 
dirigibles (Figure 4 6 ) ,  to a height S:= 5.55 km. Here the rocket separates 
from the dirigibles and during the course of 8 sec the auxiliary rocket 
raises it to a height So= 7 . 7 5  km, where it has developed a velocity V,= 500 
m/sec. At this height the auxiliary rocket falls away and the alcohol rocket 
begins to operate. The latter raises the apparatus to a height S,=56.2 km 
in 40 sec, where the velocity will be Vl= 3,000 m/sec. Here the A. R. falls 
away and the hydrogen rocket begins to operate, up to a height S,= 89.4 km, 

17' which is  attained in 8 .15  sec, giving a velocity V,= 5,139 mlsec. Then the 
propelling portion of the hydrogen rocket falls away and only its upper 
compartment with the stabilizers remains, ~ontinuing to a height S,=1,960 km. 
Finally, the rocket describes an ellipse back to earth to point (b),which wi l l  
lie behind (to the west of) the launching point(a),which during this time has 
shifted to some point a, . 

Part III. Thoughts about the Future 

EFFECTS OF ABNORMAL ACCELERATIONS 
ON HUMAN BEINGS 

Oberth cites the following examples of abnormal accelerations which 
have taken place, indicating how these have affected human beings. 

1. A fireman jumped from a height of 25 m and landed flat on a canvas, 
depressing it 1 m. The fireman was not injured, although the acceleration 
attained was about 240 m/sec2. 

2. A swimmer jumped upright from a height of 8 m into water, without 
injury. The acceleration attained was about 40 m/sec2. 

3.  A swimmer dove backward into water from a height of 2 m gliding, 
over the surface somewhat while lying flat on his back. In this case the skin 

1770f  the back experienced an acceleration of 200 m/sec2, the back muscles 
and kidneys an acceleration of 160 m/sec2,  other parts of the body 80 m/sec2 
and the head and bones 7 0  m/sec2. 

In general a person can stand a greater acceleration effect i f  i t  is direct- 
ed from head to feet, rather than the reverse. An even greater effect can be 
endured in a recumbent position or along a tangent. 

4.  During the war an aviator flying at 6 0  m/sec executed four loops of a 
spiral 1 4 0 m  in diameter without injuring himself; in this case, for 29 sec 
an acceleration effect of about 51 .5  m/sec2 was experienced. 

On the basis of these events and other considerations, Oberth assumes 
that a person can endure an acceleration of about 51.2 m/sec2 for 200 to 
400  sec. A lower acceleration would not have any harmful physiological 
effects. 



PHYSIOLOGICAL EFFECT OF 
ABNORMAL ACCELERATION 

The organs which sense the effect of acceleration a re  situated at the 
vestibule of the internal ea r  of the human being, where the fluid [lymph] 
of the ear ,  the hair cells, and the lime crystals a r e  located. For different 
positions of the body and motions of it ,  these crystals press on the cor res-  
ponding hairs and transmit the sensation to the brain. This sensation of 
the acceleration effect may be different in different cases. Let us consider 
some examples. 

1. A carousel. In a carousel the ceiling, which has seats  suspended from 
i ts  outer ring, rotates. If the radius of the carousel i s  4 m, the length of the 
suspending a rms  i s  2 m ,  and one rotation i s  completed in 6.5 sec, then the 
seats will swing 1.15 m outward and will move around a circle 5.15 m in 
radius. Here the velocity of the seats will be 5.1 m/sec ,  and the centri- 
fugal acceleration will be 5 m/sec2. The acceleration effect reaches 
11 m/sec2  and is inclined 26.6" to the vertical. In spite of this, passengers 
with their eyes closed can indicate the vertical accurately. 

2. Circular flight with banking of airplane. In contrast to the preceding 
case, an aviator experiences a different sensation when he flies in a circle 
of radius 520m at a speed of 190 km/hr in a banking aircraft. The earth 
seems to him to be tipped rather than immovable. 

The effect of acceleration is unpleasant during such a circular flight, 
and i t  is even more unpleasant when there a re  slight r i s e s  and dips in the 
motion (tossing of the ship). On the other hand, rapid decelerations have 
less  effect. For example, if an elevator descends at a speed of 1 m/sec ,  
and if i t  comes to a stop over a distance of 20 cm,the effect of the acceler- 
ation will be 2 .5+gm/sec2  during 2/5 sec.  Greater discomfort will be 
experienced than in the case of a dive into water, where this effect will be 
25+g rn/sec2 during the same '15 sec. Similarly, these effects will be felt 
differently depending on whether they a re  unexpected or  known about in ad- 
vance, whether they a re  voluntary or  involuntary, etc. 

178 An increase in acceleration need not, in Oberth's opinion, cause illness 
o r  unpleasant feelings in a passenger. A decrease in acceleration, on the 
other hand, will cause fear  during the f i rs t  fraction of a second, but this 
will be less: 1)  the more frequently we a re  subjected to this experience, 
and 2) the more prepared we are  for i ts  occurrence. This feeling of fear 
gradually disappears, although during the first seconds i t  will seem to last 
very long. 

When a person begins to fly rockets, he should first make camparatively 
low flights (50 to 200 km), which will take from 100 to 200 sec. Then, once 
he has become accustomed to the effect of acceleration, he can ascend high- 
er .  For training purposes, and in order to determine the effect of acceler- 
ation, Oberth suggests constructing a special large ( r= 60 m)  carousel, in 
one of the wagons of which an experimenter can sit. 

Assuming that a person can safely bear an acceleration effect of 40 
m/sec2,  which corresponds to a vertical acceleration of 40 - g = -  
30 m/sec2,  in order to obtain, for example, a velocity v,= 900 m/sec ,  a 
time of 300 sec will be necessary. However, for an ideal velocity 

(v= ==11.160 m/sec  for  h,=r+70 km), 



which under normal conditions (ascent from a small  height) will be reduced 
101 

by te r res t r ia l  gravity by an amount 1 gdt= 2,400 m/sec  and by the a i r  
0 

resistance (200 m/sec) ,  the acceleration effect will not be dangerous to  a 
person. 

PASSENGER ROCKET 

Figure 56 shows a plan for another passenger rocket, which consists of 
three parts:  an upper part containing the parachute f' and the passenger 

t ' Section 5 - ---.- 
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FIGURE 56. Oberth's composite passenger rocket. 

compartment 1 , a middle part (the hydrogen rocket, H. R.), the top of which 
surrounds the upper part, with stabilizers extending downward to the injector 
of the lower rocket, and a lower alcohol rocket (A. R.), the upper part of 



which envelops a11 the parts above it. The A. R. operates first, up to a 
certain altitude, and then it falls away. The H. R., which has left the A. R., 
then begins to operate. The passenger compartment with the parachute then 
separates from the H. R. and completes the rest  of the flight, remaining 
connected to the H. R. just by electrical wires. The parts of the alcohol 
rocket are indicated by unprimed letters and those of the hydrogen rocket 
by primed letters. These parts are  listed in the following table. 

(180) 

R o c k e t  p a r t  
Alcohol 
.rocket 

Tip of rocket 

Parachute 

Passage way to passenger area I 

Container for water and alcohol 

Hydrogen container 

Oxygen container 

Compartment for passenger and instruments 

Periscopes 

Pumps for hot gas 

Pump chambers for fuel 

Pump chambers for oxygen 

Minimum nozzle section 

Injector 

Regulating pins * 

Nozzle wall 

Rear channel t and channel regulators 

Stabilizers 

Combustion chambers 

Hydrogen 
rocket 

* These pins project into the nozzle throat and reduce its section, regulating the  
pressure P, in the injector and combustion chamber and making i t  independent 
of the recoil I! 

The passenger rocket will be launched at sea, far from any populated 
places, so that the A. R. will not cause damage when it falls from a height. 
When container S i s  empty, the rocket floats on the surface of the water in 
a tilted position (Figure 57a), and when the container is full of fuel, the rock- 
et i s  vertical (Figure 57b) but does not sink. The walls of the passenger 
compartment are  from 1.5 to 2.5 cm thick and are  made of aluminum. 

Oberth considers three possible types of emergency during the ascent: 
17' 1) failure of pumps, 2 )  loss of equilibrium, and 3 )  explosion. He assumes 

that these emergencies should not represent any danger to a passenger. 



1. If the pumps stop working, the apparatus will keep floating on the 
water. 

2. In the event of breakage or incorrect operation of the stabilizers, the 
pilot can restore equilibrium with the aid of the appropriate pump operation. 

3. An explosion in the A. R. will just cause ejection of the H. R., while 
an explosion in the H. R. will eject the passenger compartment, such explo- 
sions being in general of low probability. 

Collisions with meteors are difficult to prevent. However, even if a hole 
i s  made in compartment I, it i s  fairly easy to seal a small opening* and 
then to refill the compartment with air. 

lgO When the rocket falls into the water, it will float. For descent onto land,. 
the parachute should be used. 

Instrumentation. For the initial flight direction inclined toward the east, 
two gyroscopes should be used (with vertical and horizontal axes), which 
should give a stable trajectory. It would also be useful to have a third 
gyroscope with its axis perpendicular to the axes of the first two, to control 
them. 

The acceleration should be determined in  the directions of the three co- 
ordinate axes. The instruments for measuring acceleration are  to be con- 
nected to the gyroscopes. From the accelerations, the flight velocity i s  
determined, as  well as the spatial coordinates of the rocket relative to the 
center of the earth or the sun. Oberth also gives a plan for constructing 
such a device, together with a brief theoretical description of its operation 
in the sphere of terrestr ial  gravitation. 

The acceleration effect i s  measured using 
a special device (Figure 58). Tube GI i s  
immersed in container C,, but does not 
reach the bottom. Above the two tubes the 

181' volumes of air L, and f.* are such as to 
maintain the mercury column (shaded) at 
equilibrium. In the figure dl and d, in- +%-- dicate electrical the meter; ends of a wires current leading of a to certain an 

61 intensity flows in these wires. The wires 
- 2 are  attached to floats which rest on the 

mercury surface (shown in black on the 
drawing). As the mercury levels fluctuate, 

FIGURE 57. FIGURE 58. 
the floats sometimes approach and some- 
times recede from one another, moving 

along the amalgam or gold-plated surface of tube Q ,  thereby increasing or 
decreasing the resistance to the current flowing in the wires and producing 
different readings on the electrical meter. The variation of the distance be- 
tween floats depends on the acceleration effect. When the latter increases 
(if the device moves upward), the mercury in the upper tube drops and that 
in the lower tube rises,varying the reading of the electrical meter, which 
must be calibrated appropriately. 

A passenger can determine his position ( v and h ),by observing the 
apparent diameter of the earth and i ts  position among the stars. Windows 
are  provided in compartment I ,  so a s  to make such observations possible. 

* Meteors greater than 2cm i n  diameter are very rare. 



Figure 52 shows the mutual positions of passenger compartment I ,  para- 
chute f' , flaps a', a', the hydrogen rocket H. R., and i ts  stabilizers w' during 
free flight (without thrust) in outer space. In this case an acceleration effect 
i s  experienced. It is important to provide regulation of the heating and cool- 
ing of compartment I and the H. R. during insolation, which equals about 
2.3 g cal/cm2. According to the law of heat transfer,  a small sphere floating 
freely in outer space will be heated to 240" above absolute zero, after which 
equilibrium between the influx and efflux of heat will exist. In order  to 
attainsuch equilibrium and to maintain a moderate temperature inside com- 
partment I (25"C), one side of the rocket should be white and the other side 
black. By rotating the compartment appropriately relative to the sun, the 
desired temperature inside of i t  can be obtained. At considerable distances 
from the sun, compartment I may have the shape of a half cylinder, black- 
ened on i t s  rectangular wall; it can then be turned toward the sun for opti- 
mum heat absorption. In addition, the inner surfaces of flaps (a)may be 
mi r ro r s  which direct reflected light into 1 .  

In order to prevent evaporation of the hydrogen inside the H. R. during 
free flight, one wall of this rocket should be light in color and turned toward 
the sun. During descent the compartment should be pulled back into the H. R. 
In order to provide a i r  for breathing in compartment I ,  containers with 
liquid oxygen and nitrogen must be available; these substances a re  converted 
to gas a little at a time during flight, either under the influence of solar heat 

182 o r  with the aid of artificial heating. The used a i r  is absorbed by kalium 
causticurn .':' For extended flights it moves through a black tube to the shady 
side; there all  the harmful admixtures a r e  taken out, leaving only gaseous 
oxygen and nitrogen, which move through a tube to the sunny side, where 
they are  heated and then returned to compartment I .  In order to cleanse 
the black tube of sediments, from time to time i t  i s  rotated to the sunny 
side, separated from compartment I ,  and opened; then the sediments a re  
vaporized and removed. 

Compartment I ,  like the rocket itself, i s  provided with periscopes. Com- 
partment I is 2 m in length, with a c ross  section of 1.1 m. During the ascent 
and descent a passenger lies on a suspended couch. The res t  of the time 
he can move about freely in the compartment."* 

During flight in interplanetary space without gravity, an observer can 
go out of the rocket through a double door (lock). Then, joined to the rocket 
by a line, he can ride with i t  through space (Figure 59). In order to protect 
himself from the cold, he must wear a space suit; the latter,  made on the 
same principle a s  a thermos bottle, would keep the heat of the body from 
passing outward. In addition, the space suit can be black on one side and 
white on the other, and the black side can be turned toward the sun so  a s  
to be heated. Finally, solar radiation can also be reflected toward the 
observer using mi r ro r s  on the rocket. 

* [Caustic potash, KOH.] 
* *  Oberth is somewhat vague about the size of compartment I .  Judging by Figure 56 and the above statements, 

the height of the chamber should not be less than a person's height, that is, about 2 m. Then, according to 
the scale of the drawing, the whole rocket must have a height of about 110 m ;  however, if the length of 
compartment I in Figure 56 is 2 m, the height of the rocket will be  about 22 m. Then the height of com- 
partment I will be  only 50 cm, that is, too small for walking. 



FIGURE 59. Observers outside a rocket. 

PROSPECTS FOR THE FUTURE 

The cost of a research rocket (Figures 48 and 49) will be about 20,000 
marks (gold). It will be possible to make a number of scientific discoveries 
using such a rocket. A large rocket (Figure 56) capable of carrying a per- 
son into interplanetary space, on the other hand, will enable man to make 

183 many more new and valuable discoveries, such as  those on a flight around 
the moon (at a velocity v,== 11 km/sec). A passenger rocket will cost about 
1,000,000 marks,but it will be good for up to 100 ascents, and on each ascent 
it will lift a considerable weight into space (see following table). 

WEIGHT OF PASSENGER ROCKET 

. . . . . . . . . . . . . . . . . .  Alcohol 25,000 kg 
Hydrogen . . . . . . . . . . . . . . . . . .  4,000 kg 
Oxygen, water, etc. . . . . . . . . . . . . .  271,000 kg 

Total for one passenger. . . . . . . . . .  300,000 kg 
Rocket weight for two passengers. . . . . .  400,000 kg 

A rocket like this can fly around the earth as well as  around the moon. 
Contact between the earth and the rocket can be maintained with the aid of 
small rockets. If an extended stay in such a rocket of an "observing 
station" is found to have unpleasant physiological consequences, due to the 
absence of an acceleration effect, then two rockets can be launched, these 
being joined by a wire one km long, and the two rockets can be made to r e -  
volve about one another. 

The following studies will be possible using such an interplanetary 
station: 

1. Determination, using the appropriate instruments, of all the details 
of the earth's surface. 



2. Transmission of light signals o r  electrical signals to the earth. 
3. Warnings to ships concerning icebergs, to their country concerning 

the approach of an enemy, etc. 
4. Transmissionpf solar heat energy to northern lands with the aid of 

mirrors .  This could melt the eternal ice of the north and transform un- 
inhabited areas  into fertile, populated regions. To do this, a network of 
wires (Figure 60) might be deployed around the rocket, by rotation; a 
mir ror  could then be mounted on the wires and tilted a s  desired with the 
aid of an electric current,  so  a s  to direct the sun's rays either toward the 
earth (Figure 61b) or  away from the earth (Figure 61a). Oberth assumes 

a %;--sun mirror 

sun 

FIGURE 60. FIGURE 61. 

a mir ror  diameter of 100 km. Sodium may serve a s  the mir ror  material 
(spec. weight of unity with high strength). The thickness of the reflecting 

184 
layer is taken to be 0.005, for a total mir ror  weight 
of 10 g per mZ or 100 g per hectare, giving a mir ror  

( , ,  
cost of 3,500 marks per hectare. One ascent of a 

planet 9 rocket carrying a load of 2,000 kg of sodium comes 
to 60,000 marks. A mir ror  100 km in diameter will :.. -.,,, 
be constructed in 15 years ,  at a cost of 3 billion 

i, 1 marks,  i f  100,000 kg of sodium are  sent up each week. 
Using such a mi r ro r ,  i t  would be possible to blow up 

rocket I enemy storehouses, to cause waterspouts and hurri-  
propellant canes, to burn up entire cities, etc. 

spy!! &. .=.( 5. If a rocket is considered a s  an interplanetary ~. . station, and if it has sufficient fuel reserves aboard, 
then other rockets can be sent from i t  to study other 

i worlds. The energy required to propel these rockets 
would be incomparably lower than that required to 
launch them from the earth, since the earth's attrac- 
tion and the air  resistance would be considerably less. 
A fuel supply, for example, in the form of a sodium 

FIGUE 62. (Natriumblech) sphere, could be connected to a power- 
ful rocket and sent off to some other planet. At a 

specified height above the planet the sphere could be detached and left to r e -  
volve around the planet. The rocket itself would then land on the planet to 
car ry  out studies, after which i t  would ascend once again, join the sphere,and 

" 
fly back. Figure 62 shows a plan for such an interplanetary voyage. 



OBERTHIS COMMENTS ON 
THE WORKS OF GODDARD 

In 1919 Robert boddard, an American professor, published a paper en- 
titled "A Method of Reaching Extreme ~ l t i t u d e s "  in  the Collections of the 
Smithsonian Institution. In this paper Goddard describes the results of his 
preliminary experiments, concerning which Oberth could only make theoreti- 
cal proposals and which complemented the studies of Oberth. For instance, 
using smokeless nitrocellulose powder and for a funnel-shaped nozzle with 
an 8 O  slant relative to the axis, Goddard was able to utilize 64*% :: of the 
entire burst energy for the recoil, whereas previous rockets had never been 
able to utilize more than 270. In addition, Goddard found that the efficiency of 
a rocket increases with an increase in  the nozzle size, keeping the same 
ratio of nozzle volume to weight of powder, a result which i s  explained by the 
relative difference in the effects of gas friction at the walls of large and 
small nozzles. Moreover, Goddard took special pains to obtain a smooth sur  - 
face inside the nozzle. Finally, Goddard showed, on the basis of experiments 
in a vacuum, that the efficiency of a rocket i s  greater under such conditions, 
due to the lack of air  resistance. 

On the basis of experiments with different propellants, Goddard obtained 
the following figures: 

"Infallible" powder (Hercules Powder Co.): 1,238.5 cal /g released during 
burning, with a velocity of gas ejection equal to 2.434 km/ sec. 

"Dupont Pisolen Pulver No. 3": 972.5 ca l /g  and 2.290 km/sec. 
Goddard suggests constructing the propelling apparatus like the muzzle 

of a gun which has automatic, rapid injection of cartridges one after an- 
other into the breech part. Goddard also proposes sending his rocket to the 
moon, where i t  would explode upon landing, causing a blast which could be 
observed from the earth. In conclusion, Oberth states that his work was in- 
dependent of that of Goddard and that he began his rockets in 1907. 

OBERTHIS REPLIES TO CRITICISM OF HIS PLAN. 
SUPPLEMENT TO SECOND EDITION 

1. The container for the liquid oxygen should be made of sheet copper, 
the hydrogen rocket being made of lead. 

2. The temperature of the exploding gases 
will be higher than that assumed, so that the 
results of the burning will be favorable. 

3. Critical comments which have been made 
concerning the possibility of employing a par a-  
chute during descent do not constitute a serious 
objection, in  general, to carrying out a safe land- 
ing. Rocket bursts can also be used to slow the 
descent, but this will require making the entire 
apparatus heavier. The descent can be braked 
at first using bursts and then a parachute can be 
used afterward. The latter may be ring-shaped 

FIGURE 63. (see Figure 63), in which case the heating will 

* Cf. coefficient of energy utilization of fuel in diesel motors (4070) and steam engines (21%). 



be less  for a rapid descent. Use of the parachute may begin at a height of 
7 km. Since a passenger rocket will fly along a second-order curve during 
descent, rather than come in perpendicular to the earth's surface, i ts  path 
to the ground will be quite long. Assuming a parabolic path, let us  determine 
the length of the flight path from a height of 7 km to the ground. 

In polar coordinates the equation for the parabola is 

where Q i s  the radius vector, i s  the angle of deviation, and p is the para- 
bolic parameter: p=2r  , where r is the radius of the earth. 

For Q = r we have cos cp = 1 and cp = OD. For Q = r+  h ,  where h is the 
height (7km), we have 

This gives a path length, for the entire descent, of 

s=2 r=840 km. 

However, it should be noted that during the return of the rocket to the 
earth the parabolic velocity gradually becomes an elliptic velocity, and then 
a circular velocity, that i s ,  i tdecreases ,  the path of the rocket at approach 
to the earth being helical. Therefore, the parachute will also have a gradual 
effect. 

4. Stabilizers a r e  actually not needed for the hydrogen rocket, since i t  
operates in a near vacuum. However, they can be used a s  controls, since 
the gases escaping from the nozzle will strike them; the gas efflux can be 
regulated by the pins shown in Figure 48 below the atomizer. 

Figure 64 shows the descent of a rocket onto water with the aid of a 
parachute, and Figure 65 shows a rocket being braked by ejected gases. 
The effect of the gases facilitates the work of the parachute (figs. from 
M. Valier). 

Some details of the construction of Oberth's rocket for flight to an 
altitude of 50 km are  given in a work entitled " ~ i e  Moglichkeiten der  
Weltraumfahrt," Leipzig, 1928, p. 130. A discussion of the control of a 
rocket is included in this same work (p. 136 and 216). 

OBERTH'S MOST RECENT WORKS 

Oberth, H. I1~rundprobleme der ~aumschiffahrt"  (paper in book "Die 
Moglichkeiten der  Weltraumfahrt ,I1 Leipzig. 1928). 

"Der Raketenantrieb bei ~lugzeugen" (1931). 



FIGURE 64. Parachute descent of rocket. 

FIGURE 65. Rocket descent with the aid of parachute and 
backward reaction. 

Figure 66 shows a model of one of the rockets attributed to Oberth. It 
was on display at the Exhibition of Interplanetary Rockets at Moscow in 
1927. 

Oberth has proposed constructing a recording rocket for heights above 
70 km, in which the nozzles for gas ejection a r e  located at the head of the 
rocket (Figure 67), the propellant being carr ied aft in the tail  section and 
pumped up to the nozzles. 

Note. In "Kosmos" (1925, S. 149) Heinrich Hein presents some calcu- 
lations for such a rocket. He takes the height of ascent to be 6,400 km. The 
terminal velocity i s  found to be 800 kmlsec,  for a flight duration of 70 min. 
If the rocket is launched from the equator along the earth 's  radius, then due 



187to the rotation of the earth (at 480 m/sec  near the equator) it will land 4,000 
km to the west, after describing an ellipse. 

FIGURE 66. Rocket attributed to 
Oberth. 

FIGURE 67. Oberth's rocket. 

For  the flight of a passenger rocket Oberth suggests launching the rocket 
not vertically, that i s ,  along the earth 's  radius, but rather at an angle, along 

188 a curve called by him a "synergic" curve. Thus the acceleration during the 
upward flight can be increased, since the effect of the earth 's  acceleration 
is essentially paralyzed, the takeoff being nearly parallel to the earth 's  
surface. 



189 
W A L T E R  H O H M A N N  

[SOVIET] TRANSLATOR IS FOREWORD 

In 1925 Walter Hohmann, a German engineer, published a work entitled 
 h he Attainability of the Celestial Bodies" ( " ~ i e  Erreichbarkeit der  
~ immel skd rpe r " ) ,  :: in which he studied the conditions of rocket flight into 
outer space. This study was based on an analysis of the mechanics and 
mathematics of space flight, and in i t  the problems of flight trajectories and 
landings on planets were developed in a particularly interesting manner. 
A complete translation of this work is given below, preceded by a brief 
biographical note sent to us by the author. 

In 1929, for  his work and, in  particular, for his idea of a gliding rocket 
descent to the earth, Hohmann was awarded the second REP-Hirsch prize 
(France). :'::': 

* Later he wrote another paper, entitled "Fahrtronten, Fahrzeiten, Landungsmoglichkeiten" (included in the 
book: "Die Moglichkeit der Weltraumfahrt," Leipzig, 1928, p. 177). 

* *  [Actually, the REP-Hirsch prize was not awarded in 1929 (Translator).] 



190 BIOGRAPHICAL NOTE ON WALTER HOHMANN 

Walter Hohmann ( ~ i g u r e  68) was born at Hardheim a m  Odenwald, the son 
of a doctor, on 18 March 1880. His secondary education was obtained at 
the gymnasium in Wirzburg,where he studied from 1891 to  1900. For  his 
higher education, Hohmann attended the Technische Hochschule in Munich 
(from 1900 to 1904), where he majored in mathematics and theoreticai 
mechanics under Prof. Finsterwalder and Prof. ~ z p p e l .  Upon completion 
of his studies a t  this institution, he worked a s  a construction engineer 
(~auingenieur) :  in  Vienna from 1904 to 1906, in Berlin from 1906 to 1908, 
in Hannover from 1908 to 191 1, in Breslau from 191 1 to 1912, and in Essen 
in 1912. 

FIGURE 68. W.Hohmann. 

His scientific works deal with the statics of structures and with 
reinforced concrete. The subject of interplanetary t ravel  began to  interest 
Hohmann in 1914, when he started to prepare the work mentioned above; he 
focuses particular attention on the astronomical and ballistic aspects of the 
subject. Now let us  go on to our translation of Hohmann's book. 



19 1 THE ATTAINABILITY O F  THE CELESTIAL BODIES 

FOREWORD 

The present work has the following goals: to evaluate, with the aid of 
a mathematical study, the difficulties involved in solving the problem of 
interplanetary travel, and to demonstrate that, with an appropriate develop- 
ment of the technical means already at man's  disposal, this problem can 
be brought to a successful solution. 

In his f i rs t  studies, which were carried out about 10 years  ago, the author 
assumed the upper limit for the gas velocity during a rocket burst to be 
2,000 m/sec, the velocity attainable at that time. Consequently, a l l  the 
calculations were at f i rs t  carr ied out for that velocity. However, since 
then three works on rocket flight have appeared which indicate that the above 
velocity may be higher. These works a r e :  

Goddard. "A Method of Reaching Extreme Altitudes" (based mainly on 
Goddard's own experiments); 

Oberth. "Die Rakete zu den ~ lane tenrzumen"  (valuable for its theoretical 
studies); 

Valier. "Der Vorstoss in den ~ e l t r a u m "  (general statement of the 
problem). 

On the basis of these studies, and, in particular, from a comparison of my 
resul ts  with those in Oberth's book, I carried out additional calculations 
for higher gas velocities during a burst (2,500, 3,000,4,000, and 5,000 m/sec), 
taking the above-mentioned velocity of 2,000 m/sec  to be a minimum initial 
value. The resul ts  of these calculations turned out to be more promising. 

In connection with this, the following should be noted. When comparatively 
low gas velocities a r e  used, an attempt must be made to eliminate al l  dead 
weight (ballast). This led to the idea of portraying the fuel of a rocket in the 
form of a tower, composed of a solid explosive material, which gradually 
becomes smaller  a s  its component substance burns up. Such a device would 
represent an ideal solution, with no dead weight present; however, i t  is 
feasible for comparatively low gas velocities. For  higher velocit'ies, 
according to Oberth, the gas must be ejected through a narrow nozzle. But 
the use of the latter,  like the use of a liquid fuel, entails provision of the 

192 appropriate containers and casings, making the dead weight more o r  less  
considerable, the propulsion of the additional weight being easier,  the higher 
the velocity of gas ejection. 

The total rocket weights given in the last two chapters [parts] of this , 

work were determined without taking these dead weights intoaccount, since 
i t  was difficult to  determine their values without carrying out experiments 
on the best shapes and materials for the containers and nozzle. The 
weights Go, indicated there, represent the lower limit for the optimum fuel. 



In my treatment of a number of subjects I am indebted to the works of 
Oberth and Valier: the influence of high gas velocities, certain further 
improvements, and, in particular, the possibility of descending to a planet 
without using a braking ellipse (see end of Part 11), a s  well as  problems 
related to an intersecting ellipse (end of Part V) and heating phenomena 
during descent. 

At times approximate formulas were used in the calculations instead 
of precise mathematical expressions, for the simple reason that the author 
i s  an engineer rather than a mathematician. However, this does not greatly 
affect the final results obtained. 

W. Hohmann 
Essen, October 1925 



Part I 

193 DEPARTURE FROM THE EARTH 

Let us assume that we a re  beyond the influence of gravity, aboard a 
rocket of massmwhich i s  at rest. Now we can impart to the rocket a certain 

velocity Av in any direction, provided we eject 
from it a portion of the mass Am in the opposite 

!.arn (m) :...!... y*t-%-bm direction, with a velocity r relative to the 
rocket. Since the center of mass (center of 
gravity) of system m a s  a whole remains the 

FIGURE 69. 
same, therefore for a certain time t we have (see 
Figure 69): 

and thus 

Consequently, a single ejection of part of the mass dm at a velocity c 
imparts to the remaining mass (m - Am) a velocity from the starting point 
given by 

directed in the opposite direction relative to Am. This velocity will endure until 
a new ejection of mass modifies the motion of the rocket. 

If a part of the mass 2 i s  ejected during each second, at a constant rate c ,  

then the remaining mass has an acceleration 

du c dm _-_.- 
d l - m  dl ( la)  



with a gradual reduction of the mass m .  
194 Let us assume the fuel consumption to be so regulated that at  any moment 

the amount of fuel required per second, $, is proportional to the remaining 

&ass m. Then , 

dm - dt ; m = a = const. 

In this case the acceleration will be uniform and independent of the mass: 

a s  long a s  the velocity of gas ejection does not change. 
The mass consumption obeys the law 

(the right side being negative because m decreases with an increase in time). 
Therefore, 

and after integration we have 

Inm=-at+C.  

For initial conditions t = 0 and m = q,, 

so that 

J! - - e-at Or 
"'0 m 

and thus after a time t the following mass remains: 

m m=-. 
eat 



If a rocket with an acceleration ca of i ts  own is subjected to a gravita- 
tional acceleration g of opposite sign, then the total acceleration will be 

For  example, let us  assume that a rocket located a distance r from the 
earth 's  center moves away from the earth in a radial direction. We desig- 
nate the acceleration of gravity at  the earth 's  surface a s  go, the radius of the 

(195) earth being ro ( ~ i g u r e  70). In this case the acceleration 
of gravity, which is directed opposite to the rocket's own 
acceleration, will, a t  a distance r ,  be equal to :x 

70' 
g=go,p 

195 and the total acceleration is 

ma f -go,. 
FIGURE 70. 

In addition, 

from which we have 

and += =ar +g$ + C. 

For initial conditions (at the earth 's  surface) r= ro  and u=O, we can write 

which gives 

Therefore, 

If a t  a distance r , ,  where a maximum velocity q is attained, the rocket's 
own acceleration ceases, the rocket will behave like a body thrown up 
vertically with an initial velocity w,. At a distance 

r' > r, 

* Some remarks concerning the law of gravity are given at the end of Part 111. 



i ts velocity will be 

, d?' v=-  
lit 

and the retardation will be 

From the last two equations, we obtain 

dr' 
V' du'= -go r t  ;i?. 

or  

but since 

therefore 

196 If the rocket attains a great enough maximum velocity v, at a distance r, 
from the center of attraction, then the cessation of its own acceleration car will 
not cause it to fall back under the influence of gravity. In such a case the 
final velocity ZJ'= 0 only for r'= w. 

Then, from equation (5), 

while, from (4), 

d= car, + g+ - ro (.o + go), 2 

which gives 

=To (car + go), 

or  

and 



The time t ,  required to reach this distance r1 and this maximum velocity 
can be found from the relation 

Since it i s  quite difficult to find this integral, we must give up trying to 
calculate i, for an acceleration of gravity g which varies with the distance. 
Instead we take some value g,,, between go and g, which is, for convenience 
of calculation, not even the average value 

but rather 

or, returning to equation (3), 

197 The flight time i s  obtained if, instead of the expression for the total 
acceleration 

we use the expression 

Then, in accordance with equations (7) and (B), we have 

* For low values of ac this average value is acceptable. The following expression would be more precise: 

where 

so that for ac  =go the total acceleration j is correspondingly zero. 

189 



Substituting this value of t, into equation (2), we obtain 

which shows the relationship between the mass  mo at the beginning of the 
accelerated motion and the mass  m, at the end of i t  (after a time 6,). 

The difference q - m ,  indicates the weight of propellant ejected a t  a 
constant rate  c during a time t,, such that the remaining mass m, will attain 
the highest velocity v, a t  a distance r, . 

The mass  rn, represents the useful load which i s  liberated from the 
influence of te r res t r ia l  gravity. After determining the velocity of gas 
ejection c. and the rocket accelerationca, we can, on the basis of practical 
considerations, find r , ,  v,, t,, and in,, from equations (7, 8, 10, and 11). 
Table 1 shows how the ratio i s  affected by differences in the values of c 

and ca. Here we assume 

r,=6380 km andg,=9.8m/sec2 =0.0098kg/cm2 

(in rounded-off figures). 
It is clear  from the table that ca has less  effect then c does. Therefore, 

it should first be attempted to obtain a value of c which is a s  high a s  
possible, and then to select an acceptable value for the acceleration of the 
rocket itself. Passengers will experience the latter a s  an increase in their 
weight, s o  that physiological factors will limit this acceleration. 

In order to determine the acceptable acceleration, let us  note the 
following: a person jumping from a height h =  2 m attains a velocity *=ae 
when he hits the earth;  at the moment of contact with the ground, he bends 
his knees and over a distance of about ?1,=0. 5 m the velocity drops to zero. 
Consequently, the deceleration(8)can be found from the formula 

199 From these two expressions we have 

Naturally, a person will experience this retardation 1 for only a fraction of a 
second, whereas for our rocket i ts  own acceleration ca will last for some 
minutes. Therefore, it is advisable to assume values of ca between 20 and 
30 m/sec2.:: 

It i s  somewhat more difficult to satisfy the requirement that the velocity 
of gas ejection c be a maximum. The highest velocities attained s o  far  by 
artil lery shells have been about 1,000 to 1,500 m/sec, but such velocities, 

a s  Table 1 indicates, give values of 2 which a r e  too high and thus a r e  

unsuitable. Consequently, c= 2,000 m/sec  should be taken a s  a lower limit, 

which gives, for ca= 30 m/sec2, a ratiomO= 825. 
'% 

For  these lower values (&=30 and c= 2,000) the following calculations 
were performed. More favorable resul ts  for increased values of c a r e  given 

* For details concerning the physiological effects of acceleration, see the work by Oberth mentioned earlier. 
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in appropriate places, in the form of a comparison just with the calculation 
results.  

At the beginning of the upward flight (at launch) the amount of gas ejected 
per second is determined from equation ( lc) :  

%= amo, 

but 

a = z= 30m/secz. 0.015 
c 2iM1 m / s e c y c  ' 

and 

Therefore, 

*=0.015 a825 .m,=12.4rnI. dt 

Consequently, during the first  part of the upward flight, the mass  consumed 
per second will constitute a considerable portion of the remaining useful load. 

If the bursts  a r e  made to be s imilar  to the firing of a cannon, then in this 
case it will be necessary to ca r ry  a large dead weight, which will increase 
the initial mass  m, of the rocket correspondingly. In order  to avoid this, 
we distribute the mass  of the fuel m,-m, similarly to that in an ordinary 
[ship] rocket, so  that the combustion products will be expelled into the 
vacuum of space with a velocity c . Let u s  assume that the consumption of 
the fuel mass per second corresponds to the rocket c ross  section and to the 
available residual mass of the rocket; then we can assume that each section 
i s  proportional to the overlying mass, and the shape of the fuel will be 
similar to that of a tower with the same resistance to compression 
( ~ i g u r e  71). 

200 The mass  expelled per  second through some cross  section F is found 
using equation ( l c )  and Figure 71: 

dm z=am=F.- .- ,  dh y' 

' it go 

where go is the acceleration of gravity, and y' i s  the specific weight of the 
tower material, reduced to the value at the earth 's  surface. 

Moreover, 

dh - O m  go, -- 
dt F y' 

but, since 

therefore 

and 



If we designate G,=m,g, a s  the weight of the residual mass of the rocket 
relative to the earth 's  surface, then 

and, from equation (1 2),  

Fo=mo. 
"'1 FI - 

For  example, assuming that the weight to be lifted C, is two tons, for a 
specific weight of the fuel r'= 1.5 tons/m2, we have in the given case 

the following values: 

448. 2-8.96 andFo=825F,. ), =' 
1.5 F i - F l  

If the a rea  of the upper section of the tower i s  F,=0.332 m2, which 
corresponds to a circle 0 . 6 5 m  in diameter, then we obtain 

F0=825. 0.332 =273 m2, for a diameter of 18.7 m 

and 
8.96 h z m 2 =  27m ( ~ i g u r e  7 2 ) .  

The resistance of the material to compression will be, if the rocket's 
own acceleration ca=30 m/sec2 (instead of the normal g =  9.8 m/sec2), 

G~ - 30 2 tons a=?!.--- F 9.8 -=18.5 tons/m2=1.85 kg/sec2 

FIGURE 71. 

FIGURE 72. Hohmann's FIGURE 73. 

rocket 



The search for a material of the required strength, which would at the 
same time yield an ejection velocity c and the corresponding energy, 
represents a problem in explosives engineering. 

We have not yet taken into account the air resistance. Although the 
rocket shape described above (Figure 72) is  suitable for overcoming the a i r  
resistance and although high velocities occur only at considerable heights, 
where the atmosphere is either very tenuous or else nonexistent, still the 
effect of the dense lower layers of a i r  must be evaluated, if only approxi- 
mately. 

According to Lossel, the resistance wof a i r  with a specific weight r,  
through which a body with a midship section F moves with a velocity 
perpendicular to F , i s  

(cf. equation (14) in Part  11). Here g is the acceleration of gravity, and yr is 
a coefficient depending on the shape of the body (for a plane moving in a 
direction perpendicular to itself, v= 1). 

The retardation occurring as  a result of this will be 

rz F ng=L=- .-y. 
m g m  

For the given case, equation (12) gives 

F - P ~ -  0.332 -1 mS ---- 
m mi -0- 600 kg/secz 

202 For a conical tower (Figure 73) we have 

q=sins  q=cu ''+' '-0.12. (2.27) - 

Therefore, 

=7vZ 00.12 7 4  1  
g 6 0 0 - g ' m  

(13)  

Por the given limits we can take g= 10 m/sec, and equation (4) gives 

the values for y being given in Table 3 of Part 11. Table 2 shows the 

results of calculations of 7 kg/m2 for various distances r .  

203 At heights greater than 50 km above the earth's surface, for the velocities 
attained there, the effect of a i r  resistance according to equation (13)  i s  
negligible. Let us consider a more unfavorable case, when, for heights from 
0 to 50 km, the average value i s  

Then, according ta equation (13), the average retardation will be 

12000- dj3==-2.4 m/sec2 



202) TABLE 2. 

kg/m3 
from Tab.3 kg /m2 

and thus at heights below 50 km, instead of ca= 30 m/sec2, we will have an 
actual acceleration of 

For r= 6,430 km or  r-r,= 50 krn, we have from equation (4) 

638) 5 = ~ ( 0 . 0 2 7 6 - 0 . ~ 8 ~ ) = 0 . ~  2 km2/sec2 

instead of 

and 
~ = q m = 1 3 4 0  km/sec 

instead of 

d ? 4 = 1 . 4 2 5  km/sec 

and a corresponding flight time 

t' = 1340 6w =75 sec 
27.6-y(2+aw) 

instead of 



In all, the time difference At=4.7 sec. 
In addition, the final velocity will be less  by an amount 

and thus the rocket's own acceleration must be prolonged by a time 

Avf &I=-= 85 6980n ~ 3 . 5  sec. 
'I 30-9.8 Rw 

The length of the bursts will be, instead of the value t,=448 sec given in the 
table, 

t11=448+4.7 +3.5=456 sec, 

204 and thus 
at,' =0.015 -456 = 6.84 

giving a mass ratio 

eatl'=r933 instead of 825. 
"'1 

The result will be somewhat better if we simply increase the rocket 's 
own acceleration by an amount dB= 2.4 m/sec2 throughout the first 50 km. 
Then the total duration of the gas ejection will remain the same a s  that 
without a i r  resistance, that is, 448 sec; the first 70.3 sec of this will 

correspond to an acceleration nc=32.4 m/sec2 for a=== 0.0162. 
2,000 

The other 377.7 sec will correspond to ac=30 m/sec2 for  a= 0.015, giving a 
ratio of 

The table below indicates the effect of the a i r  resistance, for other values 
of clc and c , on the ratio 

It is clear from the table that, with an increase in the rocket's own 
acceleration ac, the effect of a i r  resistance increases very much. 
Consequently, a high value of ac resulting from a high velocity may prove to 
be less  advantageous than a low ac . 



The foregoing ideas, according to which a body is  propelled by prolonged 
bursts  overcoming the force of gravity, a r e  not new. In "Around the ~ o o n "  
["Autour de la  Lune?], Jules Verne presented similar ideas, when he 
described a means of reducing the velocity of a cannon ball with the aid of 
rockets. Also, in the novel "On Two Planets" ["Auf Zwei Planeten"], Kurd 
Lasswitz describes the use of particle ejection at the velocity of light, which 
involves a very small reduction of the weight of the vehicle. 

205 The recent studies by Goddard, Oberth, and Valier were mentioned in the 
Foreword. Back in 1890 Hermann Ganswindt, the famous pioneer aeronaut, 
demonstrated that it was possible to construct a rocket airplane; the studies 
of the Russian scientist, Tsiolkovskii, date back to the same period. Finally, 
we should note that Newton, in his lectures on the principle of recoil, pointed 
out the possibility of utilizing this principle for flight in a vacuum. 

Part 11 

RETURN TO EARTH 

Let us consider a rocket falling from a great distance away from the 
center of attraction (see Par t  I and Figure 70), this distance being between 
r, and r, .  The velocity i s  to  be reduced from v, to zero. This will take the 
same amount of time t, a s  previously (equation 10) and a consumption of fuel 

d", ejected in the direction of motion. For  the ascent and the return 
$I 

to earth, the flight time will thus be doubled. The ratio between the initial 
and final masses will be 

mo' = . 2  , - 
"'1 

that is, it willnot be twice a s  great, but rather  proportional to the second power 

of the values of 3, given in Table 1. For  instance, for ac= 3 0 m/sec2 
"'1 

and c= 2,000 m/sec, 

Using this method of retardation and for the gas velocity c assumed, the 
mass  ratio is very unfavorable. Therefore, it i s  advisable to seek some 
other method of descent, for example, one making use of the braking effect 
of the earth 's  atmosphere. 

According to Lossel, the a i r  resistance to a body moving through the 
atmosphere is 

where v i s  the velocity of the body at a given moment, g i s  the acceleration of 
gravity, y i s  the specific weight of air ,wis  the pressure per unit a r ea  perpen- 
dicular to the direction of motion, F is the cross-sectional a r ea  (of the body) 
perpendicular to the direction of motion, and rp is a coefficient dependjng on 



the shape of the body (for a plane surface y, = 1, and for a convex hemisphere 
v= 0.5). 

206 We assume that'the a i r  pressure, which is  p, at the earth's surface and 
zero at  some height h ,  varies according to the following law ( ~ i g u r e  74): 

Then the drop in pressure for a height variation dy will be 

dp -"PO n-1. -- 
dy h% y 

However, we also have 

dp=ydy or  % = I .  

Therefore, 
Earth's surface y = FJln-t 

(16) 
FIGURE 74. 

At the earth's surface y =h,  and p =po, so that 

and 

and from equation (16) 

We assume: 

~ ~ ~ 0 . 7 6  ma 13,600 kg/m3 = 10,33 0 kg/m2 (weight of mercury column). 

Then 

According to sounding-balloon observations, the atmospheric pressure at 
a height h - y =  10 km is about 210 mm Hg, so that 

This value can also be obtained independently of equation (15), for h from 
100 to 1,000 km. Observations of falling meteors, a s  well a s  theoretical 
considerations, indicate that the height of the atmosphere is at least 
h =  400 km (see, for example, Trabert, "Lehrbuch der kosmischer Physik, " 
p. 304). This value wil l  be used in the following. Then, from equations (17) 
and (17a), we have 400 n=-g-=50; n-1=49. 



207 The values of y were calculated for 
various heights h - y ,  and these a r e  given 
in Table 3 .  

If a body approaches from outer space 
to a distance 400 krn from the earth 's  
surface, o r  a distance r =  6,780 km from 
the earth 's  center, and if i t  moves under 
the influence of gravity, then equation (6) 
gives a velocity 

Clearly, for a radial descent, this 
velocity cannot be reduced to zero without 
damaging the rocket itself and harming the 
passengers. However, the duration of the 
braking process can be reduced considerably 
if the body enters the atmosphere 
tangentially. 

For a body approaching the earth from 
far  away and moving solely under the in- 
fluence of te r res t r ia l  gravity, the trajectory 
will be nearly parabolic, with the focus 
at  the earth 's  center, provided that the body 
does not descend radially. Then, at  any 
distance r , the velocity will be (see 
Figure 70) 

Fo r  passage right near the earth 's  
surface, the tangential velocity will be 

- - l n l n m  al-=E m o o o o r o o  !I--. ~ 3 r l o r n w ~ - m m r (  

" 

At the limit of atmosphere the tangential 
velocity will be 

Thus, within the atmosphere this velocity 
will be about 

and we can also take this to be the average 
velocity for the entry of a body into the 
atmosphere. In order to determine the 
layers of a i r  in which i t  is advisable to 



carry out retardation, the a i r  resistance UJ=? was calculated for different 

heights and for a dlat surface ( I  m2) moving perpendicular to i ts  plane at  
a velocity of 11.1 km/sec. The results, in kg/m2, a re  shown in Table 4. 

TABLE 4. 

:209 --l 

Air layers lying above 100 km were not taken into account when 
calculating the braking effect and for the flight velocities taken. Our rocket 
now, in contrast to the conditions at departure from the earth (considered at  
the end of Par t  I), will not profit from a reduction of the a i r  resistance to 
its low mass m, . Instead, this resistance must be used to the best advantage 
by selecting the optimum rocket shape. 

Here the situation is similar to that for an airplane, which, in the lower 
208 layers of the atmosphere, for g= 9.8 m/sec2, Y= 1.3 kg/m3, and a velocity 

of 50 m/sec, will face a normal drag of 

p a  - 1.3 -501 - w=-- ,F - 330 kg/m2 

According to Table 4, this drag corresponds to a height from 75 to 100 km 
above the earth 's  surface ( ~ i g u r e  75). 

The rocket will be assumed to enter the earth 's  atmosphere in such a 
way that the vertex of the parabolic path lies at a height of 75 km above the 
earth 's  surface, o r  a t  a distance 

from the earth 's  center, taken to be the focus of the parabola. 
210 The path length between heights of 75 and 100 km, which i s  the distance 

over which braking takes place, is found from Figure 75. From the equation 



for the parabola, we have 

from which 

3 = C O S ~  a', 

and 

(208) 

FIGURE 75. 

In addition, a s  a good approximation, we have 

S,=r'- sin 2a'=6480.0.12428 = 805 km 

and thus the length of the braking path between the 75-km and 100-km levels 
i s  

2 s, = 1610 km. 

Here, a s  a first approximation,we assume that the path does not vary as a 
result  of the slowing down (the effect of retardation is given special consider- 
ation at the end of Par t  11). 

Over a path s, the retardation ,9 of the mass  m, of the rocket, because of 
the a i r  resistance W ,  will have a variable value: 

o r  (from equations (14) and (16a) with g = ~  go) 

In addition, 



and, approximately, 

Consequently, 

and 

l n y = - r o . l P . . -  Y ~ '  + C. 
50.go nq Ara h49 

If the vehicle enters  the braking path a t  y=,q', we have 

211 In the middle of the braking path, at y=.q,,, we have 

Therefore, during the t raversa l  of the f i rs t  half s, of the braking path, 

When we put in the numerical values, we obtain: 

Moreover, a s  previously, gem, =the weight C,, of the rocket relative to the 
ear th ' s  surface) which equals 2,000 kg, and F a  Ip, the a r ea  corresponding to an 
open parachute 2.8 m in diameter, oriented perpendicular to the flight direc-  
tion, i s  6.1 m2. Then, the highest value of the retardation at a height of 
75  km will be 

w 140 p,, =- - 6.1= 19.5 m/sec2, 
"'1 

and the velocity v,, at the vertex of the parabola is found from the equation 



In a similar manner, we can calculate the exit velocity of the rocket 
from the second half sa of the braking path: 

As a consequence of the velocity reduction, the shape of the flight path 
will change, so  that the rocket describes an ellipse instead of the parabola 
it has followed up to that time. While traversing the ellipse, the rocket 
again follows a braking path, entering the latter at a velocity ol= 10.4 km/sec. 
Due to the shortness of the braking path, the a r c  of the ellipse will differ 
little from the parabola, so that the length of the new braking path may also 
be taken to be 2s,= 2(805) = 1,610 km. 

After t raversal  of this distance, the new exit velocity from it will be 

212 As a result of this new velocity reduction, the body moves along a new 
reduced ellipse instead of the previous one. Accordingly, a new braking in 
the atmosphere occurs along this ellipse, with an entry velocity TI,= 

9.8 km/sec. Let us again assume the length of the braking pathto be 2sa = 
1,610 km, although actually it will be somewhat greater and the retardation 
will be more marked. Then, 

and also 

and 

Finally, after one more such elliptical path, with braking over half the 
distance s,,, the velocity a t  the vertex will be 

but this is precisely the velocity 

for  which a body at  a distance r,= 6,455 km from the earth 's  center (or at a 
height of 75 km above the earth 's  surface) will describe a circle around the 
earth, when the a i r  resistance i s  not taken into account. In this case the 
vehicle will remain in the earth 's  atmosphere and the subsequent descent will 
be similar to the gliding approach of an airplane. 

In order  to determine how long it will take for the rocket to traverse 
different ellipses, it is sufficient to make the calculations for  just one of 
them ( ~ i g u r e  76). If a body mass m i s  located a distance r from the earth 's  



center E ,  it will experience an attraction 

p=- F'm. 
ra 

At the earth 's  surface, where r=ro the attractive force will 
equal the weight mgo, of the body: 

mgo = E 
r0P ' 

so. that 
FIGURE 76. 

P =go r: = 0.0098 -63801 = 4,000,000 km3 /s ec2. 

If the body in Figure 76 i s  a very small (or very great) distance r,, from 
the center of attraction, then the velocity will be u,lr,, and the body will 
describe an ellipse with semiaxes 

2 13 

(for derivation, see end of Par t  111). 
Assuming the e r r o r  to be small, we take the velocities v, ,  v,, etc., of exit 

from the braking path to be at the vertex, where ra= 6,455 km; then, 
rounciing off, we have 

and, for o,= 10.4 km/sec, 

bl = 10.4'6455 = 16,800 km ; 
4124 - 10.42 

for v,=19.8 km/sec, 

' 98.6455 b - = 11,950 km ; ' - V124 -9.89 
for v,= 9.2 km/sec, 

400000 4= 124=10,250 km 

bs = 9.2 645s = 9500 km ; 
dl24 - 9.P 

for v+=8.6 km/sec, 

8 6.6455 
b , = 7 = 7 8 5 0  km; 

124 - 8.e 
and, for us= 8.1 krn/sec, 



The duration of the flight along each ellipse is calculated on the basis  of 
the law of equal a reas  (equation (39) at end of Par t  111): 

Consequently, 

214 Accordingly, to t raverse al l  five ellipses ( ~ i g u r e  77), the following time 
will be necessary: 

2.25000.16800.n - 
t ,  = 10,4.6455 -39,300 sec = 10.9 hr, 

2.14300.11 950.n- 
tn = 9.8.6455 -16,9OOsec=4.7hr, 

t ,  = 2 ' 1 0 ~ ~ ~ ~ ~ ' r r  = 10,300 sec = 2.9 hr, 

t, = 2 8000.78M.n - 
g.6 M55 - 7100 sec = 2.0 hr, 

tS = 2.6W0.6860.n - ,,,,, , - 5700sec =1.6 hr .  

Giving a total time t,= 79,300 sec =w22.1 hr .  

braking path 

FIGURE 77. Descent of Hohmann rocket 
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The gliding flight which begins after this may be represented a s  follows: 
i t  s t a r t s  at a height h-y,= 75 km, with a tangential velocity va=7.85 km/sec. 

At this velocity the centrifugal acceleration =d equals the acceleration of 
' n  

gravity ga, since v,,' = gar, (see page 203). Due to the prolonged retardation ,B, 
the a i r  resistance will cause a reduction in the velocity v and the centrifugal 
acceleration 

ta z=-, 

s o  that the acceleration of gravity remains almost unchanged. In addition, an 
ever-increasing radial retardation Q must act upon the rocket, a s  well a s  the 
tangential retardation B ,  in order to compensate the preponderance of the 
acceleration of gravity g over the centrifugal acceleration 2, that is, 

or, since I=: for the given region between heights of 0 and 75 km a s  well, 

i t  i s  accurate enough to take g=y, and 

215 The radial retardation can be obtained owing to the effect of the a i r  
resistance on the supporting surface F,,, which must be turned so  that it is 
inclined to  i t s  original horizontal position, with the aid of the altitude 
controls, and this inclination must gradually become greater  and greater  
(see Figure 79): 

t d i ~ 0 0 ~ ~ . ~ 0 0 0 3 8  , Earth's surface 

FIGURE 78. FIGURE 79. 

However, the resulting tangential resistance v= p tan a can be neglected in 
comparison with the high retardation B along the path. In order  to ensure 
that the height regulation will always be easy to car ry  out, the drag p, cannot 
exceed that a t  the beginning of the glide. Therefore, from equations (14) and 
(16a), we have 



that is, the flight must proceed in such a way that always 

In other words, a different flight velocity should correspond to each 

height. Figure 78 shows how each height y has its own ratio$. This same 

diagram also shows the difference 1 -2, which (according to equation (19)) 
va2 

expresses the increment of the radial acceleration e in units of l/g. 
Moreover, when i t  attains a certain velocity V ,  the rocket t raverses a path s 
with a constant retardation @= @,, : 

Formula (22) indicates that the path s is expressed with the aid of Figure 78, 
"2 

via segments of length 1 -za, in units of 1 / q .  It i s  evident from the figure 

216 that, if the retardation P remains constant, then favorable flight at 
the beginning of the glide, may turn into a fall at the end. Consequently, 
the value of @ should remain constant only until the inclination of the flight 
begins to intersect the horizontal more sharply. 

According to equation (22), this inclination can be expressed a s  

so that 

At a height h-ya= 75 km, o r  for y,= 325 km, with a velocity 

and a retarding surface F= 6.1 m2, the retardation will be 

=0.0093 km/sec2. 

Assuming that this retardation is retained down to an inclination %=;, 
we can find the altitude to which the rocket descends from equation (23): 

or  
I - 

so Yb=Y,. 50 =325 - 1.0814=352 km, 

which corresponds to a height 

11- yb=400 -352=48km 



above the earth 's  surface. The corresponding velocity vb is found from 
equation (21): 

The path traversed will be (according to equation (22)) 

7.852 sb = 2% (1 - $) = 2T3 (1 - 0.02163) = 3250 km. 
2Ba 

The flight time is 

tb -  * a - ~ b - 1 8 5 0 - 1 1 5 0 -  
Pa - 9,3 -720sec, 

217 and the radial retardation, which must be found a t  this point, is  given by 
equation (19): 

Q. = g (1 - 3) = g (1 -0.02163) =0.97837 g, 

that is, it is almost equal to the total acceleration of gravity. It can be 
obtained with the aid of the supporting surface F,, determined us'ing equation 
(2 0) : 

q='. Fo.sins a.cos a = w  g, 
m 

where w has the value 

,,YO. v,' Ya 325 49 ( h ~ = ~ . 7 8 s a ( m )  =310kg/m2. 
8 0  

Therefore, 

Fosins a-cos a=m'B=w!!!!6.5m2. 
w 310 

Since the quantity z=g tan a in  the relation for 8 ,  is not large, angle n 
should be a s  small  -as possible, a t  any rate, max a= 20°, that is 

and 

max t=0.364.9.8 =3.56 m/sec2; 

p,,=9 m/sec2 

From the foregoing it follows that, from a height h -y= 75 km down to a 
height of 48 krn above the earth 's  surface, over a path length sb = 3,250 km, 
with a constant retarding a r ea  F= 6.1 m2 and a constant supporting a r ea  
F,= 59 m2, the angle (a) of inclination (intersection) of the supporting surface 
to the horizontal must increase from 0" to 20". Thus, for an invariable a i r  
resistance w =  310 kg/m2, the velocity will drop from v,= 7,850 m / s e c  to  
Vb= 1,150 m/sec, and the radial retardation(p)will r i se  from 0 to a value 
equaling the acceleration of gravity (see Figure 80, from A to B ). 

- 



Beginning from a height h-yb= 48 km, in order  to avoid a rapid fall, the 
retardation of the motion must be decreased; moreover, so  a s  not to use a 
retarding surface F, in the form of a parachute, a supporting surface F,,which 
gives a component %= 3.56 m/sec2= 0.00356 krn/sec2 should be used for 
braking, since i t  will retard the motion further. However, this value of r 
should not be used up to the end either, since, if i t  is, a short flight may be 
followed by a sharp descent (fall); therefore, for constant Q (equal to  the 
acceleration of gravity), the retardation during flight should be reduced more 
and more, for  instance, for a movement from position B further beyond D 
( ~ i g u r e  80), shifting the supporting surface F, into a horizontal position. 

218 

(@ decreases from 3.56 to 0.102 in/sec2) 0=0 -9.3 m/secz 
f is constant = g  A c e  eases from 0 to -4 

FIGURE 80. 

For  each point on the trajectory we have the relation 

or, since 

"="d(y  

we obtain 

-ads=$d($r9=-'.' ."(")". dy, 
2 Y, Y 

JRE 81. 

where ,9 is a variable. 
Let us assume that the glide near the earth is a t  an angle of 45"; then, for 

y=y,= 400 km, we have 



and a final value of 

At the end of the pathn( F i n  Figure 80) the tangential component r of the 
a i r  resistance at  a wing is zero. Thus the retardation 8,;. at  this point is due 
only to the shape of the rocket itself ( ~ i g u r e  81), and it will be 

from which we obtain 

219 We substitute the numerical values 

w = 310 kg/m2 (the value taken, with some margin); 

d= 1.5 (least allowable diameter of rocket); 

At the end of the remaining path the flight velocity is found from the 
relation 

which gives 

and the resistance will be 

which makes i t  possible to descend without difficulty. 
To simplify the calculation, weassume that Bvariesfrom 3.56 to 0.102m/sec2 

in jumps rather  than continuously. The jumps occur in the four regions 
B-C, C- D. D-E , and E- F ( ~ i g u r e  80), the values in these regions being 
Be= 3.5 m/sec2, Bd= 1.0 m/sec2, Be= 0.2 m/sec2, and /If= 0.102 m/sec2. The 
inclinations of the path a r e  taken to be 

Then, for the end of each part, we have: 
For segment B-C,  according to equation (24), 



s o  that 
1 - 

yc=ya. w = 3 2 5  - 1.114=362 km 
h -yc=38 km. 

In addition, from equation (2 I), 

ucZ - ya 49 - 1.114 - 0,30502; 
- 222 

", = v , ~ ~  = 7 85 -0.0706 = 0.555 km/ sec,  
and from (22), 

220 so that 

t c = ~ = l l m - 5 5 5 -  
PC 3.5 -17Osec. 

For segment C- D,  

1 - 
yd=ya.1~~w=32~.1.1~=377km h-yd=23km 

L =E8=0.00075; 
,=(yiY 1550 

ud = 7.85 d m 5  = 0.215 km/ s e c  
sd =-=O.SW -0.219- 

2Pd 2 . 0.00, - 131 km 

t d = ~ - - v d E k E 5 5 5 m  set. 
Pa 1 

For segment D- E, 



For segment E - F, 
y=400km 6-y=0; vT=49m/sec 

- up 0.IMW - 0.0491 
sf=-- W f  - 2 - 0.0001 = 20 km 

+"-- 80-49 
Sf 

--=3lO sec. 
0,l 

The length of the entire gliding flight will be 

and its duration will be 

tb - f=720+170+340+675+31~=n1~ sec=37 min. 

The total duration of the descent [flight], from the original launching into 
the atmosphere to the landing on the earth, will be about 

78300+2200=85500 sec =cv22.6 hr. 

22 1 When determining the braking ellipses, it was assumed that, at the point of tangency where the parabola 
approaches the first ellipse, the remaining ellipses begin immediately, without a gradual transition from one to 
another. Actually, the braking action takes place gradually, rather than all at once, all  along the length of 
each ellipse, and the path of the rocket will be helical instead of elliptical. Along its path, the rocket will 
encounter lower, and thus denser, air layers presenting greater resistance, so that the retardation will be corres- 
pondingly greater than that assumed above. As a result, it is desirable to evaluate the shape of the exit 
ellipse, as well as the inclination and shortening of its axis. 

In order to determine the pattern of the possible change in flight conditions, in the following the first 
ellipse after the parabola (Figure 77) will be replaced by a spiral. For this purpose, in Figure 75 the angle 
4a '  = 14"16', within which the parabola cuts through the air layers, is divided into six parts equal to dq = 

1610 
= ~ 2 2 % '  each, within which the length of the corresponding segment of the spiral is aboutds  =?= 

=N270 km. If necessary to the left of the angle (Figure 77), we can assume more such angles. Let us suppose 
that, at the points of contact with adjacent paths AS, the retardation occurs in jumps, corresponding to an 

B As instantaneous velocity reduction dv = -, where v denotes the final velocity in the preceding part of the 

path, and B is found with the aid of Table 4, according to the formula 

If the exact value of w is not given in the table, i t  can be obtained by rectilinear interpolation, which 
gives a result somewhat higher than the true value. For the initial point of each branch of an ellipse, the 
quantities r l ,  q and al are assumed to be given and are obtained through d v ,  as results of the study of the 
preceding ellipse. 

In addition, we can use the equations 
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(see equations (45) and (461, in relation to the law of equal areas), and 

(see the equation for an ellipse). 
From these equations we obtain the angle cpl between the incoming path and the major axis of the ellipse 

in question; moreover, since A(P= 2"22y3', we also obtain the angle cps = cpl A(P between the final path 
and the major axis a, as well as, finally, the corresponding values for the final point of the branch of the ellipse: 

(see equation of ellipse), 

(see equation (41)), and 

(see law of equal areas and equation (39)), etc., until a distance r > 6,480 km is reached. The calculations 
carried out are presented here. 

223 For purposes of comparison, the elements of the braking paths for elliptical and helical trajectories are 
given below. 

The escape ellipse obtained, with a=12,486 km instead of 25,000 km and with 6 = \/119,500,000= 10,931 km 
instead of 16,800 km, is considerably smaller than the calculated first braking ellipse: the two major axes 
differ from one another by an angle of 7-41, - 7"8'=33'. The nearest point of escape from the earth will l ie  
at a distance 

Limits 

Parabola and 
firstbraking 
ellipse I 
Transition I spiral 

br 119500000 , --= 
"-a+e 12 = 6452.7 km instead of 6455 km. 

Thus, in reality, i t  may bc possible to limit ourselves to two braking ellipses, instead of the five ellipses 
mentioned above, and then to pass directly to a circular trajectory. This will be particularly advisable if the 
braking surface F is increased somewhat. 

r 

v 

a 

r 

v 
a 

In conclusion, it should be determined whether o r  not it is possible to  pass 
directly to a circular orbit without completing any elliptical orbits, during 
the escape of a rocket into a retarding a i r  envelope. This would be possible, 
of course, only with the use of altitude controls. The lat ter  will not present 
any difficulty, since in any case such controls will be needed in the 
subsequent gliding flight. 
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For  our f i rs t  calculation, which is the most unsuitable case from the point 
of view of the effect of the retardation, we assume that the rocket reaches the 
vertex of the parabola a t  r,= 6,455 km, with a reduced (due to the a i r  res i s -  

11 :1 
tance) velocity of about v r r = m =  10.75 km/sec. If, under these conditions, 

the vehicle must then describe a circular trajectory, it will have to be 
subjected to a centripetal acceleration 

instead of the acceleration of gravity 

ga=9.8 (6155) *'=9.6m/sec2 

a t  that point. 
Consequently, an additional radial acceleration 

224  is necessary, which should be obtained using the effect of a i r  resistance on 
the supporting surface F, (which i s  needed anyway), the lat ter  surface being 

inclined a t  an angle a to the horizontal, a s  
shown in Figure 82. The angle is selected s o  
that 

e = z . & .  rn sinaa-cosa. 

As the flight velocity v i s  gradually reduced, 

FIGURE 82. 
the radial acceleration e will have to be made 
smaller  a s  well, and this can be accomplished 
by an appropriate reduction of angle a. For 

v, = 10.75 km/sec and ra= 6,455 km, and with the same supporting-surface 
a r ea  F,= 59 m2 a s  is  required for gliding, we have: 
a rocket mass 

m = w  2000 kg/sec2 
m e c 2 = * O o  - m 

a resistance 

Y = 640 . (SOT = 600 kg/m2, 

and 

In addition, for a circular trajectory, 

8.8 
sina a - cos a = = rn0.047 m 

" a  Fo 
rn 



Angle a will decrease gradually, reaching 0" at the transition to a free 
circular [circling] velocity of 7.85 km/sec. The greatest retardation, at  a 
height of 75 km and at v-. = 11.1 km/sec, for a parachute area F= 6.1 m2, 
was earl ier  found to be 

During the forced circling motion at this height (75 km), the retardation 
f.or an instantaneous velocity v will be 

dv 
z B m 1  - y 9 . k  (where k= 0.0193 , 

d "<-- m) 
and also 

so that 

do- 
di - "; 

225 At the vertex of the parabola, for s = 0, 

O=Inva+C; C=--lnua; 
and thus 

Therefore, at  the end of the forced flight, and at the beginning of the free 
flight in a circle, that is, for r t =  7.85 km/sec, the rocket moves away from the 
vertex of the parabola along a path 

11 12 1075 
max s = & In -?8~  6400. (6.98 008 - 6.66 568) = 2000 km. 

The time required to traverse this distance can be found from the 
relations: 

m, - - V ~ k ;  
di - 

dv kdf=- - ; - i  

For t = 0, that is, at  the parabola vertex, 

Therefore, 



218 sec = 3.63 min. 

Consequently, from the moment the rocket passes through the vertex 
of the parabola until the end of the glide, the following time elapses: 

218+ 2 2 0 0 = ~  2400 sec = 40 min. 

A descent to the earth without flying along braking ellipses is thus quite 
possible. The case i s  somewhat different during the forced circular flight, 
when the passengers aboard the vehicle will be pushed toward the upper 
part of the craft due to the centrifugal force, and when they will fly with 
their heads o r  their backs downward, which may make maneuvering difficult. 
The pilot has to  be careful not to fall prematurely into the denser layers  of 
the atmosphere, which ( ~ i g u r e  78) may cause the rocket to  fall. On the other 
hand, if he flies higher than he should, then in the worst case he will have to 
leave the earth 's  atmosphere and describe a greater  o r  smaller  ellipse, 
giving him an opportunity to  choose a more favorable descent. 

226 The ignition of bolides and meteors in the atmosphere represents an 
apparent contradiction to the method of descent described above. Such 
phenomena might lead us  to conclude that a body entering the earth 's  
atmosphere from outer space must be subjected to extreme heating, due to 
the a i r  resistance. However, it must be kept in mind that such meteors 
possess velocities which a r e  considerably higher than that of our rocket. 
The latter, a s  we have assumed, is acted upon just by te r res t r ia l  gravity, 
and it possesses, like the earth itself, a motion about the sun a t  a velocity 
of 30 km/sec. Meteors, on the other hand, at distances from the sun equal 
to the radius of the ear th ' s  orbit, attain velocities of about 42 km/sec 
relative to the sun, because of the attraction of the latter. Therefore, if they 
a r e  flying toward the earth, then for a meteor velocity of about 30 m/sec  
these bodies will have velocities relative to the earth of 42+ 30 = 72 km/sec 
instead of the 11.1 krn/sec possessed by our rocket. Since the a i r  resistance 
is proportional to the square of the velocity, therefore in the most unfavorable 

direction a falling meteor will encounter a resistance (:)2= 43 times a s  great 

a s  that encountered by the rocket. 
However, it must not be forgotten that for a reduction of the velocity from 

an energy - 0 i s  released. Assuming, a s  before, that the mass 

we obtain 

mv'" ZOO 
-j- - y . 1 1,100' = 12,300,000,000 pg. 



This energy must be converted into either turbulence of the air,  heat, o r  
both of these together. So far, considerations of descent to the earth have 
tacitly assumed the former, that is, conversion of the energy to a i r  motion. 
The other extreme' case, a complete conversion to heat, gives the following 
results.  

1 Assuming a mechanical equivalent of heat equal to=, we obtain the 

number of calories liberated during descent: 

12,3llo,m,mo - 
Q= 4n - 24800,000 W. E. (~Zrmeeinhei ten  = units of heat). 

For  the previous assumption of a s  rapid a retardation a s  possible, the 
parachute used will be greatly heated and will burn up. Therefore, it is 
necessary to make use of a se r ies  of parachutes with appropriate shapes, 
one after the other, when passing through the retardation region ( ~ i g u r e  80). 
This continues until, finally, the transition to gliding is made, a t  point B, 
where the velocity has dropped to  only 1,150 m/sec  and where there i s  no 
longer any danger of heating. 

227 In order  to reduce the ignition hazard, the braking should be so  planned 
that the heated surfaces have enough time to transmit heat outward via 
radiation. In general, the energy produced during retardation from a 
velocity i to a velocity w will be 

and the energy increment per second is 

This corresponds to an influx of heat per  second of 
dQ=!!!E.du. 
dt 427 dt 

dQ If the permissible per-second heat influx is known, then the deceleration 

during braking for the moment when the velocity i s  v must be no greater  than 

dw dQ . 4 2 l  -- 
dt -2t mu' 

The permissible influx of heat per second must be compensated, if 
possible, by a heat efflux via conduction and radiation. Assuming the surface 
of the rocket to be corrugated, we can take the influx per second to be 

500%, so that for m =  200*, we have 
sec m 

d" dt 20O.u =I%!!; (* in m/sec). 

The retardations for ~ a r i o u s  values of o will be: 

dv 1000 for  o=  1 0 0 0 0 m / s e c : ~ = ~ ~ ~ =  0.1 m/sec2, 

du 1000 = 0.2 " ,, v = 5000 r t  dt - 5000 

d" -l(g -- " o=1000 n Jt 1*0= 1.O I* 

" w = 1 0 0  &--low =10.0 * 
" . at - 100 



Such small  retardations can almost be obtained without using a parachute, 
since the a i r  resistance to a body's motion and the drag on the wings of a 
vehicle will be sufficient to provide a slight braking effect. 

The total distance s covered during descent i s  obtained from the relations 

O 

*= 410,700,000 m= 410,700 km = about 10 circumferences of the earth. 3.1000 

In this case, during the forced circular motion, the following distances 
must be covered: 

for  e, = 11,100 to 7,850 m/sec, a distance of 11J7203= 249,450,000 m = 
=about 6 circuits of the earth. 
for  7,850 to 4,000 mjsec ,  78w1-40003= 139,920,000m = about 3.5 circuits;  

3.1000 

and for v = 4,000 to 0 m/sec, == 21,330,000m =about 0.5 circuit. 
3,ldOo 

All the foregoing would be true, if we could assume that al l  the energy of 
retardation is converted to heat. 

The truth Lies somewhere between the two extremes. In any case, with 
regard to a descent to the earth, the following factors must be taken into 
account: 

1. Since the braking does not have to be great, a comparatively small  
parachute can be employed. 

2. The parachute should cause a s  much a i r  turbulence a s  possible, which 
means that it must have an appropriate shape (conditions 1 and 2 will be 
satisfied best if, a s  suggested by Valier, the parachute consists of a row of 
cones situated along a common axis, at large distances from one another 
and with their vertexes pointing forward). 

3. Since ignition of the parachute may occur, additional s p a r e  parachutes 
(cones) should be carried. 

4. The rocket should be provided with metal fins for cooling, a s  well a s  
with wings. The operation of the latter a t  very high velocities and in a ken- 
uous atmosphere stil l  remains to be studied. 

Part 111 

FREE COASTING IN SPACE 

Two portions of ar, interplanetary flight have been considered in Pa r t s  I 
and 11: upward flight away from the earth, until the velocity is great enough 
to preclude backward falling, and descent to the earth, from the moment of 
entry into the earth 's  atmosphere. Now let  us  consider whether i t  will 
actually be possible, after leaving the earth, to s o  direc" the flight that a 
return to the earth can be made along a desired (for instance, tangential) 
trajectory. 



After its own acceleration terminates, a rocket will move away from the 
229 earth in a radial direction if, for the sake of simplicity, the lateral  velocity 

i s  neglected. The lat ter  originates a s  a result of the earth 's  rotation (at 
the equator it amounts to around 463 m/sec) .  The rocket ascends o r  "falls 
a t  a steadily diminishing velocity" into space, and i ts  passengers, with the 
sudden disappearance of the sensation of weight, will probably a t  f i rs t  be 
concerned about the feeling of falling. However, once they become somewhat 
used to it, they will probably have a pleasant sensation of being suspended in 
space. 

In order  for the flight speed a t  infinity to actually be zero, the rocket must 
attain a corresponding maximum velocity 4 at the distance rg where the 
rocket 's own acceleration ceases. However, this velocity will still be 
influenced by the a i r  resistance, which was not determined perfectly 
accurately in the previous calculations. 

In any case let us assume that, a t  some distance r2 from the center of the 
earth (this distance can be found by direct measurements over certain time 
intervals), the flight velocity i s  v,'. At a distance r from the center of the 
earth the retardation will be 

Po2 
dt 8 0  ' 

and the velocity i s  

iLv ;  
dt 

s o  that we have 

&=-a2, 
a3 9 v 

o r  
dr vdv=-g,.rt. - 7  
rz 

from which 
+_+g&+c; -- 
2 r 

and at a distance re 

Consequently, 

The height r,', a t  which the velocity v =  0, i s  found from the relation 

If the height of ascent should be r, rather  than rj, then a t  r,, instead of the 
velocity videtermined from equation (25a), the velocity will have to be 



Thus the given velocity vz' has to be varied by an amount 

A.o,=v,-u,'. 

230 This can be accom$ished by a controlling [correcting] burst of mass  C m, 
with a velocity of ejection c ,  thereby reducing the previous mass rn of the 
rocket. 

From equation (1) we have 

The signs will be plus o r  minus, depending on whether v i s  directed backward 
or  forward. 

Let us assume, for example, that at a distance r,= 40,000 km the given 
velocity i s  

(for which the height of the flight r , ' = a ) ,  and that we wish to reach a distance 
r3 = 800,000 km (twice the distance from the earth to the moon). 

Then, from equation (27), for 

we must have 

from which 

and for a velocity of gas ejection c =  1.0 km/sec 

that is, about of the original mass must be burned, in a forward direction 
and with an [exhaust] velocity of 1,000 m/sec.  The result obtained will be 

better, the earl ier  the burst i s  carr ied out. 
Until it attains the desired height,r3, the rocket, if left 

to itself, will again fall back radially to the earth. 
However, if the condition stated in Par t  11, namely a 
tangential approach to the ear th ' s  atmosphere, is satisfied, 
then the rocket must have a certain tangential velocity v, 
a t  the instant when the radial velocity becomes zero, that 
is, a t  a distance r, ( ~ i g u r e  83). Then the return path will 
not be parabolic, a s  was the case in Par t  11, but rather  a 
very elongated ellipse, the semimajor axis of which will be 

FIGURE 83. 73* 'a ,  
2 



On the other hand, on the basis  of the law of gravity (see equation (45) a t  
the end of this part), we have 

Therefore, 

231 and thus 

o r  

Similarly, 

for example, for r, = 800,000 km, r4= 6,455 km, and g,r,P= 400,000, we 
obtain 

The tangential velocity can once again be obtained by burning some 
propellant, the relative mass of which is 

that is, about of the mass  of the rocket must be burned, with a velocity of 
gas ejection of 1,000 m/sec  and in a direction perpendicular to the previous 
trajectory. 

Then the velocity V,  near the earth, a t  a distance r,  from it, will be 

that is, it is nearly the same a s  the velocity assumed ear l ie r  for a parabolic 
path. 

Since the velocities and distances measuked during flight will not be free 
of e r ror ,  the correctness of the trajectory will have to be checked during 
the subsequent flight, and this can be done a s  follows ( ~ i g u r e  84). 



FIGURE 84. 

Let us assume that measurements carr ied out a t  a distance r gave a 
velocity a' and a flight direction (angle a )  which will send the rocket to the 
earth over a distance P,', which is undesirable since the rocket should 

232 actually appear at a distance r,. Then, relations should exist between 
r,, r,a, and the required velocities v, and v (see end of this part). 

1. According $0 the law of gravity, 

2. According t o  the universal laws of work, 

g&++C=Q r  -aa.  
2 2 

For  r =r, 

80'd+ c,o. 
'a  

Consequently, 

3. According to  the law of equal areas, 

therefore, i t  should be t rue that 

P 
d(qsitPa- I )  =2g0rt( i -+) 

o r  
.$ = 28~ r - r a  

s a  4 7 



instead of v'. 
Let us assume, for instance, that at a distance r,= 400,000 km the 

velocity is 

v4'=1.415 km/sec, 

in a direction lying a t  an  angle a4 = 7'50' (both these values correspond to a 
parabola with a perigee at P,' = 7,500 km), in which case 

In order  to reach a point lying a distance r, = 6,455 km from the earth, 
equation (30) gives 

233 Therefore, 

and the flight direction must be corrected by burning an amount of fuel 

that is, about -!- of the former mass of the rocket, the burst being directed 
9.5 

ahead. 
With the aid of equation (29), the effect of the earth 's  rotation can be 

established, a factor which has been neglected so  far .  It imparts to an 
ascending rocket an initial velocity a*,,, which a t  the equator i s  

and at a latitude of 50" is about 0.463 cos 50" =m 0.3 km/sec. 
As a result of this, it turns out that, when the rocket 's own acceleration 

ceases a t  a distance r, and a velocity v, has been attained, the motion of the 
rocket is not exactly radial, but makes an angle a,, with the radius r,, so  that 

sin a, = Y ( ~ i g u r e  85). 

Fo r  the values assumed previously, r, = 8,490 km and u, = 9.68 km/sec, 
the subsequent flight will be along a parabola, which passes very close to the 
center of the earth (about 8 krn). 

At a distance r, = 40,000 krn, the flight velocity along the parabola will be 



and, according to the law of equal areas,  

a3 r2 sin a, = v, r, sin a,. 
Therefore, 

FIGURE 85. 

234 Now let  us  assumethat the velocity i s  reduced from *a'= 4.46 to v,= 

= 4.35 krn/sec, by means of a correcting burst  with c = 1 km/sec and 

-- Am - 0.11. Then the rocket will fly along a transfer ellipse, the apogee and m 

perigee of which will lie at distances which can be found from equation (29): 

max 0 ro2 . 
min r3= 2g0 $ -- 

71 
y21 

Accordingly, we have 

max 4 0 O L m  . 
min r3 = 800,000 4.35a -- 

4040000 

thus the point on the t ransfer  ellipse which i s  closest to the earth 's  center 
will lie about 4 km from it, that is, i t  i s  practically at the center. The 
farthest distance away, on the other hand, will be 741,000 km from it, that is,  
a t  a distance nearly equal to the previous height of ascent. However, now 
a t  this distance r, = 741,000 km the velocity will not be zero, but rather,  
according to the law of equal areas, 

directed along the tangent. 



For  transfer to some desired backward elliptical path, the following 
velocity, found from equation (28), must be taken instead of the previous 
value v, = 0.09 km/sec: 

=0.0964 km/sec =%.4 m/sec  
s o  that 

and 
Am I - =dV=:o .@3=~-  
m c 10.8 ' 

235 instead of the value of 11 11 obtained earl ier ;  consequently, the ear th ' s  
rotation does not exert  any special effect. 

The study of the subsequent trajectory between ascent and descent does 
not present any special difficulty. Let us assume that, in order  to achieve 
the desired velocity variation, we execute one burst of the rocket (as was 
assumed earlier),  denoting the mass of the rocket before the burst  a s  m, and 
the mass after the burst  a s  m,. Then, from equation (I), 

However, the rocket should be protected from the effect of an instan- 
taneous burst and, in addition, i t  is desirable to reduce the amount of 
material burned during the burst.  Therefore, a se r ies  of successive weak 
bursts will be preferable to a single strong burst.  Then the general pattern 
of the bursts  will be close to that given for the fuel consumption in Par t  I, 
s o  that 

dm= dli. 
m c 

or, in general, 

If a t  the beginning of the velocity change the mass is m, and the velocity 
v,, while a t  the end they a r e  m, and v,, then 

Accordingly, 



Since here a mass decrease occurs rather than an increase, the sign of 
. $ I*  will be determined by the direction of the gas ejection. For small values 

of -l" the results obtained using equations (31) and (32) will differ little 

from each other. For large values, on the other hand, a ser ies  of bursts 
turns out to be more suitable than a single burst.  Foi- instance, for 

236 we obtain 

and 

for 

we obtain 

and 

for 

we obtain 

and 

and for 

we obtain 

and 

When determining the duration of the free flight [coasting] and the amount 
of time between the termination of the rocket 's own acceleration and the 
f i rs t  entry into the earth 's  atmosphere, the comparatively insignificant effect 



of the ear th ' s  rotation can be neglected, and r, can be assumed to be the 
same a s  r, .  Accordingly, the flight time can be divided into two parts: 

I. A time t , ,  from the end of the rocket's own acceleration a t  r, = 8,490 km 
to the beginning of the ellipse on the return trajectory at r3 = 800,000 krn. 

11. A time f,, during which the rocket flies along the return ellipse from 
apogee at r ,=  800,000 km to perigee at r,= 6,455 km. 

Time f ,  will be identical to the time required for a body without any 
initial velocity to fall  from a height r ,=  800,000 km to a height r, = 8,490km. 
Here, for any distance r ,  the velocity v i s  found from equation (27): 

~ = 1 / 2 ~ r :  ~3 

or, since 

237 and 

therefore, for r= r,, 

Consequently, we have 

and for r=  r, 

Since r3 is very large compared with r,, we can write 

and 

Thus 



The time t,, required to cover half the a r c  of the ellipse i s  found from the 
law of equal a reas  (see equation (18 a)): 

where 

and 

Therefore, 

m,n7 72.400 n - 
t~~ = 0.m . 80~,ooo - 1,272,000 sec = 354 hr . 

The total t ime of the free flight will be 

I, -4- t,, = 349 + 354 = 703 h r  = cu 29% days, 

and the duration of the entire flight, including ascent and descent, will be 

703 + 22.6= 726.6 h r  = cu 301/, days, 

that is, about one month. 
238 The foregoing considerations enable us to car ry  out a t  this point a more 

precise determination of the value GI= 2 tons, assumed previously for  the 
rocket weight. This weight will include: 

a )  passengers with jackets, etc. ,  
b) solid and liquid food supplies, 
c) supply of fuel for heating, 
d) supply of oxygen for breathing and combustion, 
e )  containers for above-mentioned food, 
f) equipment for heating, supplying air,  removing waste, and making 

measurements and observations, 
g) equipment required for gliding flight: supporting and retarding 

surfaces, altitude controls, equipment in rocket nose, and corresponding 
fittings, 

h) the rocket casing itself, and the supply of rocket fuel for the controlling 
bursts, together with equipment. 

Now let us  evaluate each of these quantitatively. 
a )  Two persons with clothing and personal effects will weigh 2.100= 

= 200 kg. 
b) Food for a person for one day weighs about 4 kg, giving 2.30.4 = 240 kg 

for two persons for a month. 
c )  Since the rocket loses heat in outer space via radiation rather than 

conduction, the loss  will be no greater  than that for a thermos bottle (a 
container with an evacuated space in it), being of a s imilar  amount and form, 
and for a bright surface this loss  will be very small. If, inaddition, a partly or  
completely blackened surface is turned toward the sun, then it will absorb 



solar  heat to such an extent that the interior of the rocket may have a 
temperature high enough to make other heating methods unnecessary. 

Just  to be on the safe side, let us  assume that the rocket loses heat via 
conduction rather  than radiation. The heat loss  per  hour will then be V=t.Jq 
where f i s  the difference between the internal and external temperatures, f 
i s  the a rea  of the dividing surface, and cp is a coefficient depending on the 
properties of this surface and representing the amount of heat (in calories) 
passing through 1 m2 of the surface for a temperature difference of 1°C 
(1 W. E. is the amount of heat required to heat 1 kg of water by 1°C). 

If the walls of the rocket a r e  covered with a good insulator, which i s  a t  
the same time a s  light a s  possible (a turflike mass), then we may obtain 
p =  0.5. The rocket surface f should be a s  small a s  possible; of al l  the 
bodies of a given volume, the sphere has the least area.  Since the previous 
considerations indicated a minimum rocket dimension of about 1.5 m (see 
Figure 81); i t s  volume must be a t  least 4.5 m3, in order  to accomodate two 
persons and the necessary equipment. Therefore, instead of a sphere, an 
ellipsoid of revolution i s  more advisable, the latter having a diamgter of 
1.6 m, a length of 3.4m, an internal volume of 4.55 m3, and an outer surface 
14.45 m2 in area.  

The internal temperature i s  assumed to be + 10°C. We assume that the 
side turned toward the sun i s  heated to + 70°C and that the opposite side is 

239 a t  - 270°C. Thus the average external temperature will be - 100°C, with a 
difference of 110°C between inside and outside. The heat loss per  hour will 
be V =  110.14.45-0.5= 800 W. E. and for  a day it will be 24.800= 19,900 W. E. 
These losses must be  compensated by burning some kind of fuel. Kerosene 
gives the greatest amount of heat (11,000 W. E. for 1 kg),and for one day 
1.7 kg of it will be necessary. F o r  reasons to be explained in (d) below, 
we assume a kerosene consumption of 2 kg per  day. Then, for 30 days 
we have 30.2 = 60 kg. 

d) Since 2.7 kg of oxygen a r e  needed for the combustion of 1 kg of 
kerosene, the oxygen consumption per  day will be 2.2.7 = 5.4 kg. In addition, 
about 0.6 kg of oxygen per  day a r e  needed for the breathing of one person, 
o r  1.2 kg for two persons. Thus the daily consumption of oxygen for heating 
and respiration will be 5.4 + 1.2 = 6.6 kg, giving 30.6.6 = 200 kg per  month. 

The oxygen will be carried in liquid form, in containers from which the 
a i r  has been evacuated. If it were transported in the form of compressed 
air,  then the walls of the containers would have to be very thick, and thus 
very heavy, because of the enormous pressures involved. Liquid oxygen 
has a temperature of about - 190°C. To convert 1 kg of liquid oxygen to  
gaseous form, 500 W. E. a r e  necessary; to heat the gas from -190" to 
+loo,  for a specific heat of 0.27, another 0.27.200= 54 W. E. /kg a r e  needed. 
Thus, in all, a daily consumption of 6.6 kg of oxygen is required, o r  6.6-554 = 

3560 
= 3,560 W.E. /day. Along with this, m= 0.3 kg of kerosene a r e  needed. 

Therefore, we have to  add 0.3 kg of kerosene to the amount obtained in (c), 
bringing the total consumption to 2 kg. 

e )  Let us  assume that the containers for the liquid oxygen weigh 0.4 of 
their contents, while the containers for food and kerosene weigh 0.2 of their 
contents. This gives a total container weight of 

200 e0.4 + (240 + 60).0.2 = 140 kg. 



f )  We assume that the kerosene stove, the ventilating and waste-removal 
equipment, and the instruments for time, angle, and distance measurements 
and other observations, al l  together weigh 200 kg. 

g) The various surfaces on the rocket have the following areas:  braking 
surfaces F =  6 m2; supporting surfaces F,= 59 m2; control surfaces (for 
altitude and rotations) = 5 m2; and the nose section of the rocket, which is 
so  constructed that i t  can be detached from the rocket in order to reduce the 
weight and the amount of radiated heat, and which has a conical surface with 

a base diameter of 1.6 m and a generatrix 4 m long, has an area  of 1.6 JC 410 = 

= 10 m? The total a rea  is thus 6 + 59 + 5 + 10 = 80 m2 and, =it 6 kg/m2, a weight of 
240 kg. * 

h) According to (c) above, the outer surface of the rocket has an area  of 
14.45 m2. Its weight, including the insulating layer, is taken to be 50 kg/m2, 
giving a total of 14.45.50 = 780 kg. 

i )  The correcting-burst equipment weighs 200 kg. 
Thus the total weight of the rocket, without the charge [rocket fuel], is 

2,260 kg.":l' 
240 Let us assume that, during the flight, three correcting bursts of the 

rocket a r e  executed, with a consumption of of the mass. Then, taking 
into account the steady use of food and fuel, we obtain an initial weight 
C, = 2,260.1.13 = 3,000 kg, giving a rocket-fuel weight of 3,000-2,260 = 740 kg. 

By the beginning of the coasting part of the flight, the supplies of [rocket] 
fuel, food, kerosene, and oxygen will have disappeared, leaving just a weight 

C,' =3000-740-240-60-200 = 3000-1240 = 1760 kg. 

Consequently, the final weight during descent turns out to be even less  than 
that assumed in Par t  I1 (2 tons). The initial weight, however, i s  1.5 times 
greater than that in Par t  I. Therefore, 1.5 times a s  much propellant will be 
needed, in comparison with the amount assumed in Par t  I for the period when 
the rocket has its own acce l~ra t ion;  thus the linear dimensions of the vehicle 
shown in Figure 72 must be a t imes greater. If the effect of a i r  
resistance during ascent is taken into account, which (according to the data 
a t  the end of Par t  I) corresponds to an increase in initial mass of 9331825, 
the linear dimensions of the tower in Figure 72 will have to be increased by 
a factor of 

For c = 2,000 m/sec  and ac = 30 m/sec2, we have: 

height of tower 27.1.192 = 32 m; 
lower diameter 18.7-1.192 = 22 m; 
upper diameter 0.65-1.192 = 0.77 m. 

The total weight at  the beginning of the ascent will then be 

c - c ilo,3-933=n99 tons [sic]. 
0-  1 m, 

* Here Hohmann makes an error in multiplying: 80.6= 480 [Ryninl. 

* *  [The corrected weight is 2,500 kg.] 



In order  to keep the weight down, we have assumed that changes in flight 
direction a r e  effected solely by means of a correcting burst of the rocket. 
Thus some means will have to be provided for turning the rocket, s o  a s  to 
point the correcting burst  in the proper direction. This can be accomplished 
by moving the masses inside the rocket the other way; for  instance, 
passengers hanging onto special handrails will be able to move along the 
walls of the compartment. Let us  assume that living beings of mass me, 
situated a t  an average distance x, from the center of gravity of the rocket, 
move a t  an angular velocity w,. At the same time, inert masses m,, 
located an average distance x ,  from the center of gravity, move with an 
opposing angular velocity w, ( ~ i g u r e  86). Then, according to the law which 
states that the static momentum ( 2 m )  of the entire system must be zero, 
we have 

241 or, since u=xo, 

2 m w 2  = 0 

o r  

m, w,,x,2= m e . ~ e . ~ r 2 ,  

s o  that 
w t - m , .  xtP --- 
we mt xtS (33) 

that is, the angular velocities a r e  inversely proportional to the moments of 
inertia of the masses.  If the passengers weigh 140 kg, then in an adverse 
case (at the beginning of free flight) the remaining mass will weigh 3,000- 
140 = 2,860 kg, and, according to Figure 86, we obtain 

)(t= each 

FIGURE 86 

Thus, in order  to cause the rocket to negotiate one [complete] turn, the 
passengers have to crawl around the walls a total of 120 times; for a half 
turn they must go around 60 times, for a quarter turn, 30 times, etc. Such 
climbing exercises will provide a sensation of gravity for the a r m s  and 
legs, and this will even constitute a pleasant diversion during a prolonged 
state of weightlessness. 



If the passengers move around the center of gravity with a velocity of 
1.0.n - 0.5 m/sec, then it will take them T- 6 sec to go around once, and to move 

the vehicle through a quarter turn i t  will take 30-6 = 180 sec. At a distance 
r, = 40,000 km from the earth 's  center, where the first  correcting burst 
i s  necessary, the flight speed will be about 4.46 krn/sec, and, during the time 
the passengers a r e  climbing around the vehicle, the latter will t raverse a 
distance of 4.46.180= 800 km. Therefore, the turn must be begun 800 km 
ahead of the point where the velocity i s  to be varied by an amount A q  and 
where the rocket has to rotate i ts  nozzle forward o r  backward (depending on 
the sign of he). 

Compared to the distance from the earth (40,000 km), a distance of 800 km 
is not very great. To turn the rocket during descent, for a correct positioning 
of the supporting surfaces a t  the beginning of coasting, rotation of the 
ellipsoid about its major axis can be carried out more rapidly, since in this 
case the inert mass  of the rocket will be closer to the axis of rotation. 

242 In conclusion, let us  consider some laws and some results related to the 
motion of a body under the influence of gravity. These laws have already 
been applied in the foregoing, and they will frequently be used below. 

1. Observational data: the planets follow approximately circular 
trajectories around the sun. 

2. If a body of mass m ,  moving with a velocity W ,  describes a circular 
trajectory of radius r ,  then it is acted upon by a "centripetal" acceleration 

dv,; directed toward the center of the circle (see Figure 87). For  a very 
dt 
small time interval at, the components of the path traversed will be 

A x  = v.At, 

from which we have 

and 

In addition, from the similarity of the right triangles containing dg, we 
can write 

A comparison of the two expressions shows that 

or, i f  the centripetal acceleration is due to a central force P, we have 

(negative if P is directed opposite to  P ,  that is, inward). 



FIGURE 87. FIGURE 88. 

3. Observational data: the squares of the revolution times Tl and T2 of 
two planets vary a s  the cubes of their distances r1 and r2 from the sun 
(F'igure 88): 

If v1 and v2 a r e  the corresponding velocities of the planets, then 

lqn and Tp =%L? TI =- 
v1 9 

243 and 

4. It follows from (34) and (35) that 

and thus 

PI = - p .  m' 
(negative because P is toward the center, whereas r is 1 

I measured outward from the center) 
P*=-p . 3 

rr8 

or, a s  a universal law of gravity, 

P=- 3' 



where p has a different value for each center of attraction. This quantity 
will be determined below. 

5. If the sun i s  the center of attraction, p can be found from the following 
data: the distance from the earth to the sun is, on the average, re= 
= 149,000,000 km, the time for one revolution around the sun i s  Te= 365 days, 
and the average velocity is 

From equations (34) and (36), we now have 

6. For the earth a s  the center of attraction, is obtained a s  follows: 
the distance of the moon from the earth r,= 392,000 km, the time for one 
revolution about the earth i s  28 days, and the velocity i s  

so that 

7. At the earth 's  surface ro = 3,680 m, and the te r res t r ia l  attraction is 
found from equation (36) a s  

and the central acceleration 

which is also the observed acceleration for  the free fall of bodies. If we 
assume that go i s  known, then 

244 8. Law of equal areas.  For every central motion, that is, for the motion 
of a material point acted upon by a force P directed toward a center which 
is at rest,  the following things will be true: at a distance Q the velocityoi 
varies in direction and magnitude because of the effect of the central 
acceleration caused by force P. The new velocity vg i s  obtained a s  the 
diagonal of the velocity parallelogram. The area  swept out by line rl per 
unit time will be ( ~ i g u r e  89), for a velocity q, 

dFl - rl  vl  sin -- 
dt 2 '  



and for a velocity 9, 

FIGURE 89. 

In a s imilar  manner, for the distance ra and the velocity %, we determine 
tra a s  the diagonal of the velocity parallelogram including the velocity due 
to the effect of the central acceleration from force R1. The area swept out 
per unit time by line r will be 

dFi-9uasinv2, for velocity v2 ,+- 2 
for velocity .g ,dCH=%%sinqz ; 

dt 2 

and thus, from the foregoing, we can write 

that is, during equal time intervals the radius vector sweeps out equal areas.  
9. Law of work. At each point along the flight path the force P 

( ~ i g u r e  90) can be divided into two components, X and Y ,  of constant 
direction: 

where 



From this we have 

Xd, = mu, he; Ydy = muy dug; 

or, since 

d = v*2 + vy2, 

therefore, between two points at  which the velocities are  v, and v ,  

Moreover, from Figure 90: 

x=PcosE; dx=ds.rosC dr ) ds= cq.p. y = P s i n { ;  dy=ds.s ia{  

Consequently: 

I ~ ( c m ( m i + . n t . o i n ~ ) - - - -  
cosy  2 

245 or, since 

we obtain 

2 2 (40) 

10. Application to any motion under influence of gravity. Figure 91 
shows: z , the center of attraction; uo, the velocity of a body at r,, when it 
i s  closest to the center; and v, the velocity of the body at any distance r .  

de The components of this velocity are :  $ along r ,  and r .- perpendicylar to r .  dt 

FIGURE 90. FIGURE 91. 

Then, according to equation ( 3 6 )  for the law of gravity, 



and, according to equation (40) for the law of work, 

Therefore, 

From the law of equal a r ea s  (39), 

and thus 

or, for At = dt = 0, 

*-v,, 
dt- fl 

Pythagoras's theorem gives 

and, taking equation (41) into account, 

r ra F 2 '  

moreover, from (42), 



11. The ellipse equation ( ~ i g u r e  92) is 

FIGURE 92. 

and 

In addition, 

where 

o r  

dr bzesm(p -= 
dcp ( a  + e eos cp)z ' 

but 

so  that 

and so 

2-$ dl' -& ,/-, 

12. A comparison of equations (43) and (44) indicates that a body moving 
under the influence of gravity describes an ellipse, for which 



and 

247 s o  that 

moreover, 

consequently, 

In addition, 

and, if we add on 

0=+3cv,-ha,  

we obtain 

d=$-ba+-  

or, since 

therefore, 

that is, the focus of the ellipse ( ~ i g u r e  92) coincides with the center of 
attraction ( ~ i g u r e  91). 

13 .  As long a s  

the value of a will stay positive and b will be real, that is, the path remains 
elliptical. 



then 
a=- and b=- ,  

that is, the path i s  parabolic. 
If 

* - v , ~  40, 
4 

then a is negative and b  is imaginary, that is, the path i s  hyperbolic. 
If a = pa,, then 

o r  

so  that 

that is, the path is circular.  
248 14. The flight time for any ellipse is found from equation (39), the law of 

equal areas:  

which gives 

When we substitute into (47) the following expression from (46), 

we obtain finally 

Part IV 

FLIGHT ORBITS AROUND OTHER CELESTIAL BODIES 

A flight around the moon, in order  to study i ts  unknown other side, will diffe 
little from the free flight of a rocket considered in Par t  111, provided the ship 

24 1 



does not come so close to the moon that the lunar attraction (which is & 
of that of the earth at  the same distance) has an effect. During 30 days of 

, rocket flight, the moon describes an  almost complete 
circle about the earth, so that here, strictly speaking, 

I 6  

FIGURE 93. 

i t  is a case of intersection of the paths of the rocket 
and the moon, rather  than a flight around the moon. In 
Figure 93, E is the earth, M is the moon, and F is the 
rocket, with identical subscripts indicating correspond- 
ing positions of the rocket and the moon. The closest 
approach to the moon will equal about half the 
greatest distance of the rocket from the earth, and the 
maximum relative lunar attraction will be about 
- of that of the earth a t  that same time. I ts  a-%i 

further effect will not be considered here. 
In the previous considerations only the ear th ' s  

attraction was taken into account. The attraction of 
the sun was ignored, since the rocket was assumed 

to take part in the earth's motion around the sun at  a velocity of 30 km/sec. 
Strictly speaking, however, this will be the case only at an instant when the 
rocket i s  at res t  relative to the earth, that is,  when the maximum distance r:, 
from the earth is reached; not only that, but this res t  point will have to lie 

249 on the earth's orbit,that is, it will have to be at  the same distance from the sun 
a s  the earth is. It was assumed that the rocket leaves the earth along a 
tangent to the orbit of the latter, with a velocity of 10 km/sec relative to the 
earth. Thus, the velocity relative to the sun will be 30 + 10 = 40 o r  30-10 = 
= 20 km/sec, depending on whether the rocket flies with o r  against the 
orbital motion of the earth. In the latter case the trajectory of the rocket 
will be steeper than the earth 's  orbit, and in the former case it will be less  
steep. 

Since the velocity of the rocket relative to the earth diminishes rapidly, 
due to the earth 's  attraction, while the times of the ascents considered so 
far  only amounted to about 15 days (that is, about &of the time for the earth 
to revolve around the sun), the path of the rocket during the given time 
interval can hardly deviate much from the earth 's  orbit. If, on the other 
hand, the ascent takes place radially with respect to the earth 's  orbit, then 
a t  the moment the maximum height r, is reached, even though the rocket 
speed relative to the sun equals that of the earth, the rocket 's distance from 
the sun will be greater o r  less  than the earth 's  distance, depending on 
whether the rocket moves away from the sun or  toward it. In the latter 
case, because of the solar attraction, the rocket's path will be more curved 
than the earth's, whjle in the former case i t  will be less  curved. 

However, a s  along a s  the ascent is only to 800,000 km, a s  calculated 
previously, the distance will not be great enough, in comparison with the 
earth-sun distance of 150,000,000 km, to cause much solar influence on the 
path of the rocket, and i t  will be immaterial in which direction the ascent 
from the earth is carried out. It is even advisable to ascend toward the 
sun, s o  a s  to facilitate measurements of distances and velocities, the earth 
being visible a s  a brightly illuminated disk. A height of ascent r, = 
= 800,000 km in such a direction will, in the following, be considered an 
initial value for which this distance can be neglected in comparison with the 
distance from the sun. 



Let us assume that, a t  this distance r , ,  the tangential velocity o, i s  not 
0.09 km/sec, a s  was taken to be the value in Par t  111 ( ~ i g u r e  83), but rather 
about 3 km/sec. Then, under the influence of the earth 's  gravity, the path 
of the rocket will not be elliptical but instead a very gently sloping hyperbola, 
since 

The rocket will move along this trajectory with an almost constant 
velocity and a t  an ever-increasing distance from the sphere of te r res t r ia l  

(250) gravitation. Then, ultimately, i t  will move just 
under the influence of solar gravitation, like an 
independent comet. At the beginning of this 
trajectory the tangential velocity of the rocket 
relative to the sun will be v, = 29.7 -3.0 = 32.7 o r  
26.7 km/sec, depending on whether the rocket flies 
with o r  against the earth 's  motion in i t s  orbit. In 
either case the rocket will describe an ellipse about 
the sun, outside the ear th ' s  orbit inthe former case 
and inside it in the latter.  

Let u s  assume that the rocket describes an 
ellipse inside the earth 's  orbit, and that it touches 
the lat ter  orbit a t  a point situated a distance r from 

250 FIGURE 94. the sun. We further assume that the rocket flies 
tangentially to the orbit of another planet at a point at a 

distance r,, (Figure 94). The semimajor axis of the ellipse .-ill be 

however, from (45), 

accordingly, 

and thus 

The mean distance of the earth from the sun r ,  = 149,000,000 km, whereas 
for Venus, for example, r,= 108,000,000 km. For  the sun, according to 
equation (37), p = 132,000,000,000 km3/sec2. Therefore, for the line of flight 
to pass close to Venus, we must have 



Assuming a velocity v,= 29.7 km/sec for  the earth, we obtain the required 
difference between the velocities of the rocket and the earth for attainment 
of the height of ascent by the rocket: 

This velocity change can be effected by means of a correcting burst in the 
tangential direction, the mass consumed in the burst being 

where m is the rocket mass  before the burst and c i s  the velocity of gas 
ejection. However, here the value of c assumed in Par t  111 (1 km/sec) for the 
correcting burst is no longer suitable, and, i n  addition, a single powerful 
rocket burst would be dangerous for both the vehicle and the passengers. In 
the given case, a series  of bursts should be used, a s  discussed in Par t  I, with 
a gas velocity 

c=2 km/sec. 

The ratio between the total rocket mass  before and after the bursts  i s  
given by equation (32): 

251  here i t  must be kept in mind that, during a rocket flight to a planet, 
deviations from the flight path a r e  possible. Thus, to be certain, a correction 
factor of about v = 1.1 should be introduced. :$ Therefore, 

and the ejection should be in the direction of the earth 's  motion, that is, forward. 

* These path deviations can be eliminated by ejecting a mass $=-am (see equation (lc)), in the direction 
of the perturbing planet and equivalent to the perturbing gravitational acceleration g. Thus, at a distance r 

from the planet, equations ( la)  and (2)  give 

For instance, for the assumed initial distance from the earth, r= 800,000 km, pe= 9.8 m/secz and %=6,38Okm: 

After a day, or 8,640 sec, for c =  2,000 m/sec, we have 

b 

For a distance x=800,000 km from Venus, when a= 8.7 and %= 6.090. 

(continued on next page) 



The duration of the flight over half the a r c  of the ellipse i s  found f rom 
equation (48) for  

a= - "+ = 1 2 8 , ~ ~ $ 0 0  k m  : 
2 

T,=n f l = n  1 / ~ 0 0 0 = ~ 2 , ~ , 0 0 ~  s e c  = 146days. 

252 
The earth moves along i t s  orbit around the sun with an  angular velocity 

36Q0 960 
w ~ y s =  0.987' per  day; for Venus this velocity i s  Z j s =  1.607' per day. 

In 146 days the earth t raverses  an a r c  of 146.0.987 = 144", while Venus 
covers 146.1.607 = 234.5". In order  to fly f rom the ear th to Venus (to a 
point 800,000 km from its center, on the side toward the sun), the launch 

(25 1) (Footnote continued) 

and 
86,400 a: = ------- - .&y,,,o. - a0216. 

For a distance x = 800,000 km from Mars. when go= 3.7 and a= 3,392, 

and 

With each succeeding day, \ will be greater and the daily increment atwill  be less. 

(252) The following table gives the calculated values o f t  for various distances x and for the first five days of flight 
from different planets. 

After five days we will have 

Day 

0 . . . . . . . . . . . 
1 . . . . . . . . . . . 
2 . . . . . . . . . . . 
3 . . . . . . . . . . . 
4 . . . . . . . . . . . 
5 . . . . . . . . . . . 
Total . . . . . . . 

for the earth, 

for Venus, 

for Mars. 

The value v = 1.1 given above for the correction factor is only a rough average of this quantity. An accurate 
calculation for each distance from the planet gives a more favorable value. It need not be determined for each 
second: it is sufficient to calculate it each day, either once or several times. 

Earth 

x km 

800,000 
850,000 
900,000 

1,000,000 
1,000,000 
1,200,000 

z I 

0.0270 
0.0240 
0.0213 

0.0173 
0.0143 
0.0120 

Venus Mars 

&I= 0.1159 

x km 

800,000 
850,000 
900,000 

1,000,000 
1,200,000 
1,400,000 

x km 

800,000 
900,000 

1,000,000 
1,200,000 
1,400,000 
1,700,000 

a i 

0.0216 
0.0191 
0.0110 
0.0138 
0.0096 
0.0010 

a 1 

0.0029 
0.0023 

a.0018 
0.0013 
0.0009 
0.0006 

bI = 0.0881 &I = 0.0098 



from the earth must take place when Venus i s  situated 234.5-180 = 54.5" 
behind the earth, reckoning according to the direction of motion of the 
planets (points V, and E, in Figure 94),  and 146 days after this the earth will 
be 36" behind Venus (points V, and E, in Figure 94) .  

If the rocket continues along this path, then after another 146 days it will 
cover the dotted half of the ellipse and reach the initial point of the flight. 
Then the earth will be another 36" away, that is, a total of 72" (point E, in 
Figure 94). The flight must be continued in order to reach the earth. Here, 
there a r e  two possible ways to ca r ry  out the return to the earth: 

First alternative. If the dotted part of the ellipse [in the figure] is 
actually to lead back to the earth, then when the rocket leaves Venus (v*) the 
earth must be 36" ahead of Venus (that is, at point E:), rather  than 36" behind 
i t  (at E, ). Thus the rocket must remain in the vicinity of Venus until a 
favorable juxtaposition of the two planets occurs, that is, until Venus moves to  

253 a position 36" behind the earth. Since Venus moves more rapidly than the 
earth (it covers 1.607-0.987 = 0.62" more per day), therefore, in order  for it 
to move from a position 38" ahead of the earth to a position 36" behind the 
earth, it will have to t raverse an a r c  of 360-72 * 288", which corresponds to 

= 464  earth days. During all this time, the rocket must remain 
0.62 

in orbit around Venus. To accomplish this, i ts velocity must be 
reduced by an amount As,, corresponding to the prolonged effect of Venus's 
attraction; this will be analogous to the situation earlier,  when the velocity 
decreased by an amount Av, under the influence of the ear th ' s  attraction. 
Venus (6 in Figure 9 4 )  will be overtaken for a rocket velocity 

However, at this time the velocity of Venus i s  

In order  to  a r r ive  at zero  rocket velocity relative to Venus, the speed of the 
rocket must be reduced by 37.6-35.1 = 2.5 km/sec. 

If the rocket is to revolve about Venus along a circle of radius a ,  then 
the duration of one revolution will be, from equation (48), 

In order  to calculate the exact position of the rocket 
for  the farthest departure from Venus, we must note 
the following during the determination of t :  in 464 earth 

days Venus goes around the sun a total of g= 2.07 = 

= 2 + 0.07 t imes. Thus, a t  the moment when the rocket 
leaves it, Venus will be 0.07 of a revolution away from 

FIGURE 95. its position a t  the beginning of the departure process 
(Figure 95).  Since the velocity of the rocket when it enters  (9,) a s  well a s  
when it leaves (v,,') the circling orbit (around  enu us), must be .I. to the sun- 
Venus radius, therefore the difference of 0.07 of a revolution for the moment 
of rocket departure from Venus can be obtained from Figure 95. 



The total number of circuits must thus be 3.93, 4.93, 5.93, etc. Fo r  
example, for 5.93, 

464 t===78.2 days =tj,750,msec. 

To simplify the calculations, we assume the mass  of the earth to be the 
same a s  that of Venus (according to observations of perturbations of comet 
motion, Venus has a mass  equal to 0.82 of that of the earth). Consequently, 

254 for Venus we can also take a value [for p ] of 400,000 km3/sec2. Accordingly, 
a will be 

fl = i/F= i/w = 773,m km 

and the velocity of the circling motion of the rocket will be 

The desired circling motion around Venus will come about if, a t  the 
moment when the rocket passes through point V, ( ~ i g u r e  94), its relative 
velocity i s  not zero but rather  0.72 km/sec. Thus the required velocity 
reduction will be 

rather than 2.5 km/sec. For  this a mass 

will have to be consumed, the direction of the burst  being ahead of the rocket. 
After the 465 earth days needed for 5.93 circuits of Venus, an ejection in 

the opposite direction of a mass  given by the ratio (2)"~ 2.65 will enable the 

rocket to overcome the attraction of Venus, and follow an elliptical 
trajectory, s o  that 146 days later it will once again approach the earth. At 
the moment of perigee, a t  a distance r, = 800,000 km from the earth 's  
center, another correcting burst will be necessary to  make the rocket 's 
velocity relative to  the earth equal to v,= 0.09 km/sec (see Par t  11), for 
which the descent will begin. Since at this moment the rocket velocity 
u,= 27.3 km/sec and the earth 's  velocity v,= 29.7 km/sec, the velocity 
increment will have to be 

1 

AV; = 29.7 - 27.3 - 0.09 = 2.3 km / sec 

and the burst will have to be directed backward, that is, opposite to the 
direction of flight. 

The amount of mass  ejected is found from the expression 



The duration of the entire journey, including ascent and descent (30 days), 
will be 

30 4 146 + 464 + 146= 786 earth days =2.15 years, 

If m, i s  the mass  of the returning vehicle and m, was the mass a t  the 
beginning of the flight (including propellant), then, disregarding the small 

mass  variation due to consumption of food by 
the passengers, etc. ,  it will be approximately 
t rue that 

5 = 933 . 3.65 2.65' -3.47 = 83,000. 
"'1 

Second alternative. In this case the rocket 
(F'.igure 96) is to fly from point V, to the earth 
via an indirect path. It will follow an external 
trajectory through point F, until it re turns to 
the earth a t  E,. A very rapid return can be 
effected in only 1.5 earth years  after departure 
from the earth a t  point E,. The distance from 
the sun ( r,,) of point Fa must be such that the 
rocket can fly from point El via V, and Fa to 

FIGURE 96. 

point E, in 1.5 years  (547.5 earth days). This 
time will be the sum of the three t imes T,, T, and 
T, of the flight along the three semiellipses I, 11, 
and 111, the semimajor axes of which a r e :  

r + r  
a , - -1-1- - 128y500,000 km; 

r ~ l  + r l l ~  %=-. 
2 .  

a - r ~ l l  + . 
a - 7  

From the last  two expressions we obtain 

r - r 149,000,000 - l O B , ~ , O O O  4-4=u= 
2 2 = 20,500y000 km . 

In addition, 

or, from equation (48), for half the a r c  of the ellipse, 

n ($+n = 41.5 days = 347(j0m set, 

34700m. m=-7;" \r;;=3e4 * d132,000,000,000. 

Therefore, 

\r;;;i + =4,010,000,000,~, 

a, - a, = 20,500,m. 



and thus 

a, = 169,000,000 km and a, = 148,500,000 km ; 

256 from the equation ' 

r + r  
a,"J+ 

we have 

rlo = 20, - r,, = 297,000,000 - 108,000,000= 189,000,000 km. 

The rocket leaves the earth a t  E, with a velocity v,= 27.3 km/sec and 
a r r ives  at V, with a velocity 

149 
v,,=v, .3=27,3. m=37.6km/sec. 

"11 

In order  to  reach F, with the required speed, the rocket must leave V, 
with a velocity given by equation (49): 

Then the velocity of approach to F, will be 

In order  to reach E,, the rocket must leave F, with a velocity 

and it will approach E, with a velocity 

whereas the velocity of the ear th is 

Consequently,over the entire flight, the following velocity variations a r e  
necessary: 

a t  launching from E, , 

Av,=27.3 -29.7=-2.4 km/sec;  

a t  approach to V,, 

Av,=39.4-37.6=+1.8 km/sec; 

a t  approach t o  F,, 

AV,~, = 24.8 - 22.5 =+2.3 km/ sec  ; 



257 and at approach to E,, 

Av, = 29.7-31.5+0.09= 1.4 km/sec (including descent). 

In order  to these velocity changes, the following masses must 
be ejected a t  a velocity c = 2 km/sec: 

1s 
'"0 - , eZ0 = 1.1 . e090 = 2-71 The bursts  a t  El and E, a r e  directed 13. - V  forward, while those a t  V, and F$ a r e  

13 backward (relative to direction of flight). 
(5) = v . e2.0 -1.1 - .el"' =3.47 
"'1 m 

On the basis of these data, we find, a s  before, that 

The total duration of the flight, including ascent and descent, will be 

30.5+547.5=578earth days=1.58 years.  

The fuel requirements for the two alternatives considered above will 
be nearly the same. In the second case, however, the duration of the flight 
is shorter, while in the f i rs t  case a longer time i s  spent in the vicinity of 
Venus. 

The situation will be similar for a flight to Mars. However, here a more 
precise determination of i t s  position a t  the moment of launching is 
necessary, sicce the eccentricity of the Martian orbit is much greater  than 
in the case of the earth and Venus (the aphelion of Mars is about 248,000,000 
km and the perihelion is about 205,000,000 km). In Figure 96, when the 
rocket reaches position F,, it will be r,,, = 189,000,000 km from the sun, 
which is almost equal to the perihelion distance of Mars (205,000,000 km), 
the difference being only 16,000,000 krn. If the flight is coordinated with an 
opposition of the earth, Venus, and Mars, the most favorable ratios of r,, 

16 and r,, being selected, it will be possible to reduce this different to  around = 

= 8 million km, from Venus a s  well a s  from Mars, and to complete the flight 
in 1 1/2 years. This 580-day journey will last almost 20 t imes a s  long a s  the 
30-day journey described in Pa r t  111. 

The masses determined earlier,  and designated a s  b), c), d), and e )  in 
Pa r t  111, depend on the duration of the flight. Consequently, they will be 

258 20 times a s  great. Masses a), f), g), and i) a r e  independent of the flight 
duration and will retain their original values. Finally, mass  h) depends on 
the space required for the load, and it will have to be three times the previous 
value. 



Since, in addition to the increase in space, the heat-emission surface will 
also have to be greater, i t  will be necessary to provide better insulation a s  
well. Thus the initial mass  of the rocket (without rocket fuel) will be 

(240 + 60 + 200 + 140).20 = 12,800 kg 
+ ZOO+ 200+ 240 + 200 + 740= 1,580 kg 

t780.3  = 2,340 kg 

Tota l . .  16,720 kg=16,72 tons 

The duration of the flight between El and V2 will be T, = 146 days, and 
between Vl and F, it will be 

T,= T,* 1 4 6 m = 1 8 1  days. 

Between F3 and E, we have 

The consumption of the 12.8 tons will be distributed a s  follows: 

15 
l&day ascent to El : 12.8 -r8 =0.33 ton 

146 
flight between El and Vz : 12.8  c8 =3.20 " 

flight between Vzand F3 : 12.8 .181 =3.95 " 
578 

flight between F3 and E4 : 12.8. ;$ = 4.80 " 

total between ascent and E* : 12.28 tons 

At the approach to E, the total rocket weight willbe 16.72-12.28 = 4.44 tons. 
Immediately prior to reaching E,, the total weight will be 

4.44-2.57 = 11.40 tons. 
After reaching F,:  11.40+4.80 = 16.20 tons. 
Immediately before reaching Fa: 16.20-3.47 = 56.3 0 tons. 
After reaching V,: 56.30+3.95 = 60.25 tons. 
Immediately before reaching V,: 60.25.2.7 1 = 163 .OO tons. 
Upon reaching E,: 163.00+ 3.20 = 166.20 tons. 
Immediately before reaching E, : 166.20-3.65 = 606.67. 
After rocket's own acceleration ceases: 606.67 + 0.33 = 607 tons. 
At launching Go= 607.933 = 567,000 tons, or, in short, 
Go = [([(4.44.2.57+4.8). 3.47+ 3.951. 2.71+ 3.2).  3.65+ 0.33].9.33= 

567,000 tons. 
259  The great quantity of equipment which has to be carried aboard the 

rocket necessitates an increase in the rocket's own acceleration during 
ascent a s  well. Moreover, a velocity variation during flight with so  much 
ballast aboard (about 607-17 = 5 9 0  tons), a s  well a s  the transportation of 
this ballast, will make maneuvering quite difficult. The effect which the 
velocity of gas ejection c has on the variation of the weight C i s  shown by 
the following figures (the rocket 's own acceleration crc i s  assumed to be 
3 0  m/sec2 for all  c): 

c =  2 kmlsec: Go= [ {[(4..44.2.57+ 4.8)-3.47+ 3.951. 2.71+ 3.2 1.3.65+ 0.331- 

933 = 567,000 tons. 



c = 2.5 km/sec: Go = [ { [ ( 4 . 4 4 .  2.17+ 4 . 8 )  2.77+ 3.951- 2.27+ 3.2:. 2.87+ 
+ 0.331' 235  = 69,500 tons. 

c = 3 km/sec: Go= [ { [ ( 4 . 4 4 .  1.95+ 4 .8 ) .2 .38+  3.951- 2.00+ 3.2 : - 95 = 
= 17,600 tons. 

c = 4  km/sec: G, = [ { [ ( 4 . 4 4 -  1.69+ 4.8). 1.98+ 3.9510 1.73+ 3 .2 : .  
2 . 0 0 +  0 . 3 3 I a 3 0 =  3,150 tons. 

c =  5 km/sec: Go = [ { [ ( 4 .44 .1 .55+  4.8). 1.75+ 3.951- 1.57+ 3.2 ;-1.78+ 
+ 0. 331- 15 = 1,130 tons. 

2 5 9  Part V 

LANDING ON OTHER CELESTIAL BODIES 

Of the planets closest to the earth, Venus is  the most suitable for 
landing, since in al l  probability it possesses an atmosphere similar to that 
of the earth. For this reason, and also because the gravitational attraction 
of Venus can be assumed to be almost the same as  that of the earth, a 
landing on Venus should be similar to a landing on the earth (the latter has 
been described in Parts  11 and 111). In this case, a rocket at a distance 
r, = 800,000 km from the center of Venus will have to develop a tangential 
velocity v,= 0.09 km/sec (see Figure 8 3 ) .  + The flight up to this point 
proceeds like the flight from E, to V, in Figure 94.  

The rocket approaches V,with a velocity v,,= 37.6 km/sec, whereas the 
velocity of Venus in i ts  orbit we = 35.1 km/sec, giving a relative velocity of 
37.6-35.1 = 2.5 km/sec. In order to reduce this to 0.09 km/sec, a velocity 
decrease bv,,= 2.4 km/sec is  necessary, for which the ejection of a mass 
given by the ratio 

i s  required, whereas for point El,  as  before, we have 

(21, = 3.65. 

2 6 0  The duration of the flight will be: 

Ascent to E l .  .................... 15 days 
Cometlike flight from El to V, .... 146 " 

Descent at V2 ................... 15 " 

Total . .  ......................... 176 days 

that is, it is six times a s  long as  the 30-day flight described in Part  111. The 
weights previously denoted as  b), c), d), and e) willbe six times a s  great; those 

( 2 5 9 )  
* Compare with the mass of Venus C0.82 times the mass of the earth1 quoted earlier. Moreover, because of the 

great height and high density of Venus's atmosphere, a landing on Venus will be  easier than an earth landing. 



denoted a s  a), f), g), and i) will be the s ame  a s  before, and weight h), the 
weight of the rocket casing, will be twice a s  great. Consequently, the initial 
weight (without propellant) will be: 

, (240+ 60 +ZOO+ 140).6 =3,680 
+ ZOO+ ZOO+ 240+ ZOO+ 740= 1,580 

+ 780-2= 1,560 
Total.. .7, 000 kg = 7.0 tons 

The supplies required will be, a s  before, 

......... Between ascent and E l . .  0.3 ton 
Between El and V2 ............... 3.2 tons 

..... Total between ascent and Vp. 3.5 tons 

Therefore,  a t  the approach to  Venus, a weight of 7.0-3.5 = 3.5 tons will 
remain. The total weights for ascents  f rom the ear th  a t  various velocities 
will be : 

for  c = 2 km/sec  Go= [(3.5.3.65+ 3.2)- 3.65+ 0.31. 933 = 54,800 tons 
" c = 2.5 I '  Go= [(3.5- 2.87+ 3.2). 2.87+ 0.31. 235 = 8,800 " 

" C = Q  I '  C,= [(3.5- 2.45+ 3.2). 2.45 + 0.31. 95 = 2,800 " 
" c = 4  11 GO = [(3.5. 2.00+ 3.2). 2.00 + 0.31- 30= 620 " 

!I c = 5  " Go= [(3.5. 1.78+ 3.2)- 1.78+ 0.31. 15 = 260 " 

Fo r  an independent re tu rn  from Venus to  the earth, a s imilar  weight will 
be required a t  ascent. However, if the fuel fo r  the return flight has  to be 
carr ied along from the earth, then the weight of vehicle plus fuel, for  the 
ascent from the earth, will be a t  least:  

for  c =  2 km/sec 54,800. 3.65'. 933 = 670,000,000 tons 
" c =  2.5 11 8,800- 2.87'. 235 = 17,000,000 1 1  

I! c = 3  I I 2,800. 2.45'- 95= 1,600,000 11 

I t  c = 4  t t  620.2.00'. 30 = 74,000 11 

" c = 5  I I  260.1.782. 15 = 12,400 11 

If the rocket lands on Venus, it may a l so  be assumed that the m a s s  
required for the return flight can be obtained f rom raw mater ia ls  available 
on the planet, with the aid of simple equipment. 

A landing on Mars will have t o  be car r ied  out somewhat differently from 
261 one on the ear th  o r  Venus, due to  the probable absence of a dense 

atmosphere. Moreover, in this case  a much grea te r  braking of the rocket 
will be necessary, using the techniques described i n  Pa r t  I. The radius of 
Mars  ro= 3,373 km, and the acceleration of gravity a t  its surface, obtained 
from observations of the motion of the Martian satellites, is go= 3.7 m/ sec2=  
= 0.0037 km/sec2. 

Assuming the same value a s  previously for  the rocket 's  own acceleration, 
that is, ca= 0.03 km/sec2, and a velocity of gas  ejection c =  2.0 krn/sec, we 
obtain 

c a  0.03 0.015 a=-=----.. 
c 2.0 - sec 



Thus the distance r ,  from the center of Mars, where the rocket 's  own 
acceleration begins, can be found from equation (7): 

0.0037 =r0(l+$)=3392(l  +w)=3800 km. 

The velocity of a rocket approaching a distance r, from infinity will be, 
according to equation (8), 

Then, equation (9) gives the deceleration during the braking period: 

and equation (10) gives the braking time: 

According to equation (1 I), the mass  ratio i s  

If r ,  = 149,000,000 krn i s  the distance of the ear th from the sun, and 
r-= 205,000,000 km is the distance of Mars  from the sun, then during i ts  
ascent from the ear th the rocket must develop a tangential velocity given 
by equation (49) a s  

whereas the ear th 's  velocity i s  only 29.7 km/sec. 
At the approach to Mars, on the other hand, the velocity of the rocket will 

be 

whereas the velocity of Mars  a t  perihelion is 26.5 km/sec. Consequently, 
the velocity variations will be: 
at  departure from the earth, 

262 
with 

and, prior' to landing on Mars, 

with 



The duration of the flight will be: 

for the ascent from the earth, 15 days; ' 

for  the cometlike flight from earth to Mars. n .f$, 

with - Lz!!! = 177,000,000 

a -  2 

and 
p = 132,0€@,000,@00~~ 

secZ 

so  that we have 

4 )/== 20,350,000 sec  = 235 days; 

for the descent to Mars, about 15 days; 

thus we obtain a total of 265 days, o r  nearly nine times a s  long a s  the 
30-day flight in Par t  111. 

Now let  us calculate, a s  for the flight to Venps, -t& i ~ i t i p l  weight of the 
rocket without the propellant: 

The fuel required to get to Mars (which weighs about 5.8 tons) will be 
consumed a s  follows: 

IS '15.8 = 0.3 ton for  ascent from the earth, 

2$ -5.8 = 5.2 tons for  cometlike flight from earth to Mars, 

0.3 ton for descent t~ Mars 

(9.0-5.8 = 3.2 tons will remain a t  a r r iva l  on Mars). 

Thus the total weight at  the beginning of flight will be: 

for  c =  2 km/sec, C,= 1 [(3.2*14.3+0.3).5.73+5.2]. 3.47+ 0.3:.933 = 
= 875,000 tons 

1 1  c =  2.5 km/sec, Go = {[(3.2.8.3+ 0.3)-4.13+5.2]. 2.77+ 0.3 1 ' 235 = 
= 76,500 tons 

263 11 c=3 km/sec, Go= {[(3.2. 5.9+0,3).3.32+ 5.21. 2.38+0.3 ',. 95= 15,600tons 
1 1  c =  4 km/sec, Go= {[(3.2'3.8+0.3). 2.51+ 5.21. 1.98+0.3;. 30= 2,200 tons 
11 c= 5 km/sec, Go= :[(3.Zm 2.9+0.3). 2.14+ 5.21. 1.75 +0.3:. 15=690  tons 

These results a r e  much less  favorable than those for a flight to Venus, which 
has a denser atmosphere. The situation is much better, however, for  the 
return flight from Mars to the earth, once again assuming that fuel ean be 
procured on Mars from the raw materials available there. In such a case, 
the dense atmosphere of the earth can be utilized in the descent, so that, 
instead of the previous weights multiplied by 833, etc., we have considerably 
lower values: 



lower values: 
for c = 2 km/sec, Go = f[(3.2+ 0.3). 3.47 + 5.21- 5.73+ 0.3 j - 14.3 = 1,430 tons 

r =  2.5 11 Go= {[(3.2+0.3). 2.77+5.2]. 4.13+0.3 I. 8.3 = 515 
r r c = 3  11  Go= :[(3.2+ 0.3). 2.38 +5.2]. 3.32+0.31 . 5.9 = 265 
11 c = 4 11  Go= {[(3.2+0.3). 1.98+5.2]. 2 .51+0.3t .  3.8 = 118 " 

I 1  c = 5  " 'Go= {[(3.2+0.3). 1.75+5.2].2.14+0.3{ 2.9 = 7 1  

A landing on the moon will be similar to one on Mars. As in the case 
of Mars, for a lunar landing we f irs t  introduce the values r = 1,740 km and 
g, = 0.0016 km/sec2. Since the density of the moon is l e s s  than that of the 
earth, we have: 

1740. go 0.0098 6380. 

OD1 5 ac=0.03 km/sec2'c=2.0 km/sec; a=-; sec 

.,=I740 (1-t -)=la30 km; 

In this case the duration of the flight is no more than half that of the 
flight assumed in Par t  111 for twice the distance between the earth and the 
moon. Moreover, a correspondingly smaller store of provisions will have 
to be carried. Thus the weight of the vehicle (less propellant) will be about 

264 2.6 tons instead of 3.0 tons. Consequently, the initial weights for an earth- 
moon flight will be: 

f a r  r  = 2 km/sec, Go= 2.6.3.4 933 = 8,250 tons 
" c =2.5 I t  Go= 2.6- 2.64. 235=  1,610 
I '  c = 3  1 1  C,,=2.6. 2.25. 9 5 =  555 
" c = 4  I I Go= 2.6. 1.85. 3 0 =  144 " 
l 1  c = 5  I I Go= 2.6- 1.64- 15 = 6 4  I t  

The weights at  the ascent fo r  the return flight (moon to earth) a r e :  

fo r  c =  2 km/sec, Go = 2.6- 3.4 = 8.9 tons 
" c = 2.5 " Go = 2.6. 2.64 = 6.9 " 
11 c = 3  I T  G0=2.6. 2 . 2 5 ~  5.9 " 

11 c = 4  I I Go=2.6- 1 . 8 5 ~ 4 . 8  " 

11 c = 5  11  G0=2.6. 1.64=4.3 It 

However, i f  propellant is carried from the earth for the round-trip flight, 
the weights at  ascent from the earth will be: 

for c =  2 km/sec, Go = 2.6- 3.42 - 9 3 3  = 28,000 tons 
c =  2.5 11 Go = 2.6- 2.642- 235 = 4,250 

" c=3 11 Go =2.6. 2.25'. 9 5 =  1,250 " 
l1  c = 4  II Go = 2.6.1.?15~- 3 0 =  890  " 

c = 5  II Go =.2.6. 1.642. 15 = 700 I' 



The comparative ease with which the moon can be reached, together with 

the low relative fuel consumption, z= 4.0, for the ascent from the lunar 

surface, suggests using the moon a s  a station for more distant flights. A 
precondition for this will be the presence on the moon of the materials 
required to produce an explosive mixture, and in addition a suitable 
factory will have to  be constructed on the moon. In order  to investigate 
this possibility, a ship will f i rs t  have to be sent to the moon with enough 
propellant to complete the round tr ip on i t s  own. For  this we must take 
c = 2 km/sec and Go= 28,000 tons, which does not present any insurmountable 
difficulties. For  a successful result, further flights to the moon will 
require only 8,250 tons, and return flights only 8.9 tons. However, for 
flights from the moon to other planets, instead of the ascent ratio of 

!!C= 933 for the earth, the ratio will be only z= 3.4 (from lunar surface), 
"I 

etc. Finally, the landing can be made on the earth, under more favorable 
conditions, rather  than on the moon. 

265 The following weights a r e  obtained for the flights indicated: 
a)  Round tr ip from moon to Venus, Mars, and earth (without landing 

on Venus or  Mars): 

3 4 for c = 2 km/sec; Go = A- 567,000 = 2,070 tons 
933 

" c=2.5  I t  
264 Go =&. 6 9 , 5 0 0 ~  780 " 

II c = 3  ~l G ~ = $ .  17,600= 417 " 

! l C = 4  11 Go = g- 3,150= 194 " 

I t  = 5 1 1  Go =-. ' 1,130= 124 " 

b) Flight from moon to Mars with landing, but without supplies for return 
trip: 

3 4 
for c = 2 km/sec; Go = &. 875,000 = 3,190 tons 

" c=2,5 " G,,=~&. 76,500= 860 " 

11 c = 3  11 G==. 225 1 5 , 6 0 0 ~  370 IT  

1 1  c = 4  II C --". 1 85 2,200= 136 
0- 'N 

1 1  c = 5 11 G,,=%. 690= 76 " 

c )  Flight from moon to Venus with landing, but without supplies for  return 
t r ip  : 

3.4 for  c =  2 km/sec; Go = -. 54,800= 200 tons 
933 

It c=2.5 " 
264 =&. 8,800= 99 " 

c = 3  I 1  
225 G==. 2 , 8 0 0 ~  67 " 

" c = 4  I I 
1.85 C --. 620= 38 " 0 - 3 0  

!I c = 5  1 1  Co=%. 260= 29 " 



d) Exploratory flight to Mars, with landing and with supplies for  return 

t r ip;  mass  ratio for ascent from Mars-taken to be ?= 14.3, allowing 

5.8 tons of necessary provisions (food, etc. ) for return trip: 

for  C =  2 kmIsec; Go= 14.3. ?= 75,000 tons 

~ ~ 2 . 5  I f  Go = 8.3- 7= 9+5.8 11,800 " 
' I  c-3 I f  

9+&8 Go= 370-5.9- T= 3,600 " 

I' c = 4  11 Go= 1 3 6 . 3 . 8 - y  = 850 " 9+58 

!I c = 5  11 6, = 76.2.9. 7 = 360 " 9 + 5.8 

e )  Flight to Venus with landing, under same conditions: 

7+3.9 
for c =  2 km/sec; G,, = 200.933- 7 = 290,000 tons 

7 + 3.9 " ~ ~ 2 . 5  It 6, = 99.235- --;i--= 36,300 " 
" c = 3  I 1  

7 + 3.9 Go = 67. 95. -- 7 - 9,900 " 

" c = 4  11 Go= 381 30'5-- 1,780 " 7+3.9 - 

!I c = 5  11 Go= 29. 1 5 ' - 7 -  680 I f  
7-r-3.9- 

It i s  much more difficult to car ry  out the return flight in case (e) than in 
case (d). However, in spite of this, and even taking into account that an 
independent return flight from Venus (with almost the same weight require - 
ment C a s  for a direct flight from the earth to Venus) must be carried out 
with a high exhaust velocity c,  nevertheless the probability of finding an 
atmosphere there, and living conditions similar to those on earth, is so  
great, while the difficulties involved in a flight to Venus a r e  so minor 
(assuming a stop a t  the moon first), that i t  will be more advisable to begin 
our $tudies of the planets with Venus rather  than Mars, and to leave the 
latter just a s  a subject of research. 

During a l l  ascents from the lunar surface, the moon's velocity around the 
earth must be carefully taken into account, similarly the earth 's  orbital 
velocity for ascents from the earth (see Figure 85); this effect will not be 
studied below. For  simplicity, ear l ier  we considered only those ellipses 
joining planets which were tangent to  the planetary orbits, s o  that only a 
variation of the magnitude of the velocity was necessary, and not the 
direction. Naturally, these tangential ellipses will also represent the 
optimum paths. However, it would be  good if there were other ellipses 
intersecting the planetary orbits, but which give shorter  paths. Thus the 
opposite case should also be studied, namely the case where the direction of 
the velocity changes but not the magnitude. The desired ellipse may 
intersect both planetary orbits with velocities equal to  the respective 
velocities of the planets. Using the notation in Figure 97, we obtain the 
following expressions for  the joining ellipse, according to  equation (41): 



For  circling trajectories r, and r,,  equation (3 7) gives 

, ,?=C( ,  
r1 

vpn, c' . 
m 

267 Therefore i t  should be true that 

FIGURE 97. FIGURE 98. 

These two equations contradict each other. Consequently, the cbndition 
that the rocket c ross  both planetary orbits, with velocities corresponding 
to  those of the planets, cannot in general be satisfied. Now let us make the 
condition that the rocket c ross  only one planetary orbit, for instance, at 
radial distance r,, the velocity of the rocket a t  the intersection point being 
equal to the orbital velocity of the planet. In this case we a r e  left with only 
one equation, 

from which we obtain, after an appropriate choice of r,, 

2 -2 r r  r 
='a --.-* 'a rz 

Moreover, from equation (45), 



and from equation (46) 

268 that is, each ellipse whose semimajor axis (a) equals the radius r, of the 
circular planetary orbit will, a t  i t s  point of intersection with this orbit, give 
a velocity equal to the velocity of the planet. The angle a t  the intersection 
between the ellipse and the orbit, equal to the angle between the tangents 
( ~ i g u r e  98), i s  found from the expression 

and from equation (43), for r = r,, 

or, since in this case 

therefore, 

Of all  the different possible connecting ellipses with semimajor axes 
a=r,, only those which a r e  at the same time tangent to the planetary orbit 
of radius rl should be considered in more detail, since for  these ellipses a 
variation of the magnitude of the velocity is sufficient, whereas for the 
others the direction must be varied a s  well. 

Fo r  this we take 

Then 

and 

tan a = 1 / m = I / r  r,2 p . ?%ZL r~ (29 - ri) 
r1 r2 

At the place of intersection, for transition from one path to the other, a 
variation in directian will be necessary without a variation in the magnitude 
of v,. Thus we will have to have a velocity component perpendicular to the 
bisector of the intersection angle a and having a magnitude 



Let us assume, for example, that the connecting ellipse is tangent to  the 
ear th ' s  orbit and intersects the orbit of Venus. Then 

r, = 149,000,000 km, 
r2= 108,000,000 km, 
v,= 35.1 krn/sec. 

a =cu 22'/,'; A v  = r  - 35.1 . sin 111/,' =13.5km/sec. 

If the ellipse is tangent to  Venus's orbit and intersects the orbit of the 
earth, then 

' 1  = 108,000,000 km, 
r2 = 149,000,000 km 
vz= 29.7 km/sec 

If the ellipse i s  tangent to the ear th ' s  orbit and intersects the orbit of 
Mars, then 

r, = 149,000,000 km 
r, = 205,000,000 'I assuming a circular orbit; 
= 26.5 km/sec 

a = cu 16'; Av= 2 26.5 . sin 8 O  = 7.4 km/sec 

If the ellipse is tangent to the orbit of Mars and intersects the earth 's  
orbit, then 

r, = 205,000,000 km, 
r, = 149,000,000 " 
v, = 29.7 km/sec 

It is evident from the foregoing that the velocity components will in all  
cases be considerably greater  than for ellipses tangent to both planetary 
orbits. Even in  the most favorable case (tangent to  the ear th ' s  orbit and 
intersectingthat of Mars), for A v  = 7.4 km/sec (instead of the Au,, = 3.3 km/sec 

dv 
obtained earl ier  for Mars), the mass-consumption ratios 2 = ve 

a r e  a s  follows: 
7 4 

for c = 2  krnlsec; := 1.1- $= 14.5 instead of 5.73; 



7.4 

" c = 3  km/sec; 2 = 1 . 1 e 8 =  14.1 instead of 3.32; 
7.4 

" c = 1 1  5 = 1.1- = 7.05 2.51; 
ml 

1 1  c = 5 1 1  
7.4 

5 =1.1. ga=4.g5 !I 
ml 

2.14. 

Consequently, for transfer to an ellipse tangent to the orbit of one planet 
and intersecting the orbit of another, the required velocity variation du, 
will be greater than for an ellipse tangent to both trajectories, since in the 
latter case the curvature of the path varies less. The foregoingresults make 
it clear than an ellipse tangent to the orbits of both planets gives the optimum 
trajectory for the rocket. 



271 
HANS L O R E N 2  

The journal "Zeitschrift des Vereins Deutscher ~ngenieure" for 7 IVIay 
1927 (No. 1 9 )  included a paper by H. Lorenz, entitled " ~ i e  Moglichkeit der 
Weltraumfahrt." In this work the author outlined in very clear and concise 
mathematical form the conditions of flight in outer space, either by shoot- 
ing a projectile from a cannon or  on the basis of the rocket principle. 
Lorenz does not consider the important problem of the resistance of the 
atmosphere to the flight of a projectile, and, in addition, the historical out- 
line of related works given at the beginning of the paper i s  incomplete (the 
studies of Tsiolkovskii, Esnault-Pelterie, etc., a r e  not mentioned). 
Lorenz's paper, however, i s  still  of considerable interest. Moreover, in 
1928 another paper by him on this same subject was published, and this 
i s  also given below. 

First Paper. THE POSSIBILITY OF SPACE TRAVEL 

Once the light engine had been developed and the centuries-old dream 
of flying through the a i r  had come true, man's hopes went even further, and 
some daring minds made visits to other celestial bodies the subject of their 
studies. The first stimulus to thoughts concerning such flights was provided 
by the novels of Jules Verne, who described a flight around the moon by 
some persons riding a projectile which had been fired from a cannon on the 
earth. Another novelist, Kurd Lasswitz, who was at the same time a physi- 
cist and a philosopher, described a space flight in a "rocket" ship, in his 
novel "On Two Planets" ["Auf Zwei planeten" J. This flight principle (that 
of the rocket) forms the basis for the recent mathematical and mechanical 

1 272 studies of Goddard, ;: Oberth, :::: and Hohmann, t who have even suggested 
techniques for the practical implementation of such flights. A number of 
general plans and projects, such a s  those of Valiertt have also been pro- 
posed, interest has been shown by wide circles of people, and a Society 
for Space Travel [Verein fur Raumschiffahrt] has even been founded. 

* Goddard, R. H. A Method of Reaching Extreme Altitudes. - Smithsonian Institute, Washington. 1919. 
" Oberth, H. Die Rakete zu den Planetenraumen, 2nd ed.-R Oldenbourg, Miinchen und Berlin. 1925. 
t Hohmann, W. Die Erreichbarkeit der Himme1skorper.- R. Oldenbourg, Munchen und Berlin. 1925. 
ti Valier, M. Der Vorstoss in den Weltenraum. - R. Oldenbourg, Miinchen und Berlin. 1925. 



The situation being thus, a careful, sober assessment of the possibility 
of carrying out a space flight is necessary, from the point of view of me-  
chanics. This will bring up such problems a s  lifting a body to a given dis- 
tance from the earth, and even completely beyond the field of the earth 's  
gravity, propelling a body in space, and, finally, returning to  the earth, 
taking the resistance of the atmosphere into account. 

Our goal will be just to  study the possibility of escaping from the earth 
into a i r less  space, using the means available to us at present. Since the 
earth itself moves through space along i t s  orbit, and rotates about i t s  axis 
a s  well, the point of departure of a projectile will already have a velocity 
component in the direction of flight, equal to some value v,,. 

Let us consider two masses m, and with a common initial velocity 
?I,. As a result of the forces acting on them, these masses  attain final 
absolute velocities v, and us. The momentum equation will then be 

and the equation of work will be 

From these two equations we obtain 

Equations (2) and (2a) indicate that the same amount of work must be 
expended to modify either the absolute or  the relative motion. Equation (1) 
can be rewritten a s  

Then, from (Za), by eliminating (v2--vO), we obtain 

For  m,= m and v,=vo, equation (2b) gives a work 
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This corresponds to lifting from the earth 's  surface a mass which i s  in  

practice infinitely great,  in  comparison with that of a projectile, and which 
is thus not susceptible to  work. 



If a projectile is situated between two celestial bodies with masses m, 
and m,, at a distance r from the first and a distance r,-r from the second 
(Figure 99), an acceleration 

FIGURE 99. FIGURE 100. 

with respect to m, will be imparted to i t ,  where k i s  the gravitational con- 
stant according to Gauss. If g is the acceleration at the surface of body m,, 
which has a radius a ,  then k is given by the equation 

and instead of equation (3) we have 

This quantity goes to zero for a point at a distance r, given by the 
condition 

The work required to lift a mass m from the surface of body m,, to >a 
distance r is found from equation (3a): 

Setting r=r,  in this equation, we obtain from it (taking (3) into account), 
the work expended in lifting the mass to the neutral point: 



However;since a < < r,, therefore, with sufficient accuracy, we have 

and, setting ro-r=b, we obtain the work required to lift the mass to the 
surface of a body m, with a radius b :  

2740r, since b<<r , ,  

and, finally, for r=ro= w,  we obtain from (5) the total work required to r e -  
move a mass m from the sphere of attraction of m,: 

&=mga . 

In the particular case of the earth and the moon, 

and, neglecting the small quantities 3,  2 ,  and 9, we can write 
d PO ml 

These two expressions indicate that the lunar attraction reduces the work 
needed to lift a projectile from the earth to the neutral region (at a distance 

9 
r ,=are ) by about 2D/o,and to the moon's surface by 670. This saving is  so 

inconsiderable that it may be neglected when calculating the expenditure of . 
work, especially when celestial bodies which lie essentially beyond the 
eal"thls 'sphere of gravity are to bs: reached. 

In all such cases the work required to lift the body is found from equation 
(5c), as  &=rnga, and the corresponding variation in kinetic energy will be 

At infinity W=O and 

this being the velocity necessary in order to overcome terrestrial gravity 
and escape from the earth (without an atmosphere). Let us assume that such 
a velocity is to be obtained by shooting an object from a cannon, for which 
an explosive charge must be provided. Let us denote as  h the charge energy 
to be converted into mechanical work, relative to a unit of weight. This will 



be none other than the height of ascent in  meters  which i s  attained by a 
unit weight of this substance by means of i t s  own energy. At firing, a pro- 
jectile of mass m, 1eaves-a cannon with a velocity w,. If we call the pro- 

jectiIe mass  m and the average velocity ?, we obtain an average kinetic 

energy m, and the equation of work will be 
2 

275 or ,  taking equation (7a) into account, 

Since the mass  ratio must be positive, therefore 

that i s ,  the free ascent of the propellant must be more than three t imes the 
ear th ' s  radius. 

Table 1 gives some figures for the two most powerful explosives, namely 
nitroglycerine and guncotton (Schiesswol1e);data a r e  also given for two ideal 
explosives: hydrogen plus oxygen, and carbon plus oxygen. 

TABLE 1. 

In the table, Q is the number of calories,  and h, is the corresponding 
amount (coefficient) of work. According to ballistic experiments, a value 

2 of only h=%h, should be taken a s  the permissible height of ascent, since 

P r o p e l l a n t  

H 2 + 0  . . . . . . . .  
C + O2 . . . . . . . .  
Nitroglycerine . . . . .  

. . . . . .  Guncotton. 

1 the gases will c a r ry  off an amount of heat up to at least . For  all  

ha, k m  

1520 

1250 

6 70 

460 

Q, WE/kg 

3550 

2930 

1580 

1100 

the substances in the table, h <$. Consequently, at present there is not a 

single propellant available which could impart the required velocity to  the 
projectile being fired. Thus it is of no use to ca r ry  out further studies of 
the effect of projectile acceleration on the cannon length o r  studies of the 
effect of a i r  resistance. 

Therefore, let us  now go on to consider rocket action instead. In a 
rocket the motive force i s  provided by the recoil of the gases given off by 

h ,  k m  

1010 

835 

446 

306 

w ,  m/sec 

443 0 

4048 

2950 

2450 



the explosive substance [propellant]. Let us denote the relative velocity of 
these gases a s  W ,  and the varying velocity of the variable (because of the 
gas efflux) mass  rn relative to the earth as  V .  Once again, h i s  the actual 
height of ascent qf the propellant. Then, 
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The quantities entering into this formula a r e  evaluated in Table I for 

different propellants. 
In addition to the recoil, ejection of a mass of gas at a rate w per unit 

time also occurs, and this imparts to the total mass m an acceleration 
capable of overcoming the acceleration of gravity. If the mass of the ex- 
ploding gas is dm, then 

but since dr = vdt, therefore 

dm 
wu - m =-vdv+gdd (f) 

and, adding and subtracting on the basis of 

- 4p = gh dm, 

we obtain 

This i s  none other than an energy equation, in which the left-hand te rm 
expresses the formation of mechanical energy of a gas particle dm, which 
serves to vary the kinetic energy of particle dm itself, a s  well a s  of the 
mass rn ,  and finally to  perform the work of ascent (last t e rm on right). 

Three variables, m, V ,  and r ,  enter into equations (1 0a) and (1 Ob). The 
total mass  m continually diminishes during the burning, while velocity 
increases. In addition, denoting the (as  yet unknown) initial velocity a s  v o ,  
and the total initial mass  a s  m,, , we have 

Therefore, equation (1 0a) becomes 
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Integration of (12) for initial conditions v=O and r = o  at the earth 's  

surf ace gives 



For  r=w we obtain a final velocity 

From equation (1 1)  we have 

and for r=w, that i s ,  for v=v,, 

This expression will be a minimum for 

v: = 2ga 

or ,  according to equation (12b), 

W 
v,,-- - 2 .  

Consequently, the minimum will be 

In general, however, from (12b) and (13), 

?o 1 1  
%=em, m ~ = 2 g d ( ; - ~ ) -  

Thus the acceleration in the flight path will be 

dv dv - d -- df-v;r ;-gz 

and the total acceleration produced by the gas recoil will be 

m, a= Q=;iT+8$=2g;i;. 

For the earth's surface ( a = r )  this corresponds to twice the acceleration 
of gravity, which passengers in a reclining position can withstand. For the pro- 
pellants in Table 1, equation (13a) gives the following figures (Table 2). 



TABLE 2 .  

The table shows that, even in the best case and without taking a i r  resis t-  
ance into account, only a very small fraction of the initial mass of the 
rocket will be able to escape from the gravity of the earth. Therefore, the 
rocket flight will not be successful. 

The flight time from the earth 's  surface to some given distance r i s  
found from (14), taking into account that dr=udt: 

P r o p e l l a n t  

H 2 + 0  . . . . . . . .  
C + 0 2  . . . . . . . .  
Nitroglycerine . . . . .  
Guncotton . . . . . . .  

dt = = = d r P .  r - a  

Integrating for t = 0  and r =a,  we obtain 

a 
K 

6.37 

7.63 

14.28 

20.82 

where 

For the distance ratios 

2 6  

5.05 

5.53 

7.56 

9.10 

(distance of the moon), the flight times will be 

ml 

156 

252 

1920 

8900 

If we could be satisfied with a lower flight velocity, then, according to 
Oberth, the fuel consumption could be reduced, giving a more favorable ratio 

3 . When the burning stops, the rocket should fly like a projectile from a 
m 

cannon. Thus we have a combination of the two means of propulsion des- 
cribed above, firing of a projectile and recoil (Figure 100). Burning of the 
propellant in the rocket should cease only when, at a distance r, ,  a sufficient- 
ly high projectile velocity is attained, since otherwise i t  will not be possible 
to overcome gravity. 



& For  a radial projectile velocity we have v-ell -- and 

If the initial velocity (at the earth 's  surface) i s  v,==, then 

I 
(v~-vt)=2g$(:-+)? s = 2 g ; .  (16) 

Let us  substitute this into (14), in order  to obtain the distance where the 
burning should stop: 

that i s ,  a distance equal to  twice the earth 's  radius. 
Here 

Substituting this expression for v into (14) and keeping in mind that 

w = W ,  

we obtain 

A comparison of this result  with (13a) shows that, by stopping the burn- 
ing, the mass ratio can be reduced by the following amount: 

1 \12=0.7 time . 

Table 3 shows the values of 22 in  this case for the different propellants. 
mr 

TABLE 3.  

P r o p e l l a n t  

C + 0 2  . . . . . . . . . . . . .  48 

Nitroglycerine . . . . . . . . . . .  

These figures indicate the impossibility of a rocket flight, without even 
taking into account the extremely low velocity (less than 8,000m/sec and 
going to  zero at infinity). 

Guncotton . . . . . . . . . . . . .  582 



280 We define the efficiency during the rocket ascent as  the ratio of the work 

performed, %g (.+ ,to the work of the propellant which is converted 

into a gas, ( %-I&) gh, that is: 

Then, for a rocket with continual gas ejection, when 

and for cessation of burning, when v:=O, we have 

Values of these efficiencies are  given in Table 4 ,  the last column of 

which shows the mass ratios ;+I, corresponding to an efficiency ?"=I of 

the rocket at cessation of burning and for conversion of all the energy of the 
propellant into work of ascent. 

TABLE 4 .  

Here we have still not taken into account the mass of propellant which 
will be needed to brake the rocket during its return to the earth. This mass 

P r o p e l l a n t  

H2+0 . . . . . . . . . . .  
. . . . . . . . . . .  C +02 

. . . . . . . .  Nitroglycerine 

. . . . . . . . .  Guncotton.  

will be about the same as  that required for the ascent, which has been calcu- 
lated above. However, the total mass ratio of the rocket, for both ascent and 
descent, will be the product of the two ratios, and this leads to improbable 
numbers. The foregoing study does not pertain to flights in the upper atmos- 
phere, since its composition, density, and effect on the flight are still un- 

4" 

0.082 

0.061 

0.015 

0.0041 

known. 
Note. On p. 143 of the journal "Die Rakete" for 1927, there is a review 

by Oberth of Lorenz's paper; this review indicates more favorable prospects 
for rocket flights. 

3" 

0.193 

0.162 

0.072 

0.036 

z+ 1 h 

7.37 

8.63 

15.28 

26.82 
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Second Paper. THE FEASIBILITY OF SPACE TRAVEL 

The "Jahrbuch der Wissenschaftlichen Gesellschaft fiir Luftfahrt" for 
1928 included a paper by Hans Lorenz entitled "Die Ausfiihrbarkeit der 
Weltraumfahrt," a translation of which is presented below. Although this 
paper repeats the conclusions arrived at in the first work, it also includes 
some interesting new observations as  well. 

THE ENGINE 

The intensive development of aeronautical engineering, based on the use 
of light, powerful motors, has given r ise  to new ideas on sending a passen- 
ger vehicle into outer space. Such a vehicle will have to overcome ter -  
restrial gravity and reach other celestial bodies. The solution of this 
problem, as novelists like Jules Verne and Kurd Lasswitz have indicated, 
is  based on a dynamic principle. The vehicle must overcome gravity, but 
wings and a propeller will no longer be of any use. An engine is  needed 
which operates on fuels other than those used in internal-combustion 
engines, since the necessary oxygen will not be available in outer space, 
and in the atmosphere, at heights from 30 to 50 km, the amount of oxygen 
will be insufficient. Therefore, a propellant is needed which already con- 
tains oxygen in it, and a s  a result its weight per unit energy will be greater. 
In ballistics the most powerful propellants are assumed to be nitroglycerine 
and guncotton (collodium). To these we might add the detonating gas and the 
mixture of carbon and oxygen used in mining. Table I gives the heat energy 

Q per unit weight, the height of ascent &, and the quantity h =f 4 ,  which is 

TABLE 1. 

P r o p e l l a n t  

H 2 + 0  . . . . . . . . . . .  
C+O2 . . . . . . . . . . .  
Nitroglycerine . . . . . . . .  
Guncotton . . . . . . . . . .  

Q ,  cal/kg 

3550 

2930 

1580 

11 00 

ho , km 

1570 

1250 

670 

460 

+ I  

7.37 

8.63 

15.28 

21.82 

h , krn 

1010 

83 5 

446 

304 

cv, m/sec 

4430 

4048 

2950 

2456 



282 the part of the height & utilized in ballistics, the other third being lost, 
since some of the heat i s  carried off by the combustion products. The 

last column but one of the table gives the exhaust velocity UP=- 

ENERGY CONSUMPTION 

Let us determine the energy consumption during the motion of a rocket 
in outer space, proceeding just from the condition of overcoming gravity. 
The acceleration of gravity at the earth's surface i s  g and the earth's 
radius is a. At distances r>a from the earth's center, the acceleration 
will be 

The work done in lifting a mass m will be 

For r= a~ we obtain the limiting value &=mga. 
For a flight to another planet, this work will be reduced due to the 

attraction of the latter. Thus, beginning at the neutral point on the line 
joining the centers of the two planets, there will no longer be any energy 
expenditure. For the moon, which has a mass equal to about 1/80 of that 
of the earth, this point lies 0.9 of the way to the moon. Therefore, the 
energy saving up to this point will be only 0.02 Lo, and all the way to the 
moon it will be 0.06 &,, an amount so negligible that it need not be taken 
into account; the energy expenditure thus may be assumed to be &,for 
flights to the moon and to other celestial bodies as  well. a* 

The most favorable energy expenditure will be when the energy is  used 
only for ascent. If %is  the initial mass of the ship, and m when it i s  loaded with 
fuel, the fuel mass will be w,-m. The energy formula will then be 

for an efficiency ?)=I. The minimum of the mass ratio i s  

Some values of this quantity are  given in the last column of Table 1. 
Here i t  is  assumed that only the vehicle itself i s  lifted, but not the parts 
containing propellant. The latter i s  assumed to deliver all its energy 
during the launching at the earth's surface, which will be possible only 
if the vehicle is fired like a cannon. 

* See preceding paper: "The Possibility of Space Travel." 

274 



2 83 
FIRING OF PROJECTILE 

If we do not take into account the resistance of the atmosphere to a body 
passing through it,,then the firing of a projectile will impart to the latter a 
minimum energy corresponding to a velocity 

Since this takes place in the tube in which the fuel comes in contact with 
the base of the projectile, the average velocity of the fuel particles will be 

y ,  and the weight increase will be 

For total conversion of the fuel energy into kinetic energy (Wucht), we obtain 

but since 

therefore 

This ratio will remain positive until %>a,  that is,until the free height 
of ascent of the fuel becomes greater than 113 of the earth's radius. 

According to Table 1, even detonating gas will not satisfy this condition. 
Therefore, at present no propellant exists which is  capable of imparting to a 
body the minimum velocity required for a flight into space, even assuming 
a vacuum. Consequently, it i s  useless to seek the optimum accelerations, 
or to determine the cannon length or the effect of the air,  which will consti- 
tute a barrier to a projectile leaving a cannon at a planetary velocity. If, 
for such a firing, the velocity of the projectile at the earth is rr,, then its 
velocity w at a distance r from the earth's center i s  given by formula (1). 
For q=&/& and d = d r ,  it can be found from the relation 

that is, at an infinitely large distance the velocity is zero. Thus the kinetic 
energy of a space projectile will vary in inverse proportion to i ts  distance 
from the earth's center (Figure 101). 



LIMITING VALUES OF MASS 
RATIOS FOR SPACE FLIGHT 

Since the firing,of a projectile from a cannon does not make flight into 
space possible, let us consider the use of the principle of reaction, that i s ,  
the flight of a rocket. In the case of a projectile we could already speak of 

284 a possible limiting case, when burning of the charge leads to the mass 
ratios for ascent of equation (3)  (see last column of Table 1). These rep- 
resent the lower limiting values, and they are very high in comparison with 
those for land, water, and air transports, amounting to from 6 to 20  times 
the limit, even without taking into account auxiliary mechanisms and con- 
trol devices, assuming a full load. In addition, the weight of the passengers 
must be counted, as  well as that of the food products, air  supply, instruments, 
shielding devices, etc. A more favorable mass ratio can be obtained if we 
assume that a continuous consumption of a fuel h.g.dm goes just to lift an 
instantaneous total mass m .  Then we have the simple relation 

After integration over limits from r=a  to r= w, we obtain 

and an efficiency 

The values calculated using these formulas are  given in Table 2 .  The 
mass ratios obtained a re  so great, and the efficiencies so small, that the 
feasibility of such a device i s  out of the question. Here we have the upper 
limit for the mass ratio. 

TABLE 2. 

ROCKET FLIGHT WITH THRUST 

A vehicle propelled by reaction must leave the earth with a certain 
acceleration (starting from a state of rest).  Let us assume for simplicity 
that the ascent is vertical, so that the reaction [thrust] serves both to 

P r o p e l l a n t  

H,+O . . . . . . . . . . .  
C + 0 2  . . . . . . . . . . .  
Nitroglycerine . . . . . . . .  

. . . . . . . . . .  Guncotton 

a - 
h 

6.37 

7.63 

14.28 

20.82 

3 
m 

5 84 

2060 

w 1.6.106 

N 11.30' 

'I 

0.011 

0.003 

7.2.10'~ 

1.1.10-~ 



85 impart an acceleration to the total mass rn and to overcome gravity. Keep- 

ing in mind that the thrust per unit time will be w $ ,  we obtain 

where v is the flight velocity. For dr=udt, 

But since 

therefore 

Consequently, here we have an energy equation, the left side of which i s  
the energy developed during ejection of the combustion products, this being 
the energy which lifts the rocket. 

This formula contains three variables: rn ,  v , and r .  Thus certain 
assumptions have to be made in order to arrive at a solution. For example, 

the regime of the fuel consumption can be established, that is, the ratio $ 
can be given some specified value. The acceleration limits, as dictated by 
the possible danger to a passenger, can also be determined (maximum of 
2g). It i s  not possible, using the calculus of variations, to determine from 

equation (8a) the function u= f (r) for which the ratio 2 would be an absolute 

minimum. Therefore, we assume the flight to be such that the acceleration 
is  equal to na times the acceleration of gravity at a distance r ,  that ig, 

At launching v=O and r =a,  so that 

and from (8a), 

For n = 1, we have 



From (9a) and (9b), we obtain 

and 
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The variation in rocket weight [kinetic energy] according to (10) has been 

plotted in Figure 101, where it i s  compared with the case of a projectile 
from a cannon. The two curves intersect at the point 

r,  =2a for  q2=ga;  v, =7900 m/sec .  (1 oa) 

FIGURE 101. 

For r =  w the weight of a rocket moving with a prolonged acceleration 
will be, for the limiting velocity 

the same a s  the theoretical initial weight of a projectile from a cannon. 
For 4= 2gh,  we have from (1 1 )  

The burning of a mass  m, - rn develops an energy ( m,,-rn) gh, which is 
transmitted to the remaining mass of the rocket m .  At a distance r the 
latter performs a quantity of work 



Here the efficiency will be 

and, at the limit, , 

The data given in Table 3 were calculated using this formula (enormous 
mass ratios and low efficiencies). 

287 TABLE3. 

The time of ascent, from the launching point to a distance r ,  i s  de- 
termined from (10): 

. = e = - c p .  0 r - a  

1 

0.082 

0.061 

0.015 

0.005 

P r o p e l l a n t  

Hz+O . . . . . . . . . . .  
C +oz . . . . . . . . . . .  
Nitroglycerine . . . . . . . .  
Guncotton . . . . . . . . . .  

For r=O and r = a ,  the time is 

where 

2 m  

5.05 

5.53 

7.56 

9.10 

FG=S~O sec. 

mo /m 

156 

252 

1920 

8900 

Table 4 gives some data for various distances. 

TABLE 4 .  

r -= 
a 

t = 

t' = 

1 

0 

0 

2 

21 '55" 

21 '55" 

4 

45 '25" 

54 hr40' 

25 

4 hr15' 

13 hr 16' 

50 

8 hr15' 

37 hr 32' 

63 
(distance of moon) 

10 hr 21' 

52 hr 52' 



ROCKET FLIGHT WITH 
INTERMITTENT THRUST 

The two weight curves corresponding to equations ( 6 )  and (10) intersect 
at r,=2a,where an apparent cessation of thrust occurs and the res t  of the 
flight is slowed down. For a numerical evaluation of this case, it i s  sufficient 
to apply the formulas of the last  section, taking (10a) into account and using 
the velocity v, corresponding to r,=2a. Then, from (11) and (12), 

7 =(A* (12b) 

288 
The values given in  Table 5 were calculated using these formulas. 

TABLE 5.  

The duration of the flight to $= 2 is determined from (13a), which taking 

P r o p e l l a n t  

H 2 + 0  . . . . . . . . . .  
C + 0 2  . . . . . . . . . .  
Nitroglycerine . . . . . . . .  

. . . . . . . . . .  Guncotton 

( 6 )  into account, gives 

and for t'=tl+2'55" we obtain the values given in the second row of 
Table 4 .  

2a/ h 

3.57 

3.91 

5.35 

6.43 

ROCKET FLIGHT WITH 
UNIFORM ACCELERATION 

The laws of rocket motion presented above give relatively low values 

of %,irrespective of the dependence on certain other factors, the choice 

of which may reduce these ratios. 

m o / m  

34 

48 

199 

582 

'I 

0.193 

0.162 

0.072 

0.036 



Equation (8) can be rewritten for radial motion: 
, 

wlgmp=,+g,n rn 1 -$ 
w 1i.r . (1 4) 

a 

Here the second term indicates the effect of gravity. Let us assume 
that the flight proceeds with a constant acceleration 9. Then, in accordance 
with the rectilinear ascent, the curve of the upward flight will be (Figure 
101 ) 

and, from (14), 

289 so that, after integrating and substituting r -a=a tanaIp, we obtain 

The work performed will be 

for a kinetic energy [Wucht] of 

The efficiency in this case i s  

At our limit, for an acceleration q=m and a launching velocity ut=2gu 
at r= a ,  we have 

Some values calculated using these formulas are  shown in Table 6. 
In spite of the relatively efficient use of the propellant energy, the 

limiting values of the mass ratio 2 are  still considerably higher than for 

an ideal shot with q = 1 (Table 1). 



UNIFORM ACCELERATION 
. TO SHOT VELOCITY 

Two cases a re  possible for a finite acceleration. F i rs t  let us  assume 
that such an acceleration acts only until the shot velocity v, i s  reached, 
which corresponds to the upper horizontal asymptote in Figure 101. This 
asymptote originates at a point corresponding to r,, the straight part of the 
line for the kinetic-energy variation. 
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We can write the equations 

'I 

0.556 

0.517 

0.331 

0.228 

P r o p e l l a n t  

Hz+O . . . . . . . . . .  
2 +O2 . . . . . . . . . .  
Nitroglycerine . . . . . . . .  
Guncotton . . . . . . . . . .  

Taking into account (16), (17), and the relation Pve=2qh, we obtain 

The data in Table 7 were calculated using these formulas. 

? = -  
2.53 

2.77 

3.79 

4.56 

TABLE 7. 

- 9 
m 

12.5 

15.8 

44.3 

95.9 

This table shows that the ratios of the masses and efficiencies a r e  more 
favorable in this case, in comparison with the ratios for the reduced accel- 
erations of Tables 3 and 5,  although more energy will be expended by the 
rocket. 

q / g = .  . . . . . . . .  
* / a =  . . . . . . . . .  
H 2 + 0  . . . . . . . . .  
C + 0 2  . . . . . . . . .  
Nitroglycerine. . . . . .  
Guncotton.. . . . . . .  

1 

2 

63.2 

93.3 

506 

1800 

1.5 

5/3 

41.8 

59.4 

272 

853 

2 

3/2 

33.0 

45.8 

191 

555 

3 

4/3 

25.0 

33.9 

126 

331 

4 

5/4 

21.5 

28.7 

100 

257 

1 

- 
0.154 - 0.372 

0.124 - 0.332 

0.043 - 0.174 

0.017 - 0.098 



TERMINATED UNIFORM ACCELERATION 

Let us assume that the acceleration i s  terminated when the velocity v, i s  
reached. This corresponds to a distance r , ,  in the case of a projectile, or to 
the point of intersection between the ascending kinetic-energy line and the 
descending kinetic -energy curve (hyperbola). Then 

Taking (16) and (17) into account, we have 

291 The data in Table 8 were obtained using these formulas, and they a re  
found to be closest to the values in Table 6 .  However, it should be kept in 
mind that accelerations of 9 / g> 2q will probably not be possible, so that 
only the figures in the f irst  two columns of Tables 7 and 8 will be 
meaningful. 

TABLE 8. 

The duration of the flight may be found from (9) as  

Since the variation of kinetic energy for such motion differs from that 
in case 6 [sic] only in its first part, before r,, therefore the flight durations 
will differ very little from the values of t' in the second line of Table 4, 
and there i s  no point in recalculating them. 

3 

1.264 

0.888 

13.3 

16.9 

48.5 

107 

q / g =  . . . . . . . . .  
r , / a  =. . . . . . . . .  
vl/% =. . . . . . . . .  
H,+O . . . . . . . . .  
C + O  , . . . . . . . . .  
Nitroglycerine. . . . . .  
Guncotton. . . . . . . .  

1.5 

1.458 

0.827 

17.4 

22.8 

72.9 

175 

1 

1.618 

0.785 

23.7 

31.9 

116 

306 

4 

1.207 

0.910 

12.6 

16.0 

45.0 

97.6 

2 

1.366 

0.855 

15.1 

19.4 

58.7 

135 

I 

- 

- 
0.280 - 0.548 

0.247 - 0.508 

0.125 - 0.327 

0.068 - 0.215 



OBLIQUE FLIGHT OF ROCKET 

Now let us assume that a reaction-propelled vehicle moves at an angle 9 
to the radial direction. The radial and tangential components are  w,, 71l, ,  

v , ,  and v,. In this case 

The equations of motion for the two directions are  

Setting dr= w,dt or v, dt ,  we add these equations to obtain 

a2 (a+ tl. + N, 1.9 $ =- (or do. + vt i lw* + .q7 d?) 

292 and, taking (22) into account, together with (8a), we have 

dm 
w v y = m -  

i+ 
(v&+ g7 dr) . 

For uniform acceleration over a path ds=vdt, we can write 

or,  after integration, 

Therefore, instead of (14a), for constant 8, we have 

and, according to the equations 

The flight path will be a logarithmic spiral (Figure 102). In order to 
determine the mass ratios, we use the formulas derived above, but with 
q1=q/cos9 instead of q. For the same distances r from the earth and the 
game final velocities, formulas (17b) and (l7c) for the efficiencies will r e -  
main unchanged, since q does not enter into these formulas directly, but 

only through the mass ratio z. If, as  an example, 9=7S030', corresponding 



to an angle of 14"301to the horizonta1,then cos 6 ~ 0 . 2 5  and q1=4q. For a 
uniform acceleration g=g, and for a radial acceleration of the earth 

g ~ = g d  / 9,  the values in the last columns of Tables 
7 and 8 must be used, instead of those in the 
first column, which gives a considerable reduction 
of the mass ratio and a higher efficiency,in the 
case of an oblique launching. 

For uniform acceleration the flight duration i s  
found from the relations: 

FIGURE 102. 

The duration will be longer than for a radial flight, 
1 given the same final velocities and lengths .of flight with respect to --. 

At the same time, for free flight in space, they will not depend on 8. For 
6 = W 0 ,  cos .9=0, and then, for q= w ,  the second term in equation (23a) 

293 disappears. Thus we have the limiting case and equation (17a). Launching 
the rocket at an angle is especially important in the case of a return to the 
earth. 

FLIGHT IN OUTER SPACE 
AND RETURN TO EARTH 

In a case studied above i t  was assumed that a velocity vo=11,180 m/sec  
was imparted to a rocket, this speed being sufficient to begin a flight into 
outer space and around some other celestial body, such a s  the moon. To 
control the flight, it was then necessary to make some lateral correcting 
bursts of the rocket, which requires additional propellant. 

The vehicle will heat up considerably during a descent to another planet 
or  to the earth, when it enters an atmosphere at a space velocity. Conse- 
quently, the flight speed will have to be reduced. For example, a reverse 
thrust may be employed, which will require new masses of propellantrand 

an increase in the ratio %. Even if we ignore the propellant needed to visit 

another planet and to guide the rocket, and i f  we consider just the descent to 

the earth, the increase in mass will still  be equal to 2 squared, even for the 

optimum ratio of the quantities in the last column of Tables 7 and 8 .  
If H, + O  or C + 0, is used a s  the propellant (Table 6 ) ,  the figures will be 
even higher. F& nitroglycerine and guncotton the values obtained a re  
quite fantastic. This difficulty will not be circumvented by the composite 
[step] rockets proposed by Professor Oberth, the parts of which will fall 
away one by one, leaving only a vehicle of mass m at the end of the space 
flight . 

Let us denote the masses which fall away gradually a s  

(m, -mJ, . . . (m, - m3, . . . (m, - m). 



the initial mass being m, and the final mass being m. Then, 

the velocity increments being vn-u,,. . . and, in  the ideal case (17a), 

so that, for a final velocity 

we have 
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Consequently, we obtain the ratio of initial and final masses in the same 

form a s  earl ier ,  but with the addition of the useless weight of the casings 
of the intermediate rockets. 

Therefore, the basic reasons for the incredible difficulties involved in 
carrying out a rocket flight into space are:  improper utilization of the 
thermal effect during the chemical reaction between oxygen and propellant, 
the tremendous mass of propellant required, the lack of the proper light but 
strong materials for the rocket itself, etc. 

DISCUSSION OF REPORT 

Ing. M. Schrenck. The use of rockets will be of benefit only at space 
velocities. Rocket flights in the atmosphere are  not advisable, if other 
means are  available. Let us consider whether it would be possible to use 
a rocket on a racing plane in order to attain high velocities. The results 
of the corresponding calculations a re  shown in Figure 103. The velocity 
of gas ejection is taken to be 1,000 m/sec.  If a rocket were employed, it 
turns out that a new speed record could be set over a short distance. 

1 Auxil. rockets for racing 1 
I I 1 

  lane. In 1 min burni 

FIGURE 103. 

Running speed (m/sec) 

FIGURE 104. 



It is to be expected that rockets will be used to send recording instruments 
to great heights. For  a mass  rat io of 0.3, for example, a height of 24 km 
can be attained at a speed of 200 m/sec ,  o r  a height of 36 km at a speed of 
300 m/sec ,  without taking a i r  resistance into account. The latter will have 
an effect,but i t  will2be l e s s  for large rockets than for small  ones. 

Dr.  Kiilzer. It was mentioned in the report that the composition of the 
atmosphere up to 50 km is such that the velocity of propagation of sound 
in it may be considered constant up to that height. According to the latest 
studies, on the other hand, the following sound velocities have been obtained 
for different heights: 330 m/sec  at the ground, 290- 295 m/sec  at 10 to 
35 km, and 330 m/sec  again at 50 km. This increase is due not to a rising 

235 hydrogen content but rather  to the temperature variation. In addition, I 
have been informed of experiments with rocket-borne meteorographs up to 
a height of 1000 m. The instruments stood up well under an acceleration of 
50 m/sec2. 

Prof. Pr~l l .  An essential difference between a rocket and an aircraft i s  
that the former develops i t s  velocity rapidly with a la rge  energy expenditure, 
while the latter develops speed slowly with a low energy loss. When a sea-  
plane i s  taking off, i t  may be that the pull of the propeller is insufficient to 
lift the plane off the water. For instance, in  Figure 104, curve w represents 
the variation in the resistance of the water, while curve S shows the pull of 
the propeller less  the a i r  resistance. The ordinates of the area between the 
two curves give the force of the acceleration imparted. Point A shows the 
beginning of the critical moment for the takeoff. It may be delayed for a 
long time, until the velocity increases s o  much that the pontoons a r e  pulled 
out of the water. If at this moment an additional thrust is supplied by a 
rocket (dotted line), the upward flight will proceed much more rapidly. 

Note. The remarks  of Oberth, who also took part in the discussion, have 
essentially already been given above in his paper. 
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A .  S H E R S H E V S K I I  

An article entitled "The Spaceship," by A. B. Shershevskii, was published 
in the journal  lugsp sport" in 1927 (p. 386). In it the author f i rs t  gave a brief 
history of the subject and then went on to develop a theory of the flight of an 
interplanetary rocketship. A translation of this work [which was written in 
German] is presented below, following a short biography of A. Shershevskii 
[Alexander Boris Scherschevsky] . 

LIFE O F  A. SHERSHEVSKII 

Aleksandr Borisovich Shershevskii (Figure 105) was born on 22 October 
1894 in Leningrad. He obtained his secondary education at the private 

Shtemberg Realschule. In 1913 he was 
admitted to the Mechanics Department 
of the Leningrad Polytechnic Institute. 
There he studied mechanical engineer- 
ing, shipbuilding, and aeronautical en- 
gineering under the following professors 
(listed alphabetically): (the late) A. P. 
Boklevskii, J. de Bottesatte (now in the 
USA), D. N, Zeiliger (now at Kazan 
State University), A. Ioffe (Leningrad), 
N. A. Rynin (Leningrad), (the late) 
V. A. Slesarev, van der  Vleet (now in 
Prague), (the late) A. A. Fridman, 
(the late) V. I. Yarkovskii, and others. 

In the spring of 1915 Shershevskii 
volunteered for the aviation division 
of the Aero-Club, where he completed 
courses in  aircraft motors and pilot 
training. In the summer of 191 6 he was 
released from this program because of 
poor eyesight. In 191 6 and part of 1917 
(a total of six months) Shershevskii 
worked at the Lebedev aircraft factory 

FIGURE 105. in Leningrad, Novaya Derevnya (con- 
struction practice, manufacture, and 
assembly). In 1919 he went to Berlin, 

Germany. There he continued his studies, a s  an auditor at Berlin University 
(Physics and Mathematics Department of the Philosophy Faculty) and the Tech- 



298nische Hochschule, under the following professors (listed alphabetically): Bieber 
Bieberbach (pure mathematics), A. Einstein (relativity), R. von Mises (pure and 
applied math.), M. Plank (physics), H. Reissner (statics), R. Fuchs (aero- 
dynamics), and G. Hamel (mechanics). In 1925 he worked at the patent 
department of the Aohrbach aircraft factory (all-metal airplanes and a i r -  
ships). From 1924 to 1926, under the direction of Major Tschudi,the 
president of the German Aero-Club, Shershevskii prepared the Russian 
section of a seven-language international dictionary. He contributed to a 
number of aviation journals (Z. F. M., Flugsport, Luftfahrt, Illustrierte 
Flug-Woche, Jungflieger , Die Rakete, Zeits. fiir angewandte Mathem. u. 
Mechanik, Vestnik Vozdushnogo Flota, and others). In 1928 a popular 
science book by Shershevskii was published by the C. I. E. Volckmann 
Publishing Company in Berlin-Charlottenburg: " ~ i e  Rakete fur Fahrt und 
Flug, Eine allgemeinverstandliche Einfuhrung in das Raketenproblem" ('I The 
Rocket for Travel and Flight, A Popular Introduction totheRocket Problem"). 
He worked with professor- berth. At present he is participating in the work 
of the Deutsche Versuchsanstalt fiir Luftfahrt in Berlin-Adlershof. In the 
near future he intends to complete a study of long-range rockets (Zum 
Variatsionsproblem der  Fernrakete) and a study of the development of 
shapes and sizes of animals and mechanisms, moving in a liquid o r  gaseous 
medium o r  in a vacuum (spaceships). 

Shershevskii was interested in aeronautics almost from his very childhood, 
and while in school he organized a model-aircraft club. He constructed 
models himself, and from 191 1 to 1914 he contributed to the journals "Vest- 
nik ~ozdukhoplavaniya" and "Aerozhiznl" (Leningrad society). As early a s  
1912-1913 he carr ied out tests  with tailless aircraft (which are  only now 
beginning to be developed at the Research Division of the Rhon-Rositten 
Gesellschaft at Wasserkuppe, Rhon, Germany, by Ing. A. Lippisch, F r .  Stamer, 
and F. Wenck); the results of these tests  have not been published. 
Shershevskii became interested in rockets and interplanetary travel while 
reading Tsiolkovskii's classic work "Exploration of Planetary Space with 
Je t  ~ a c h i n e s "  (Vestnik Vozdukhoplavaniya, Leningrad, 191 1-1 913). 
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THEORY OF THE INTERPLANETARY ROCKET SHIP 

FIRING OF PROJECTILE FROM A CANNON 
OR CENTRIFUGAL MACHINE 

Fi rs t  let us  consider the case of a projectile fired into outer space by 
a cannon with an ordinary charge o r  by an electric (solenoid) cannon, and 
also the case of a projectile fired from a centrifugal machine. Both cases 
a r e  unfeasible, for the following reasons: a )  insufficient strength of 
materials,  b) technical impracticability, c )  excessive accelerationforces, 
of the order of 1Pg (where g=9.81 m/sec2) ,  making i t  impossible to  use 
instruments o r  to take passengers, and d) enormous a i r  resistance. 

If the length of the cannon i s  L,the projectile velocity at firing is V ,  the 
projectile acceleration i s  b ,  the acceleration of gravity at the earth (con- 
stant) is g,  and the vertical height of ascent i s  h ,  then we have 

and 

The effect of acceleration, that i s ,  the apparent heaviness in the cannon 
projectile, will be 

For  a cannon 300m long and an ascent height of 300 km, we have a 
muzzle velocity of 2,450 m/sec  and an overload [excessive acceleration 
force] of 1,001 g. However, in order  to overcome gravity, that is, to escape 
into outer space at zero final velocity, an initial velocity of 

is required. If r is the radius of the earth, we obtain 

Actually, to  ascend to a height h where the velocity i s  stil l  v,, we need 
an initial velocity 



300 If then , 

Setting h= w, we obtain 

However, i f  we wish to retain a certain velocity at infinity, then 

where u,> V, . The latter expression plays an important role in the theory 
of a reaction-propelled ship. 

In contrast to the latter velocity, the initial velocity of a projectile at 
firing is  very high. Substituting the quantiy 

into equation ( l ) ,  we obtain 

A brief computation indicates that an enormous overload, of the order of 
10gg,  will be produced, without even taking the air  resistance into account. 
This will be the case for a centrifugal machine as  well as for a cannon. In 
addition,it will not be possible to guide the projectile either. 
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THE REACTION- PROPELLED SPACESHIP 

Let us define a reaction-propelled spaceship a s  a large passenger rocket 
which can be controlled. The propellant used must have a very high reaction 
energy. Liquid H and 0 may serve as  such a substance (Table 1). 

FLIGHT OF A REACTION-PROPELLED SHIP 
IN AIRLESS AND GRAVITY -FREE SPACE 

The theory of motion of a reaction-propelled ship is based on the follow- 
ing two assumptions: 1) the relative velocity of gas ejection stays constant, 
and 2)  this ejection [exhaust] is optimum, that is ,  the points of application of 
the external forces, and the center of intertia of the mass, lie on the vector 
of the resultant forces of the reaction. 



0°) TABLE 1. 

The following symbols will be used: M i s  the total mass of the ship, V i s  
i t s  velocity, m, is the mass of the empty ship, m, is the mass of propellant 
at the beginning of flight, and ma is the mass of propellant left at a given 
moment. 

Then, at any time, 

Burning in oxygen-free space 

. . . . .  Propellant: H and 0. Combustion product: water vapor. 

H and 0. Product: water . . . . . . . . . . . . .  
" H a n d 0 .  " ice  . . . . . . . . . . . . .  
" CsHs and 0,. " H@ and CO, . . . . . . . . .  

Burning in oxygen-rich atmosphere 

Fuel Hz. Product: H,O . . . . . . . . . . . . . . . . . . .  
'. CsHs . . . . . . . . . . . . . . . . . . . . . . . .  

M=mr+m,  
For t = O ,  

ma= moo 
So that for t= 0, 

M=mr-+-m, , 1 
Let us denote the mass ratio m,/ m, a s  9 ,  and the velocity of gas 

ejection a s  v,. Then, from the law of conservation of momentum, 

Heat conducted, 
kcal per kg 

3.200 

3.736 

3.816 

2.310 

28.780 

10.000 

(m,+mJ dV=-vadma 

The integral equation i s  

Exhaust velocity 
v. :n km/sec 

5.18 

5.60 

5.65 

4.45 

15.52 

9.6 

which gives 

:=-lg(m,+m.)+c. 
-a 

For t = O ;  ma= m, and V = O ,  so that 

C=+Ig (m,+m3 

*kere  we omit the elementary derivations of (14) (formulas (12) and (13)) 
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and 

X = l g ( E ) .  *a 

The highest velocity is for m,.=O, when 

302 TABLE 2 .  
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Let us denote as  W, the energy efficiency of a rocket ship in a gravity- 

free medium. It willbe equal to the ratio of the energydeveloped by the 
rocket ship to the propellant energy: 

An essentially simple, but somewhat tedious in execution, calculation 
indicates a maximum energy efficiency of 64.770, for a mass ratio 

For q=O,  W,=O, according to equation (1 9). For q= CQ it will also be 
true that W,=O. The relevant data are listed in Table 2* and plotted in 
Figure 106. 

70 
60 

M 
40 

30 Wen 
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10 

0 
4 

FIGURE 106. 

The flight velocity i s  also a function of 9 (equations (18) and (12) ). The 
flight in question corresponds to gravity-free space, that is, 1) between 
suns of the Milky Way, 2) at small planetoids having low gravitational 
accelerations, and 3) at distances from celestial bodies which a re  about 
equal to their radii. An additional calculation shows that, for motioain a 
medium with constant gravity, such a s  motion within the sphere of the 
earth's attraction, the formulas remain the same, except that a multiplying 
factor called the "acceleration term" must be introduced. 

FLIGHT IN A VACUUM WITH 
CONSTANT GRAVITY (TERRESTRIAL) 

In the case of terrestrial gravity we have, instead of equations (12) and 
(1 91, 

chem. b.t. tech. 

vmm = va (1 - f) I* (1 +%) 

* V, s 5,000 m/sec for pure hydrogen and oxygen, and V, = 4,000 m/sec for a hydrocarbon fuel and 
oxygen or for endogenic oxygen compounds. 



tech. b.t. 

Kno=t[~g(l+z)] (I-+) 

and 

Here i s  the dynamic efficiency, and b i s  the acceleration of the 
reaction-propelled ship (see Note 1 below). In these formulas, chem. r e  - 
fers  to the chemical factor, b.t. to  the biological-terrestrial factor, and 
tech. to the technological factor. The chemical factor depends on the type 
of propellant, the environment (air  o r  vacuum), and the mixture, and it has 
an effect on the exhaust velocity. The technological factor, that is ,  the 
mass  ratio 9 ,  affects the strength and the construction of the large, light 
containers, which have to withstand accelerations of both signs (see Note 2 
below). Finally, the biological-terrestrial factor can be divided into the 
ship's own acceleration and the earth's acceleration. The former must 
not exceed a limiting value corresponding to danger to a person (b=sg). 
The latter is a characteristic of our planet. Assuming b=5g, we obtain 

Note 1. Equations (21) and (22) were derived a s  follows: The burning 
time of a given mass of propellant is independent of the presence of an 
attracting body [such a s  the, earth] and is 

where i s  the ship velocity attained by consuming a certain mass of 
propellant in I sec. Since we have assumed that the vectors of (bland 
(g)lie along the same line in opposite directions ( ~ i g u r e  107below), 
therefore the quantity b-g represents the relative acceleration of the 
ship. The acceleration effect (apparent weight) will be 

For motion by inertia (without the action of external forces like 
acceleration or  air  resistance) _b=O, 

If f, i s  the time i t  takes for the whole supply of propellant to burn up, 
and V,.. is the corresponding maximum velocity, then 

and, from equation (24), 



305 Equation (27) together with equation (12) gives equation (21). Similar 
considerations lead to equation (22). >* 

Note 2. According to Tsiolkovskii, it i s  possible to have a ratio q of 
25 or  even 35.. 

For  Wdyn=0.8, the values in Table 2 will be correspondingly lower. It 
follows from equations (12), (19), (21), and (22) and the table that the 
velocity will become infinite a s  q increases. In addition, for constant q ,  
velocity V wilI be constant a s  well, that i s ,  the flight velocity does not de- 
pend on the absolute weight of the ship. In general, the flight velocity, like 
the maximum speed attained, will not depend on the length of burning 
either. If b=g, then equation (21) gives zero velocity within the sphere of 
gravity ( terrestr ial ,  where g= 9.81 m/sec2) ,  irrespective of the amount of 
propellant burned. An increase in the dynamic efficiency leads to a lower 
exhaust velocity and, which is even more important, a lower ratio q. 
Accordingly, the ship can be made stronger (higher structure weight). 

A person canwithstand (according to Tsiolkovskii) accelerations of 5 g  or  
more,  provided he i s  immersed in a container of liquid. For  an instan- 

taneous burst,  b = ~ ,  P - 0 ,  and the dynamic efficiency is 1 (100q'). Here 
b - 

the velocity with gravity will be the same as that without gravity. 
Table 2 showed that an increase in the exhaust velocity V, gives higher 

final velocities, while for equal velocities q i s  lower. Moreover, W, also 
increases with an increase in v,. Thus a propellant with a high velocity 
of gas ejection must be used, one which would at least give an efficiency a 

W, of 6570,or 50 to 60% and a low q. 
By interpolation, we find that for b=5g, Ryn=O. 8 (80%). and with H + 0 

as  propellant,upon departure from the earth we have q w  18 ,  while for the 
optimum case (b=4g), q y n = O .  75 (75%) and q=20.5. A further reduction 
of q i s  possible by employing a catapult. 

Calculations show that, if a catapult is used, the mass ratio will be 

where rlk is the initial velocity attained with the catapult. Table 3 was 
prepared using equation (29). 

306 Descending into the earth 's  atmosphere at a speed of 12 km/sec  rep- 
resents  a difficult problem. This problem can be solved in two ways: 
1) by means of a reverse reaction [thrust], o r  2) by utilization of a i r  
resistance (both ways may be used together, of course). 

*Apparently, to agree with (211, equations 122) and (21) should have a multiplying factor 

(Note by N. R.) 



Calculations show that for a normal launching a descent using a reverse 
thrust is unfeasible, since, even in the optimum case, 

However, the situation will be improved i f  a catapult i s  used. Different 
authors propose different methods. Oberth, Valier, and Goddard suggest 
reverse thrust and a parachute, and Tsander and Tsiolkovskii suggest aero- 
dynamic descent (winged rocket). 
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In the foregoing, a vertical ascent was assumed. However, a rocket can 

also be launched at an angle and fly horizontally. For flight at a great height 

(306) 
'For a ship to have zero velocity when it reaches the earth, if a reverse thrust is to be  used, the mass 

ratio must be 

For low ascents 9 50.5 and, from (301, we have q1 =eu 2q. For ascent from the earth and descent 
to another planet, the ratio is 

where @ i s  analogous to (rl for the other planet. Thus, to visit a planet and retum to earth, the ratio will be 



with a velocity I/=-= 8,00Om/sec* (where r i s  the earth's radius 
and /I is the flight altitude), the centrifugal acceleration will be equal to 

that of the earth (Figure 107), and the weight of 

centrif. accel. the ship will be cancelled. Without taking air  r e  - 
sistance into account, we find that horizontal 
flight (and launching along a tangent to the earth) reaction 

accel. of grav. 
earth 

will be much more satisfactory than vertical 
, A launching, since in this case the dynamic efficiency 

FIGURE 107. ;will not be 
4 

Wdyn=1-+ 

but rather 

For instance, for b= 5g, we have (RYn),= 0.96 (96%). ** 
An analysis of the conditions of an oblique launching gives a dynamic 

efficiency which is  even more favorable. t 

AIR RESISTANCE tt 

The effect of the air  resistance i s  not clearly defined in our problem. 
However, as will be shown in the following, it does not represent an Achilles1 
heel, since all the studies which have been made so far show that during the 
flight of a spaceship the air  resistance 'does not play as  great a role as 
might be thought at first glance. During ascent and descent it can be used 
to provide a lifting force. f Experts on external ballistics are coming 
around to this same opinion. ft 

' For h=O, this velocity will be v , / G .  
@ sa * Actually, if R= -3 is the horizontal acceleration of the ship, the energy in I sec will be - . f2 

62 12 
2s 

corresponding to a force of-. Dividing one of these by the other, we obtain (33). 
t Here t 

where rr is the angle between the resultant forces and the vertical, and Rlis the acceleration of the 
ship along its oblique path. 

it Cf. the paper by Prof. Ludwig Hopf: " h e r  Modellregeln und Dimensionsbetrachtungen" in 
"Naturwissenschaften," 8 Jahrg., Heft vom Januar 19.20, SS. 81-85. 

f Differentiation between the concepts of "air resistance" and "lifting force" is based on the fact 
that the latter, as a more serious analysis shows, constitutes a force which is, sui generis, independent 
of the resistance of the medium. Cf. the studies of: Bjerknes (father and son), Kutta, Zhukovskii, 
and Prandtl. 

f f  ~ f .  the studies of Becker, Cranz, Eberhardt, Krupp, Mach, Roschdestwensky, Rorhe, and Siacci. 



308 For velocities greater than the speed of sound, Tsiolkovskii uses the 
ordinary velocity-squared law to determine the resistance: 

I 

W = f ( v ) ~  (34) 

and obtains a formula for the work dohe against' air  resistance. * This 
formula indicates that, during the ascent of a 10-ton rocket (H + 0), only 
about 1 /4;000 of the entire work of ascent i s  performed against the resist- 
ance. For an oblique ascent, of course, it will be greater. However, i f  the 
ascent path i s  inclined lo0 to the horizontal, this work will still only be 
about 170 of the entire work of ascent (an oblique ascent is, in general, 
more satisfactory). 

Oberth also assumes a square law on the basis of ballistic data, changing 
only the resistance coefficient Cw. For v,< 300 m/sec, c,, i s  constant. *:: 
However, as  v approaches the speed of sound, this quantity increases rapid- 
ly, and at V=  425 m/sec  it reaches a maximum (about 2.6 times the value 
for v <  the velocity of sound), after which it approaches asymptotically a 
value equal to 1.3 to 1.5 times that for a velocity <the  velocity of sound. 
The increase. in c,, for u=300 to 400 m/sec is quite easy to explain: the 
compression of the air ahead of the nose decreases for V < C  (the velocity 
of sound), because of a i r  runoff to the side. When v > e ,  only flows to the 
side are possible. As a result of the compression of the air ,  the pressure 
will be proportional to the square of the velocity, both for v < C  and for v > c.  
Behind the moving body rarefaction occurs, and for v<c this produces an 
inflow which is also proportional to the velocity squared. When v=c a 
situation begins for which, at the limit, a perfect vacuum i s  approached; it 
is not possible to compress air and it i s  not possible to increase more 
rapidly than c. 

Therefore, at high velocitieB the inflow at the'rear of the rocket de- 
creases, and the quantity 

cW = ( ~ r e s s u r e  + inflow) /(F. 9) (35) 

goes to the limit 

cW= pressure/(F. 9 ) .  (36) 

* For the work against air resistance, Tsiolkovskij gives the equation 

where F is the midship-section area, a is the inclination of the trajectory to the horizontal, ;, is the 
specific weight of air a t  sea level, h i s  the height of ascent, and cw is the resistance coefficient. For 
a vertical ascent 

and 

" c is the velocity of sound. 



Here F is  the area of the midship section, and q i s  the static pressure, 
equal to e /$ /2 ,  where Q is the air density. For a spaceship there i s  no in- 

309f10w, since the space behind the ship is full of the ejected gases. Tsiolkov- 
skii* assumes that the a i r  resistance at high velocities ( s > e )  is expressed 
better a s  a power series and may be limited by the term a,#. 

The lift forces at high velocities have been investigated even less, The 
following quotation from Prandtl gives some indication of this. ** . . . "My 
calculations are  based on the conditions of flow around flat profiles with 
low lift. It turns out that, for such a profile and for flow in  a compressible 
fluid, the pressure distribution will be the same as  in an incompressible 
fluid for some other profile, whose transverse size exceeds the size of the 
former profile in the ratio 

It follows from this that, close to the velocity of sound, separation of the 
flow occurs much more readily than at low velocities (see Figure 108). 

FIGURE 108. 

Thus for V < C  we may assume during our calculations that the flow i s  two- 
dimensional. t 

It is very difficult to carry out experiments with models at these veloci- 
ties. The most suitable type of experiment consists in catapulting a body 
into a pressurized channel filled with water, glycerine, or  some other 
liquid (this method was suggested by the author, by Tsiolkovskii, and by 
Oberth). At the Gottingen laboratory such a setup has been constructed 
for v < c ;  v = c  and v > c .  

a Letter of 11 May 1927. 
** Letter of 15 December 1926. 
t Cf. Albert Betz. Einfiihring in die Theorie der Flugzeug Tragfliige. Die Naturwissenschaften, 6 Jahrg. 

NaNo.38 u. 39, SS.557-552 kic] and 573-578. 



BASIC SPACESHIP DESIGN 

The materials used to construct a spaceship must be suitable for the 
conditions to be met with during flight; in  particular, they must be able to 

31 withstand extended periods at temperatures ranging from absolute zero to 
2,500 o r  3,000°C and pressures from 30 to 50 atm. The operating conditions 
in the combustion chamber and in the nozzle will be especially severe. Let 
us consider separately passenger ships and ships without passengers. 
Goddard proposed plans for the latter,  including a plan for an explosion to 
light up a dark part of the moon, the explosion being observed through a 
telescope. Similar projects have been suggested by von Hoefft, Oberth, and 
Tsiolkovskii, who envisioned the construction of a recording rocket carry-  
ing automatic instruments. In addition, Oberth and Tsiolkovskii also pro- 
posed manned rockets. 

Rockets can also be divided into solid-fuel (powder) rockets, a s  proposed 
by Goddard for a small ship (without passengers), and liquid-fuel rockets, 
a s  proposed by the other investigators. The latter rockets have either a 
single combustion chamber and a single nozzle (Tsiolkovskii and Tsander) 
or  several of these (Oberth). Oberth suggests a stage rocket, sections 
of which will fall away a s  portions of the propellant a re  used up, the 
passenger cabin then descending by parachute. The problem of the winged 
ship has still  not been solved, since the advisability of such a ship has not 
been proven by calculations and the author of this plan (Tsander in Moscow) 
has not published his studies. The designs of Oberth, Oberth and Kalier, and 
Tsiolkovskii a r e  in general similar,  and the frames of their ships will ex- 
perience bending s t resses ,  a s  in the case of soft d i r i sb l e s  (Parseval),  due 
to the internal pressure. 
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Tsiolkovskii's rocket (Figure 109) has a tapered steel frame with double 

walls having a vacuum in the space between them (as in a ~ h e r m o s ) .  Large 

FIGURE 109. 

fuel tanks are  arranged around a single large central combustion chamber 
and a conical nozzle (angle of opening only 8 to 10"). Propellant at a tem- 
perature of absolute zero is injected into the combustion chamber by 
pumps (according to Tsiolkovskii, the pumps are  very simple) and ignited 
by an electric spark. 



The ship is guided either with the aid of controls located in the gas flow 
or by shifting masses so as to change the position of the center of gravity. 
The masses a re  moved using an electrical servomotor, The steering 
controls a re  regulated with the aid of a periscope, which receives directing 
rays from the sun or s tars  and transmits them to solenoids. 

Oberth's double rocket is shown schematically in Figure 110. Propel- 
lant enters the combustion chamber via several injectors, after which it 

FIGURE 110. 

passes through Laval-type nozzles into space. The lower rocket uses 
alcohol, water, and oxygen, and the upper rocket uses pure H and 0. Oberth 
suggests using an aluminum alloy (sp. wt. of 3, tensile strength of 30 to 32 
kg/mm2) for the frame of the alcohol rocket, copper and lead for the oxygen 
tanks, and lead, copper, and soft iron for the H - 0 rocket. The rocket i s  
guided with the aid of fins and regulated combusion. Non-manned, 
rockets a re  controlled automatically. 

312 The Oberth-Valier design shown in Figure 111 is  another version of the 
Oberth rocket. The chambers are located amidships, around a sternpost 

FIGURE 111 

with controls, and they take up about 80% of the midship-section area. From 
the nose to the stern of the rocket, we see: a detachable nose with a parachute, 



and inside the nose two lenticular passenger compartments with a central 
passageway; large fuel tanks, eight combustion chambers, a control rod, 
more fuel tanks, and, finally, the tail section. The combustion chamber 
contains a system pf tubes (Figure 1 1 2 )  for supplying propellant, honey- 
comb nozzles, and cooling tubes, which protect the chamber casing. 

FIGURE 112. 

CONCLUDING REMARKS 

At present the only means of flying into outer space is with the aid of a 
reaction-propelled device. The physical and psychological aspects of the prob - 
lem are such that a practical implementation must now be considered. The 
development of this subject still has a very short history. In principle, a 
reaction-propelled ship i s  feasible and its dynamic theory is known, but 
problems of air  resistance, materials, and construction have not yet been 
solved completely. The main types of rockets (those of Oberth, Goddard, 
and Tsiolkovskii) have been worked out in considerable detail, and their 
practical implementation depends only on funds. It i s  imperative that r e -  
action-propelled ships be built, in order to allow man to solve a number of 
scientific problems. 

APPENDIX 

The following information is relevant to the foregoing paper: 

1. Dr. Franz von Hoefft (Vienna) is at present constructing the first 
rocket for research using automatic equipment. Its length is 1 . 2  m, with a 

diameter of 0.3 m, giving a ratio ;= 4; in addition, M = 3 0  kg, m,=22 kg, 

%=8 kg, q=2.75,  the ascent height h=100  km, and the propellant i s  H +O. 
A parachute will be used in the descent. 



2. Tsiolkovskii is carrying out some preliminary experiments with 
models. The resul ts  will probably be published in 1928. 

3. Dr. Ing. Roqsmann, Prof. Cranzls assistant, gave a lecture on reaction- 
propelled ships, at the Charlottenburg Polytechnic Institute (Berlin), in 
which he cited the studies of Goddard, Oberth, and Tsiolkovskii. However, 
his theory of a i r  resistance gives r i se  to certain objections. Prof. H. 
Reissner and G. Hamel a re  working on the integration of the equations of motion 
of a ship, taking a i r  resistance into account. 

4. Professor Oberth has written me (29 December 1926) that "The idea 
of testing models with the aid of a catapult seems to me to be very good. 
Your results for small experimental models moving through dense a i r ,  a l-  

313 though not completely applicable to large machines moving in a tenuous 
atmosphere, a r e  better than nothing." In addition, Oberth maintains that 
the theory and construction of a reaction-propelled ship (rocket) a r e  
simpler than for a reaction-propelled aircraft. 

5. The problem of the "reaction-propelled aircraft" is being pursued 
further. Its theory i s  being developed by me for Valier. 

6 .  The plan for reaction motors to be used on a Junkers monoplane 
(J 24) and a new light plane (a combination of 20-power Klemm-Daimles 
airplanes) is unfeasible. Each velocity corresponds to a certain optimum 
plan view and profile wing configuration, and for velocities greater than 
the speed of sound the relevant studies have not yet been made. 

7. Considerable research carr ied out by R. Goddard and R. Lademann 
(Berlin) still remains to be published. 



315 JULIUS K U N T Z  

In the journal "Die Rakete" for 15 Jan. 1928 Engineer Julius Kuntz 
presents some typical solutions for some of the simplest problems related 
to  rocket flight. A s  a starting point for his calculations, he assumes that 
the rocket reaches a height of 1,600 krn above sea level and attains a space 
velocity [escape velocity] of 10,000 m/sec, sufficient to  fly beyond the 
neutral layer between the earth and the moon. 

PROBLEMS IN THE THEORY OF ROCKET FLIGHT TO THE MOON 

Prohlem 1. What must be the acceleration y at a height S =1,600 km, 
in order  to impart to  a mass  m a velocity w = 10,000 rn/sec ? 

Solution: 

Problem 2. How long will it take t o  develop this acceleration ? 
Solution: 

Problem 3 .  What force P i s  required in order to impart to  a mass  m 
an acceleration of 31.25 m/sec2 ? 

Solution: 

then 

Problem 4. What force  is necessary in order  to overcome gravity if a 
rocket weighing 1,000 kg is to ascend from sea level to  a height of 1,600 km? 
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Solution. The weight of the rocket at sea level i s  1,000 kg. The weight 

of the rocket at a height of 1,600 kg i s  0.64% of 1,000 kg, o r  640 kg. Assum- 
ing on the average, and with a little to  spare, that this weight i s  1,000 kg, and 
taking into account the result of Problem 3, we obtain a total force of 

Note. Kuntz neglects a i r  resistance, assuming it to  be small  
Problem 5. Where is the neutral zone of the attractions of the earth 

and moon situated ? 
Solution. Let us denote the distances of this point from the centers of 

the earth and moon,,respectively, a s  R and r .  We also assume that the 
average distance between the earth and the moon,is R+r=384,000 km, 
and that the mass  MI of the moon i s  '/,, of the mass  M of the earth. Then, 

k'w kM1- k,n. 
x=rt-glrz 

thus R = 345,600 km (here k is the gravitational constant). 
Problem 6.  What will be the velocity of a mass' attracted by the earth 

and the moon: a) a t  the neutral point N, and b) when it hits the mooq, 
if it has a velocity of 10,00Om/sec at 1,600 km above sea  level (Figure 113)? 

Solution. Let us denote the distance from 
the earth to  the moon a s  R = 384 . lo8  cm, the 

Earth h-->---&&LF m a s s o f t h e e a r t h a s M = 6 , 0 6 4 ~ 1 0 2 4 g , t h e m a s s  

of the moon a s  MI=:, the gravitational 

constant a s  k =  66 . and the distance of a 

i f  moving point C from the earthls  center at any 
~- -36&fsu&&: mombnt a s  S. Here the acceleration of -- a&@--s t e r res t r ia l  gravity i s  taken to be negative and 

that of lunar gravity to be positive. The total 
FIGURE 113. acceleration will be 

In order to solve this differential equation, we assume that 

Integration gives 



and, finally, a velocity 
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Determination of constant C. Constant C i s  found from the condition 

that for S= 7,970 - 106cm 

Thus 

s o  that 

c= - 0.406 . 10l0. 

The velocity i s  therefore 

a) Velocity at neutral point. In this case 

b) Velocity a t  impact on moon: 

=2713.1@ cm/sec  =2713 m/sec .  . 

assuming that the moon has no atmosphere. 
Problem 7 .  Determination of flight time for mass  m :  a) over distance 

from point 1,600 km above sea  level to neutral point, and b) from there  to 
lunar surface. 

Solution. Starting from the formula for the velocity, we obtain 



which gives a time 
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The solution of this integral is complex. It is simpler to obtain an 

approximate solution (accurate to l/,y0) with the aid of a velocity curve 
(Figure 114). For  each interval along the ordinate axis we assume that 
the velocity is constant and equal to the average over the interval. We 
then divide the corresponding distance by this velocity and obtain the time 
required to t raverse the interval. The sum of these times gives the total 
flight time: 

hr min sec 

a) Flight t ime from point 1,600 km above 
sea level to neutral point, 155,830 sec ... 43 17 10 

b) Flight t ime from neutral point to lunar 
surface, 22,546 sec .................... 6 15 46 

c) Flight t ime from earth's surface to 
point 1,600 km above sea level 
(see Prob. 2). 320 sec ................... - 5 20 

Total.. ............ 178,696 sec 49 38 16 

FIGURE 114. 



If the body has a velocity of 1,00Om/sec at the neutral point, then i ts  
velocity a s  it approaches the moon will be 2,493 m/sec,  and i ts  maximum 
velocity will be 9,944 m/sec .  If i ts velocity i s  zero at the neutral point, the 
velocity at the moon will be 2,284 m/sec,  for a maximum velocity of 
9,892 m/sec.  

All the foregoing problems have been solved assuming that the mass  
begins i ts  motion over a te r res t r ia l  pole. For  launching from some other 
point the earth's velocity of rotation must be taken into account; then cal- 
culations show that the maximum velocity will vary slightly. 



319 G U I D O  V O N  P I R Q U E T  

Guido von Pirquet was born at his family castle, Schloss Hirschstetten, 
in 1890. He began his studies a t  a Realschule and then continued at the 
Technische Hochschule in Vienna (Engineering department) and in Graz. 
Von Pirquet has made independent studies of astronomy and other 
scientific subjects, and he has served on the testing committee for 
inventions and a s  secretary of the Society for  High-Altitude Exploration 
[Gesellschaft fiir Hohenforschung] in Vienna. He has written a number of 
works on interplanetary travel.  

FIGURE 115. G. von Pirquet. 



321 K .  D E B U S  

Karl  Debus was born a t  Lustadt (Rheinpfalz) on 10 Sept. 1891. He 
attended gymnasium a t  Bad Durkheim, Speyer, and Ludwigshafed (Rhein), 
and then continued his  education in Munich and Wurzburg. F r o m  1915 to  
1918 he participated in the  World War,  and during recent  y e a r s  he has  
writ ten for  newspapers and journals, par t icular ly  on the subject of the  
ea r th  a s  a body in space.  

FIGURE 116. K. Debus. 



323 W. L E Y  

Willy Ley was born in Ber l in  on 2 Oct.  1906. He attended a Realschule 
t h e r e  but did not take t h e  final examinations, because of i l lness.  Ley 
worked in  a bank until 1926 and then studied l i tera ture .  Next he  made 
studies of biology and astronomy. In 1926 he published a work entitled 
"Space Flight1' ["Die Fahr t  ins  Weltall"], and he has  a l s o  writ ten a number 
of papers  on paleontology, astronomy, and rocket flight. 

FIGURE 117. W. Ley. 
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P R O P U L S I O N  BY R E A C T I O N *  

For  any propulsion system originating in a fluid, it can be said that a 
reaction i s  produced. The reaction causing the motion (the recoil) can be 
obtained either by means of a mechanical engine operating in this fluid 
medium or  else by ejecting backward a certain momentum from the moving 
system. 

An example of the f i rs t  technique i s  the classical motor-propeller, and an 
example of the second i s  the common rocket. Both of these devices a r e  
thus, in a certain sense, reaction engines. However, according to generally 
accepted terminology, the name "reaction engine" i s  applied predominantly 
to exhaust engines (or to engines ejecting a s t ream of fluid into the 
surrounding medium). The most well-known examples of such devices a r e  
the rockets used in fireworks displays and the hydraulic tourniquet. 

In this report I intend to discuss only engines of this type. It should be 
noted that a report has already been presented here on this same subject, 
and that it was followed by a very interesting discussion. I would like now 
to consider one extremely important point which was brought up during 
this discussion. 

Although the rocket was invented very long ago, still it has always greatly 
excited the imagination of inventors. Rockets have been considered not 
only with respect to interplanetary travel, for  which they represent the only 
possible means of locomotion, but also for  flights in air ,  and recent experi- 
ments have indicated the feasibility of this. According to  designs proposed by 
inventors, a rocket engine can be constructed either a s  an ordinary explosive 
rocket o r  i t  can operate on a liquid fuel, causing expulsion of the exhaust 
gases from the rocket. 
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In the latter case the a i r  required for combustion is  taken from the 

surrounding atmosphere by the rocket. More or  less  considerable extra 
supplies of a i r  may sometimes be added to this amount. 

However, if the reaction experienced by the rocket i s  not applied directly 
to set  some system in motion, but instead the rocket is  mounted on the end 
of a rotating rod in such a way that a peripheral reaction i s  obtained, then an 
actual gas tourniquet i s  produced. The latter is  a device which can be used 
to operate any mechanical engine. This principle, a favorite principle of 
many gas-turbine inventors, i s  also encountered in the  device known a s  the 

* Maurice Roy, a mining engineer, is a professor a t  the National School of Transportation (Paris). This report 
was presented to the French Aeronautical Society a t  its meeting on 29 Jan.1930. The translation was taken 
from "La Technique Aironautique" for 15 Jan.1930. 



reaction propeller, which has been developed by some inventors. In this 
device the propeller is actuated by the exhausts of several  rockets mounted 
at the ends of the blades and oriented in appropriate directions. 

There i s  a great similarity between all  these engine systems, regardless 
of how different they might seem at f i rs t  glance. The classical motor- 
propeller system can also be included in this category. Actually, all  these 
engines a r e  based on the combustion of an explosive substance o r  explosive 
mixture. The result of this combustion may be the ejection of a s t ream of 
gas through a fixed o r  adjustable aperture, the direct reaction to which may 
provide a useful propulsive effect, or, if desired, it may be a mechanical 
effect on a shaft, so  a s  to turn a propeller and provide propulsion. 

These systems can be compared, once we have established some basis for 
comparison. Let us consider here just the efficiencies of the engines. 
However, we must s t a r t  by giving a precise definition of this efficiency and 
formulating an expression for i t .  

Exhaust 
t- 

t' 

FIGURE 118. 

A general diagram of the systems considered by us i s  presented in 
Figgre 118. Air from the surrounding atmosphere enters the apparatus 
through fixed axial aperture A, which points forward. Supplies of fuel a r e  
carried along on board. As they progress through the apparatus, the a i r  and 
fuel undergo certain physical and chemical transformations, the main ones 
being compression, combustion, and explosion. These thermodynamic 
transfarmations occur partly in the heat engine (motor) M and partly in the 
rotary device or  turbine T. 

Turbine T i s  connected to motor M and can, a s  needed, be actuated by the 
latter,  or, conversely, cause it to operate (in the latter case motor M actually 
functions a s  a receiver).  Turbine T ejects gas into the atmosphere through 
apertures directed backward, perpendicular to the absolute trajectory, which 
Is helical. Turbine T actuates propeller H; it may even be combined with 
the latter,  a s  in the device shown in Figure 11 8. 
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Obviously, this general diagram covers various particular applications, 

such a s  all the systems considered above and the classical motor-propeller 
system. In order  to obtain the latter,  it i s  necessary just to  reduce the role  
of turbine T to that qf a simple transmission mechanism, which t ransfers  
the motion from motor M to the propeller. Then this part of the apparatus 
will be stopped automatically by the motor gear box and, since the ejection 
of gases i s  from a fixed aperture, the aircraft motor will once again assume 
i ts  normal configuration. 

In order  to obtain a rocket engine, we need only make turbine T stationary 
and completely eliminate propeller H. Then the work done by motor M will 
not be transmitted outward, and the ejection of gases will take place, a s  
follows logically, after the gases have left the motor, in the r e a r  part of the 
assembly, a s  is  the case in an ordinary rocket. 

In order to obtain an explosive [solid-fuel] rocket which does not take in 
a i r  f rom the surroundings, it is  sufficient just to eliminate aperture A. A 
pure reaction propeller can be obtained merely by eliminating motor M. 
Then the compression will occur in the hollow (reamed out) blades of the 
propeller, and the combustion will take place in a combustion chamber 
located at the top of the blade and the gas-intake tube of the rocket, the direct 
reaction of which actuates the propeller. 

In addition, it i s  evident that the foregoing plan makes it possible to 
construct many other types of engines, representing a whole succession of 
combinations of the given elements, a succession whose extreme cases have 
just been considered by us a s  particular examples. 

How shall we define the overall efficiency of each of these systems of 
traction engines ? Fi r s t  of all, let us define, somewhat arbitrarily but a s  
logically a s  possible, the useful effect of the traction forces, and secondly 
let us  determine the fuel consumption for which this useful action i s  
accomplished. 

If the motion of an assembly being towed [through the a i r ]  i s  carried 
out in an ideal manner, considering the simplified case in which no traction 
engine i s  necessary, the aerodynamic resistance [drag] will be equal to 
some value R and the power required to propel the object at a velocity Y 
will be equal to RV. 

When a traction engine operates, the pulling force produced by it at a 
velocity V counteracts the actual drag of the towed assembly, while the 
presence of the traction engine and i ts  work affects the lat ter .  If this actual 
pulling force is R', then we have 

Coefficient r ,  which is usually a small, positive quantity, indicates, for the 
regime being considered by us, the overall effect of the traction engine on 

328 the resistance which i s  to be overcome. 
The power of the motion produced will be R' V, but let us take the quantity 

RV to  be a measure of the useful power, independently of which system we 
choose for the traction engine. In order to produce a useful power R' V, the 
traction engine must consume m kg/sec of fuel, the calorific power of which 
is  L.* 
* Here the units are assumed to be so chosen that they are consistent with one another and, in particular, that 

quantities of heat or work are expressed in the same units. The kilogram is used as the unit of mass. 



The net efficiency of the engine will be 

This ratio can be separated into two parts,  in order to  show more  clearly 
the role  of the thermodynamic transformation undergone by the a i r  and the 
fuel. 

This transformation i s  generally characterized by the so-called thermal 
efficiency of the process. The latter quantity can be defined a s  the ratio 
between two quantities: 1) the effective (useful) work which would result 
from the same transformation if it were to take place for  the same heat 
exchange with the surroundings and for the same passive resistance in a 
conventional stationary engine, and 2) the calorific power. 

In view of this, le t  us  define the net efficiency of the traction engine a s  the 
product of i ts  thermal efficiency and the quantity which we have called the 
efficiency of the engine. Thus we have 

or ,  according to our definition, 

R'v 
7)P= ~TL* 

Next let us consider the overall efficiency. This will be equal to  the 
ratio between the useful action, measured conventionally in t e rms  of the 
quantity RV=R' V(l-6), and the fuel consumption required for this useful 
action. 

The most common measure of the consumption i s  the calorific power 
(mL) of the weight of consumed fuel. I will retain this arbi t rary criterion, 
but at the same time I will indicate below that it leads us to a conclusion 

329  which, at f i rs t  glance, seems to be paradoxical. 
We can now write 

This formula, which i s  a consequence of the definitions made by us, has 
the theoretical advantage that it sets  off clearly the following three factors, 
which a r e  each of completely different character: 

1. The effect(e)of the traction engine on the resistance being overcome. 
2. . The nature(qth)of the thermodynamic transformation undergone by the 

active substances (air  and fuel) a s  they pass through the apparatus. 
3 .  The efficiency 3 of the engine. 
Now let us consider how we can calculate the overall  efficiency of one of 

the assemblies described by the general plan in Figure 118. 
The pulling force R' can be found by applying the theorems for the 

momentum components in the direction of t ransfer  V to the assembly and to 
the substances (air and fuel) in it, during the course of some period of i ts  
motion (operation), which i s  assumed to  be periodic. Here the following 



quantities must be taken into account: the resistance of a stationary ship 
body [airframe], the pressure  o r  thrust of the propeller blades, the resistance 
of the rocket casings, and, finally, the impulse of the pressures exerted upon 
the intake and exhaust apertures, together with the momentum lost ahead of 
the motor and recovered behind it. 

With the aid of certain considerations which a r e  quite complex but easy 
to follow, it i s  not difficult to  show that, in general, the drag on the rocket 
casings (hollow objects with openings in them) can be neglected, and that the 
resistance of the rocket bodies themselves, which to some degree include 
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the propeller. 

On the other hand, application of the law of angular momenta about the 
propeller axis for the system described above gives us a second ratio, and 
from it we can find the power consumed by the resistance of the aerodynamic 
force couple of the propeller resistance. This power i s  related to the usable 
power of the pull of the above-mentioned propeller by the efficiency qm 
of this propeller, determined in the usual way, which has now become a 
universal characteristic of a i r  screws. 

The equations formulated in this way also introduce the mechanical 
power transferred by motor M to turbine T, which in theory i s  identical to 
propeller H. It i s  convenient to consider this power to be a certain fraction 
h of the effective work of the thermodynamic transformation of the active 
substances consumed. Thus the quantities h , m , r),,, and L will appear in 
the formula. 

In order  to determine the relative velocity of gas ejection, which i s  a 
very important unknown, we must find another (third) ratio from the law of 
conservation of energy. This i s  done by applying this law under the same 
conditions a s  were assumed when applying the theorems mentioned by us 
above. 

It will not be necessary to consider these calculations in detail, since 
they do not present any difficulty. Certain assumptions have to be made, 
but these a r e  not of any particular significance, so  that it will be sufficient 
just to  give the following formulas obtained a s  a result of the calculations: 

In these expressions,qch, h,  and gh have the meanings indicated by us above. 

Parameter  cu represents the ratio q, where cu i s  the weight of the a i r  

picked up by the apparatus in the time required to consume 1 kg of fuel. 
Angle Be is the angle between the final velocity (resultant velocity) of the 

rocket and its velocity of transfer.  When the rocket is mounted at the end 

of a blade, tg  Be, is  a functional parameter $ of the propeller. 

Finally, parameter q i s  defined a s  g='!$. This parameter is  of very 

great importance, a s  will be shown below. 



The equation given above can be simplified considerably i f  parameter cr 
i s  quite large in comparison with unity. This will be the case for  all 
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Then we can set cu equal to unity, giving the following relation: 

Let us use this equation to make a direct comparison of different 
assemblies characterized by the same value of q and having propellers 
with equal efficiencies. Such assemblies will differ from one another only 
by the amount h of thermodynamic work performed by the engine and trans-  

U mitted either to  the propeller o r  by means of the action of the propeller. 

For  h = 1  we have a conventional motor-propeller assembly. If h=O we 
have a pure reaction-type rocket, comprising an engine. Figures 1 1 9  and 
120 show some curves for the variations of h,r),*, ( 1 - h ) q l ,  and finally rlp, as  

U h varies from 0 to 1 for different values of .C" with 9=M, the latter value 

being taken a s  a starting point for the analysis. 

FIGURE 119. 

* [This result is not consistent with the previous equation, apparently due t o a  proofreading mistake (Trans.).] 
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This value i s  obtained when 

These conditions correspond to an aircraft motor of very high quality and a 
high-speed airplane. 

FIGURE 120. 

A study of the curves for r)p i s  particularly instructive. The following 
becomes clear from these curves: if, a s  in the case considered by us, g 
and ga a r e  assumed to be constant, then it will be best if h i s  a s  far  from 
zero, and a s  close to unity, a s  possible. 

A number of other examples could be quoted here to  demonstrate that, 
for all  the values of q which a r e  of interest in aviation and which a r e  
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This leads us to conclude that the pure reaction-type propeller is 

completely unsuitable, in comparison with the classical motor-propeller 
assembly, for the conditions assumed by us, namely for 

to be constant, and for equal thermal efficiencies. 



In order to avoid such an unfavorable result, i t  must be possible to 
operate with a reaction propeller, with very low values of q, o r  with more 
suitable values of the thermal efficiency r ) , ~  (the quantity qg will increase 
with v , ~ ,  in spite of the fact that q, which also increases, thereby reduces 5). 

Moreover, it is quite evident that a pure reaction engine will not satisfy 
s imilar  conditions. Actually, such a propeller may provide a compression 
which i s  much lower than that of a conventional aircraft motor. On the 
other hand, such a propeller cannot operate with a highly diluted fuel mixture, 
since the compression channels inside the propeller blades a r e  very narrow. 

I should mention in passing that, in all  probability, it would be possible to 
obtain an overall efficiency which i s  a little higher, in comparison with the 
classical motor-propzller assembly, i f  a propeller with a partial reaction 
were used. The same result could certainly be achieved if it were possible 
to ra i se  the thermal efficiency of the entire assembly a s  a whole, without 
at the same time reducing the efficiency of the engine itself too much. To 
do this, it would be necessary to expel the exhaust gases of the motor through 
tubes located at the top of the propeller blades, or,  in other words, to use 
the propeller itself a s  a device for ejecting the exhaust gases. The pos- 
sibility of constructing such a device at some time should by no means be 
ruled out, and this alternative might well serve a s  a starting point for some 
very interesting studies (at least f rom the theoretical point of view). 

Now let us  consider another case, one which i s  much more tempting to 
inventors, namely the direct-reaction engine, o r  actual rocket. Before 
considering the liquid-fuel rocket, let us take a look a t  the explosive rocket. 
For  the latter,  the formulas given previously a r e  simplified considerably, 
since h=O and a=O. Thus we have 
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These formulas can be derived directly, on the basis of the following 
considerations. The usable part mqm .L of the fuel energy is  converted 

into the relative kinetic energy m$. The exhaust reaction has a value mw, 

while the power generated by this reaction, (that is,  the useful power) will be, 
if we neglect the internal work of the engine ( E = O ) ,  

This gives an overall efficiency 

2 v Thus we find that ql=;. and, since we=2qthL, therefore 



and 

The efficiencies given by these formulas increase to infinity along with V. 
However, if the concept of the efficiency i s  to have meaning, it cannot exceed 
unity. This paradox, though, is only an apparent one, and i t  is easily 
explained. We arrived at it, as  I pointed out at the beginning of this paper, 
only because we took the calorific power mL to be a measure of the power 
consumption during the motion, a fact which sometimes i s  not accorded 
enough attention. The quantity mL, of course, only represe'nts a portion of 
this consumption. Actually, the absolute energy theoretically available in 

a unit mass  of fuel (taking this unit mass to  be 1 kg) will be L+: (the 

calorific power plus the absolute kinetic energy), rather  than just L. If we 
keep this in mind while calculating the denominator of the overall efficiency, 
then the expression obtained for the latter will be somewhat different, namely 
(assuming once again, for simplicity, that e=O) 
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For  a m = h q n L w e  obtain, eliminating W ,  

In this form, q, no longer goes to infinity with V. 
If we assume that qth is  constant, then qg will reach a maximum value of 

& for v=\/27i;;Z, that is ,  a value which will always be less  than unity. 
But how can the values of the overall efficiency q, be calculated? The 

formulas given above make it possible to find these easily, simply by 
calculating qth and L. 

The thermal efficiency of an explosive [solid-fuel] rocket i s  a function 
of the pressure  caused by the combustion and also of the quality of the 
construction of the explosion tubes. Calculations indicate that, even for 
the most favorable conditions with respect to  the resistance (behavior) of 
the walls of the combustion chamber and the tubes, this efficiency can hardly 
be more than 45 to 50%. 

The value of L will be much lower using explosives, in comparison with 
the values for any of the liquid fuels available at present, since 1 kg of 
explosive material contains, in addition to  the fuel substance itself-(atoms of 
CH. . .), an oxidizer (4). Thus 

for oil, L = 10,000 to  11,000 km/kg; 
for black powder, L = 650 krn/kg; 
for  a colloidal powder or  B powder, L =1,200 km/ kg. 

* [This result does not follow from the previous expression (Translator).] 



The values of the overall efficiency of B powder under various conditions 
a r e  given below. 

V = 40 m/sec (144 kmhr)  . . . . . . . . . . . . . .  
V = 120 m/sec (432 kmhr). . . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  V =  200 m/sec (720 kmhr)  

However, in practice, for velocities of 700 km/hr, overall efficiencies of 
even 8 yo cannot be counted upon, whereas motors and propellers used at 
present frequently have overall efficiencies of 15 to 22y0. 

It is  easy to  calculate the initial velocity of transfer at which a rocket 
becomes more  efficient than an ordinary motor-propeller assembly. This 
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powder or colloidal powder i s  used. 

In addition to its low thrust efficiency, a solid-fuel rocket has another 
disadvantage which affects i ts  velocity. This i s  the high propellant weight, 
which i s  a function of the low efficiency just referred t o  and also of the low 
calorific power. Because of these very serious shortcomings, the solid- 
fuel rocket cannot be of any interest to us a s  a device for pulling aircraft.  
It can be used for such purposes only at speeds of 1,000 to 1,500 km/hr o r  
above. 

At this point it should be mentioned that rocket-engine studies bring out 
a number of problems in interior ballistics which a r e  extremely interesting 
from the technical point of view. These problems were worked out during 
the past War by certain French scientists. Foremost among the names of 
these scientists i s  that of a famous former president of our Society, 
Auguste Rateau. 

Since the solid-fuel rocket cannot at present be used for flights in the air ,  
let  us go on to consider rockets operating on liquid fuel. Such rockets may 
be thought of a s  internal-combustion engines with greatly curtailed 
explosions, s o  a s  to ensure that the work of the gases in the motor exactly 
compensates the work performed in the preliminary compression of the 
carburated mixture o r  a i r  required for combustion. The efflux of the gases 
at high pressure i s  regulated by appropriate tubes, which convert this efflux 
into a t rue exhaust, the direct reaction to which produces thrust. 

The general equations given above by us a r e  also applicable to this case. 
We need only se t  h=O and tg  /7=0, and then, provided there i s  a high enough 
surplus of a i r  in the fuel mixture, CY can be equated to unity. In this way 
we obtain the following very simple formulas: 

Efficiency continually increases, approaching unity a s  q decreases and 
goes to zero. This efficiency i s  a function just of parameter g=""L. 

a V' 



Now let us return to  the expression for q g ,  into which the thermal efficiency 
qth enters twice. It turns out that, in order  to ra i se  q,, we must increase qtr ,  
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As always, a dire,ct-reaction engine becomes of greater  interest, the 

higher the thrust velocity obtained. The increase in the quantity cu i s  of 
great significance, this quantity being the weight of a i r  required by the 
engine for 1 kg of fuel. This subject, which is directly related to the 
improvement of rockets with the aid of ejectors (trompes), was dealt with 
during the scientific discussion which I mentioned above. 

In addition, it i s  easy to show that an increase in the fuel flow ra t e  
(throughput) of an engine constitutes a definite advantage. In the calculation 
of this flow rate, or fuel consumption, the ratio between the mass of fuel 
and the mass of a i r  will not be taken into account. Here our hypothesis 
that a = l  i s  perfectly valid, provided the dilution is sufficient. 

Let us assume that the states of the liquids and their flow rates  a r e  the 
same at the intake and the exhaust of the engine. The thrust (if we do not 
take coefficient E into account) will be equal to the increase in momentum 
relative to the mass  ( m a )  of liquid, that is,  a s  the latter passes through the 
engine, it will be ma(w- V) . The useful power will then be [ma(w- V) V] . 

The power consumed will be mL. The variation of the relative kinetic 

energy maa+ of the liquid leaving the engine depends on the usable 

portion(mrl,k L)of the consumed power: 

Thus the overall efficiency will be given directly (e being omitted) by the 
ratio 

If qth is assumed to be constant, then in order to increase qg we must 
decrease plr and thus, according t o  equation ( I ) ,  increase cu. In other words, 
a high consumption of liquid at a low velocity i s  more  favorable than low 
consumption at a high velocity. At the limit, for infinite cu, we would have 

qt=a, and T ~ = T ~ ~  , which also determines the upper limit of the 
efficiency. 

For  this conclusion to be valid, the quantity qth must not vary when the 
fuel consumption is  increased. In relation to this, the theory of ejectors has 
not yet been worked out sufficiently to  be considered completely reliable. 
However, since the t ime allotted for this report is  limited, I cannot s tate  here  
all  the reasons leading me  to believe that it will not be possible to increase 
the consumption of liquid by means of a more  or  less  suitable mounting of 
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thermal efficiency of the overall transformation of the active substances 
(that is ,  the a i r  for combustion and the a i r  for ignition captured by the 
ejectors). 

However, it must not be concluded that ejectors a r e  thus of no interest 
whatsoever to us. It i s  enough that the reduction of the effect of qth brought 



about by them is  less  significant than the main advantage of using ejectors, 
namely that they enable a higher consumption. Moreover, this subject has 
not yet been studied with the aid of systematic experiments. The formulas 
given above a r e  clearly similar to the classical approximation formulas 
providing a general expression for the efficiency of a propeller. In fact, it 
is not difficult to show than these formulas a r e  identical. 

Turbine Compressor 

Propeller engine 

FIGURE 121. 

Actually, if we consider a propeller to be an engine operating only in a 
bounded medium, and i f  we neglect the rotational energy of this medium, 
the efficiency of the propeller, a s  a function of the recoil velocity V, will be 

and the overall efficiency of a motor-propeller assembly will be 

In order  for the,efficiency of an ejector (trompe) rocket to be the same 
a s  that of a motor-propeller assembly, it is  clear that the thermal 
efficiencies and the sums V+v=w must be the same for both of these, 
that is ,  the relative a i r  consumptions of the two devices must be equal. 

Figure 121 shows an ejector (trompe) rocket with an efficiency equal to 
that of a motor-propeller assembly. It i s  c lear  from the figure that in this 
case, when it can hardly be assumed that an ejector (trompe) system has 
the same high thermal efficiency a s  a high-quality motor, the ejector (trompe) 
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small  size. 

However, there is no reason to conclude that direct-reaction engines a r e  
in general devoid of interest. They might prove to be applicable in certain 
instances which a r e  a s  yet unforeseen, such as  for towing special-purpose 
mines o r  aircraft at very  high velocities (of the order  of 1,000 krn/hr). 
Accordingly, the experimental study of these engines is  quite justified, the 
more  s o  since it is  very probable that the rapidity of motion of a propeller 
would be curtailed a t  such high speeds, approaching the velocity of sound in 
a i r ,  due to the considerable reduction of the propeller efficiency. 

Now, to conclude this somewhat sketchy report, let m e  summarize the. 
conclusions which I have arrived at, conclusions that, in all  probability, 



will not be surprising to my audience. These conclusions consist simply in 
the following: the best type of engine for an aircraft is  a combination of a 
thermal motor (internal-combustion motor) and an a i r  screw, that is,  the 
very type which haspbeen used since the inception of aviation and which made 
possible the f i rs t  flights. Reaction engines can compete with these only for 
flights a t  very high speeds, which a r e  at present either unattainable or  
unfeasible in practice. 

Accordingly, may those who a r e  working to perfect the thermal motor 
(internal-combustion engine) and the a i r  screw be encouraged by this 
statement, and may they continue along that same path of endeavor which 
has led mankind to such brilliant successes in the field of aviation. They 
can res t  assured that the prospects for the further development of these 
engines remain the same, and that they a r e  not yet threatened by any serious 
competition. 



341 Y U .  V. K O N D R A T Y U K  

In 1929 a book by Yu. Kondratyltk entitled "The Conquest of Interplanetary 
Space" ["Zavoevanie mezhplanetnykh prostranstv"] was published in 
Novosibirsk. The book was edited by Prof .  V. P.Vetchinkin and published 
by the author. 

Referring those who a r e  interested to  the book itself, we present here 
just i ts table of contents: 

1. Rocket Data; Basic Characteristics. 
2. Formula for Load. 
3 .  Exhaust Velocity. Chemicals. 
4 .  Combustion Process;  Construction of Combustion Chamber and 

Exhaust Pipe. 
5. Proportional Dead Weights. 
6 .  Types of Trajectories and Required Rocket Velocities. 
7 .  Maximum Acceleration. 
8.  Effect of Atmosphere on Rocket at Launching. 
9. Reductionto Zero of Velocity of Return by AtmosphericResistance. 

10. Interplanetary Station and Rocket- Artillery Facility. 
11. Rocket Guidance; Measuring and Control Equipment. 
12. Overall Prospects.  
13 .  Experiments and Research. 

All the techniques used by the author for presentation, notation, and b 
calculation a r e  quite original. The following ideas and conclusions in this 
work a r e  novel: 

1. The suggestion i s  made to burn various substances (lithium, boron, 
aluminum, silicon, magnesium) in ozone rather than in oxygen, s o  a s  to 
increase the heat of combustion. In particular, Kondratyuk suggests burning 
oil in methane, silicon hydride, boron hydride, acetylene, o r  hydrogen. 

2. The heating of the rocket nose i s  studied, taking into account both 
the adiabatic compression of the a i r  and the radiation of the rocket surface 
and the heated a i r  itself. 

At our request, Yu. Kondratyuk has sent his picture and some brief 
biographical information, which we present below. 



342 DEAR NIKOLAI ALEKSEEVICH ! 

On the assumption that the strictly personal aspects of my life a r e  not 
what interest you, let me  t ry  to give a fairly full account of just those things 
which a r e  related to  my  studies of the theory of interplanetary travel. 

My mind was f i rs t  oriented toward thoughts of conquering outer space, 
o r  rather  toward grandiose and extraordinary projects in general, by some- 
thing which impressed me  greatly when I read it in my youth: Kellermannls 
gifted industrial poem [novel] "The Tunnel." 

At that t ime my scientific and technical baggage consisted of the following: 
an uncompleted secondary education plus some rather  unsystematic additions 
made independently in the fields of higher mathematics, physics, and the 
general theoretical fundamentals of technology, with a tendency toward the 
development of inventions and toward independent research, more than toward 
a detailed study of what had already been found and discovered. 

My "inventions" include: a water turbine of the Pelton-wheel type, using 
hydraulic devices considered by me  to be unique, instead of millwheels; an 
automobile with t reads for t ravel  on soft, sandy ground; springless 
centrifugal springs; pneumatic springs; an automobile for travel on rough 
terrain;  a vacuum pump of special construction; a barometer; a long- 
running clock; a high-power ac electric machine; a mercury-vapor turbine; 
and many other things, some of which a r e  technologically quite impractical, 
some of which were already known, and some of which a r e  new and deserve 
further development and realization. 

In mathematics, I have made detailed studies of the axioms of geom- 
etry (especially the postulate of parallels), and I have "discovered" the 
basic formulas of thetheory of finite differences, a s  well a s  some undeveloped 
further generalizations of this theory and analysis, together with many less  
significant things which a r e  almost synonymous with previously made 
discoveries. 

In chemistry and engineering, I have offered some basic elementary ideas. 
In physics, I have consistently tried to  disprove the second law of thermo- 
dynamics (it is signific_ant that I have this in common with K. E. Tsiolkovskii) 
and even in philosophy I have made attempts to construct logical systems, 
finished, along with 99 yo of my interest in philosophy, by the "discovery" of 

343 the difficult t o  perceive principle of determinism. 
T h e  impression made on me by Kellermannls novel, "The Tunnel," was 

such that, immediately after reading it ,  I took it upon myself to work out, 
almost simultaneously, a s  far  a s  my powers enabled me, two themes: 
1) the digging of a deep shaft in order  to  study the interior of the earth and 
utilize the heat of the earth's core, and 2) travel away from the earth. 
Curiously enough, the science-fantasy novels by Jules Verne and H. G. Wells, 
which I had read earl ier  and which dealt with this very subject of inter- 



planetary travel, had not made any special impression on me. This was 
apparently because these novels were written with less  talent and with less  
clarity than the novel of Kellermann, and also because for me  they were 
clearly unreliable f r o m  a scientific point of view. 

The idea of digging a deep shaft very soon ran up against the obstacle of 
the impossibility of my carrying out the corresponding experimental work, 

once the fundamentals of certain 
preliminary alternatives had been worked 
but. The ;ubject of interplanetary flight, 
on the other hand, turned out to be more 
satisfactory, admitting of significant 
theoretical studies, and it occupied me 
for a long time, during the course of 
which I returned to it repeatedly, until 
I reached a point beyond which further 
productive work was impossible without 
the corresponding experimentation. 

The first  period of the study took 
over half a year, and it consisted in 
finding out almost al l  the fundamental 
things about rocket flight which had been 
published, but without a more detailed 
development and oftkn without exact 
mathematical arguments. At that t ime 
Chapter V and VIII of the subsequently 
published work were not even projected, 
while Chapters IV and IX were just 
worked out in principle; due to my 

FIGURE 122. Yu. Kondratyuk. meager knowledge of chemistry, in 
Chapter VII only an oxygen-hydrogen 
propellant had been considered. 

T h e  basic subject matter  of the work of that period comprised: deriva- 
tion of the fundamental rocket formula (formula (4)), finding the optimum 
trajectory (Chapter VI), and certain general conclusions from othertchapters. 

Having decided upon the subject of flight in interplanetary space, I turned 
immediately to  the rocket method, where "rocket" i s  used in the general 
sense of the word, accordilng to the definition given by me in Chapter I. 

344 Here the ar t i l lery rocket is rejected a s  clearly being too bulky and, what i s  
the main thing, not being capable of a return to the earth, s o  that its use 
would be senseless. Before deriving the fundamental formula, I made 
approximate calculations for several  mechanical alternatives. The most 
recent and best of these was a rapidly turning cylinder, with a steel cable 
wound around it. The cable would be unwound by inertia on one side, 
imparting to  the cylinder an opposite acceleration. Having obtained, 
naturally, an improbably tremendous value for the required weight of the 
rocket ("n"), I proceeded to combinations of rocket-artillery alternatives: 
a cannon firing a projectile which in turn becomes a cannon firing a 
projectile, etc. However, once again I obtained a tremendous s ize for the 
f i rs t  cannon. 

Next I turned the muzzle of the second cannon (that is,  the first  projectile) 
backward, making it a permanent part of the rocket. I then had it f i re  smaller  
projectiles in a backward direction, that is ,  I increased the active mass  of 



the charge at the expense of the dead weights. However, I again obtained 
a tremendous value for the mass of the rocket cannon. It turned out, though, 
that the more I increased the mass  of the active part of the charge at the 
expense of the dead weights (projectiles), the more  satisfactory were the 
formulas for the mass of this rocket. 

From there it was not difficult to pass logically to a pure thermochemical 
rocket, which may be considered to be a cannon continually firing blank 
charges. After this, the fundamental rocket formula (4) was derived, but, 
because of the simplifying assumptions made by me during the initial 
calculations, which were subsequently forgotten and overlooked, for some 
time "2" rather  than "1" was used a s  the basis for this formula. Thus the 
results obtained were extremely encouraging, due to this e r ro r .  

However, shortly thereafter, I also determined the principles of optimum 
utilization of the rocket reaction: imparting the acceleration at the lowest 
point of the trajectory. After correcting the e r r o r  lying at the basis of 
formula (4), I obtained a less  favorable value for " n "  (the ratio of the rocket 
mass to the useful load). This value was "n" = 55, without taking into 
account the unavoidable losses in efficiency and the presence of proportional 
dead weights. 

This value of 55 was already quite alarming, but the subject in question 
was s o  fascinating that, deceiving myself somewhat, I assumed this figure 
to be acceptable until, ultimately, I found antidotes to this "55" in the form 
of a physicomathematical basis for the possibility of a satisfactory descent 
to the earth due to the resistance of the atmosphere, and then in the develop- 
ment of an initial velocity by artificial means, by setting up an interplanetary 
station with a rocket-firing facility. 

Another question, vaguely troubling for  a long time, involved the very high 
force of reaction required for the f i rs t  pure rocket version of the launching. 
This force was no less  than twice the force of gravity. Later I stopped 
worrying about this, after finding out that aircraft wings could be utilized 
with advantage during the ascent, thereby reducing the minimum acceptable 
reaction force severalfold. 

Finally, my last serious worry was the meteor hazard. Only a few days 
ago, after receiving from Ya. I. Perelfman his book entitled "Interplanetary 
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this subject mathematically have arrived at favorable results.  

By 1917 I had achieved the f i rs t  positive results in my work. At that 
t ime I had no idea that I was not the f i rs t  and only investigator in this field. 
Therefore, for a certain period I "rested on my laurels," awaiting an 
opportunity to begin experiments, which would lead to a realization of the . . 

inventions: At that t ime the work was conducted in s tr ictest  secrecy, since, 
taking consequences of man's  emergence into interplanetary space, I naively 
assumed then that it was sufficient to publish the basic principles, and that 
someone possessing the means would immediately implement the f i rs t  
interplanetary flight. 

In 1918, in a back number of "Niva," I accidentally came across a note 
about Tsiolkovskiils rocket. However, for a long time I was unable to obtain 
the issue of "Vestnik Vozdukhoplavaniya" referred to in this note. 

This reference, together with those which I subsequently encountered in the 
periodical l i terature with regard to foreign studies, provided an incentive for 
a further more accurate and detailed development of the theory of flight, s o  
a s  to pass from general physical principles to a consideration of the technical 
possibility of actual applications. 



Going back to  the  work s e v e r a l  t imes ,  af ter  breaks  during which I was 
a tutor,  a woodchopper, and a mechanic, I succeeded in 1925 t o  br ing i t  t o  
a lmost  i t s  present  fo rm.  All the  chapters  w e r e  provided with a m o r e  solid 
mathemat ical  bas is ,  a quite comprehensive selection of chemicals was  made,  
Chapter VIII (on the  a tmospher ic  r e s i s t ance  a t  launching) was  developed, the  
possibil i ty of a safe  gliding descent was  verified by calculations, and s o m e  
other,  l e s s  important, additions w e r e  made. 

In 1925, whenthe workwas a l ready  approaching completion, and when1 had 
finally succeeded in getting t h e  "Vestnik Vozdukhoplavaniya" for  1911 with 
pa r t  of Ts io lkovsk i i~s  work in  it, although I was  somewhat disappointed to  
l e a r n  that  the  basic conclusions drawn by m e  had been anticipated, s t i l l  I 
was  pleased t o  find that  not only did m y  study repeat  the  e a r l i e r  one, albeit 
using different methods,  but a l so  that  i t  made  s o m e  new, important con- 
tr ibutions t o  the  theory of flight. 

The  main difference between the  techniques used in  m y  calculations and 
those  of Tsiolkovskii  is that  in  v e r y  many c a s e s  Tsiolkovskii s t a r t s  f r o m  the  
work, while I everywhere s t a r t  f r o m  the  velocit ies and accelera t ions .  Since 
t h e  work done by the  fo rces  in a rocket problem depends on many conditions 
and i n  addition can have v e r y  different effects, whereas  the  accelera t ions ,  
and thus the  velocit ies a s  well, a r e  much m o r e  definite, I consider  t h e  
velocity method t o  be  e a s i e r  and m o r e  productive. 

In 1925 I received a review [of the  unpublished book] f r o m  Prof .  
V. P. Vetchinkin which su rp r i sed  m e  great ly  by i t s  high opinion of m y  work, 
s ince  previous t o  th i s  I had tradit ionally not been inclined to  expect anything 
good f r o m  "professors ."  Thus f r o m  day to  day I awaited the  publication of 
m y  book. However, the  typical, benign procras t inat ion of Glavnauka:* and 
Gizs* ensued: consideration,  reconsideration,  appropriation of funds, 

346 withdrawal of these  funds, until two and a half y e a r s  had gone by. 
Fortunately,  by th is  t i m e  I had advanced f r o m  being a mechanic t o  being a n  
instrument m a k e r  and designer,  s o  that i t  became possible t o  acquire  the  
wherewithal1 t o  publish t h e  book myself in  Novosibirsk, o therwise  i t  is hard 
t o  t e l l  when m y  work would have appeared.  Glavnauka not only withdrew 
the  s m a l l  amount of money appropriated by it e a r l i e r  f o r  publication, but it 
even ceased i t s  organizational aid (leaving m e  t o  publish a t  m y  own expense 
a t  s o m e  p r in te r  sui table  for  scientif ic publications). I did not wish to  have 
t h e  work printed in a journal, s ince  I did not s e e  any possibil i ty of shortening 
it and I did not s e e  how t h e  whole work could b e  published in  a journal. 

In 1927, on the  suggestion of V. P. Vetchinkin, I modified the  s y s t e m  of 
notation and, in par t ,  t h e  terminology, s o  a s  to  make  it m o r e  conventional 
and intelligible. At the  s a m e  t i m e  I inser ted the  derivation of formula  (4),  
not included by m e  e a r l i e r ,  and I corrected an  e r r o r  in  formula  ( 6 ) ,  fo r  the  
effect of t h e  m a s s  of t h e  proportional dead weights. P ro f .  Vetchinkin drew 
m y  attention t o  the  g rea t  importance of working out the  design of t h e  
"burner" (the exhaust pipe), a s  a r e su l t  of which I wrote  and inser ted 
Chapter IV. 

F u r t h e r  fruitful  r e s e a r c h  on interplanetary flight by purely  theoret ica l  
methods is obviously impossible,  f o r  m e  a t  any ra te .  Exper imental  studies 
mus t  now be made. I expect t o  get  the  t i m e  and money f o r  these  f r o m  
inventions in  var ious  fields,  in  par t icular  f rom m y  type of work a t  present  

* Glavnoe upravlenie nauchnymi muzeinymi i nauchno-khudozhestvennymi uchrezhdeniyami (The Central 

Scientific Board). 
* * Gosudarstvennoe knigoizdatel'stvo (The State Publishing House). 



in the field of elevator design. So far  I have had some initial successes, in 
view of the recent acceptance of my new type of elevator bucket and bucket 
conveyors, which have already found themselves a place, in competition with 
a type that has remained unchanged for  a long time. 

Incidentally, I arn sending on to you a curious, classic review by a certain 
scientist, indicating that some diehards a r e  stil l  around who will, with dogged 
persistence, find fault with the idea of interplanetary travel, o r  any new idea 
for that matter, until the time when regular t r ips  into outer space will have 
been established and the cold countries will have been heated by sunlight 
redirected onto thousands of versts  of the earth. 

1 May 1 9 2 9  Respectfully yours, 
Yur. Kondratyuk 



3 4 7 ~ . ~ .  LEBEDE V 

As the idea of interplanetary travel developed, different persons proposed 
plans for propelling spacecraft by means of the pressure of light rays.  In 
order  to  obtain some idea of the magnitude of this pressure,  we present 

here  a brief account of the resul ts  of the 
experimental and theoretical works of 
P. N. Lebedev, whose studies of this 
subject a r e  now taken to  be classical. 

The Russian physicist Pe t r  Nikolaevich 
Lebedev was born in Moscow in 1866. He 
obtained his primary education at the 
Petropavlovsk school, and then at the 
Khainovskii Realschule. Upon graduation 
from the latter in 1884, he entered the 
Moscow Institute of Technology (the 
former Imperial Institute of Technology), 
where he was a student for two years .  
Interested in physics, he traveled to 
Germany, where he worked under the 
direction of some well-known scientists 
and earned a German Ph. D. for  his 
studies. 

Lebedevls first work, "On the Repulsive 
Force of Radiating Bodies," was presented 

FIGURE 123. P. Lebedev. in Germany (Strassburg) on 30 (1 8) July 
1891. Returning to Moscow, he continued 
his work in physics under the direction of 

Professor A. Stoletov. Here one of his f i rs t  projects was a study of short 
electromagnetic waves, and a determination of the conditions under which 
they cause repulsion and attraction. For  this work he received a Ph. D. in 
physics. In 1900 Lebedev became a professor of physics a t  Moscow 
University, where he continued until 1911, when he transferred to the 
A. L. Shanyavskii University. He passed away on 14 March 1912. 
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Lebedevls chief work was his study of light pressure on solids and 

gases, the latter in connection with the problem of the origin of comet 
tails.  Referring those who a r e  interested in the details of this experimental 
study to Lebedevls work entitled "The P re s su re  of Light, "* we present here 
just the main conclusions arrived at by Lebedev on the basis of his research.  

* Lebedev,P.N. Davlenie sveta (The Pressure of Light).- Klassiki Estesmoznaniya,Book 4,Gos. Izd., 
Moskva. 1922. 



349 DETERMINATION OF LIGHT PRESSURE ON SOLIDS AND GASES 

SO LIDS 

1 .  An incident light r a y  exerts pressure on reflecting, a s  well a s  
absorbing, surfaces. 

2. The light pressure  is  directly proportional to the energy of the 
incident ray and i s  independent of the color. 

3. The observed light pressures a r e  quantitatively equal to the Maxwell- 
Bartoliev pressures of radiant energy, and they a r e  given by the formula 

where P i s  the pressure force, E is the energy incident upon an absorbing 
body per  unit time, and V i s  the velocity of the ray in the medium in which 
the body is  situated. If we take LangleyTs valile of 3 g cal for the amount 
of heat (C) delivered in 1 min to an area 1 cm2 in c ross  section by a pencil 
of rays from the sun (the so-called "solar" constant), for a mechanical 
equivalent of heat B = 425 g meters ,  the energy E of a ray  incident upon 
1 cm2 in 1 sec will be 

c 3 E=aB=a:425=21 g meters .  

Assuming a velocity of light V =  3 . lo8 m /  sec, we find from formula (1) the 
pressure Po produced by a pencil of solar  rays 1 cm2 in c ross  section upon 
an absorbing body located the same distance from the sun a s  the earth: 

Note: the pressure on 1 m2 will be 3/5 of a milligram, o r ,  in absolute 
units , 

350 If we assume that: 

the earth-sun distance e =  15 1012 cm; 
the earth 's  orbital velocity y = 3. lo6  cm/sec,  

then the solar acceleration A at the distance of the earth will be 



Therefore, at a,distance e the sun at t racts  a 1 -gram mass  with a force A: 

A = 0.6 dyne. (3) 

The effect exerted by the sun on a body revolving about it consists, f i rs t  
of all, of the Newtonian attraction, and, secondly, of the repulsive forces of 
radiation. Let us assume that a spherical body at a distance g from the 
sun absorbs al l  the solar  energy incident upon it, and that it then radiates 
this energy uniformly in al l  directions. If the radius of the body i s  r cm 
and its density i s  6, then we can calculate the force ti with which it i s  
attracted by the sun and the force H with which it is repelled by it: 

From this it i s  easy to  calculate the resultant force F with which the sun 
attracts the given body, and to express it a s  a fraction of the Newtonian 
attractive force: 

Fo r  a given body this force F will be a characteristic constant which i s  
independent of the distance from the sun, since quantities P, and A both 
depend on this distance t o  the same degree. Substituting the numerical 
values of P, and A from (2)  and (3) into equation (4), we obtain 

From this expression it i s  c lear  that, for al l  bodies for which d >  1 and 
r < 1 meter,  the deviations f rom Newton's law a r e  s o  smallthat they a r e  
imperceptible, even for very careful observations. 

The smaller  we assume the radius of the body to be, the more important 
will be the repulsive force of the sun. In comet tails,  which consist mainly 

351 of gaseous hydrocarbons, we have to do with individual molecules, having 
radii r cm and densities d < l o .  Thus the repulsion of these tails will 
be many times greater than their  attraction. 

The problem of the repulsive force of the sun, which we have just 
considered, can also be solved for  the more  general case in which, instead 
of the sun, we have a body of radius R and density A which radiates an 
amount of heat Q from 1 cm2 of its a rea  in 1 sec. We can pass to  this 
general case, on the basis of the results obtained for  the sun, if we 
remember that the sun's radius 

R,= 7-lVO cm, 



i ts  density 
A,= 1.4 

and the radiation of 1 cm2 of its surface in 1 sec  

If S  i s  the ratio of the repulsive force of the radiation to  i ts  Newtonian 
attractive force, it i s  c lear  that Swi l l  be directly proportional to Q, and 
inversely proportional to both A and R.** 

Fo r  the sun, this quantity So i s  given by formula (5) a s  

For  any other body we have 

or ,  replacing So, A,, Q,, and R, by their previously given values, we obtain 

The resultant K  of the attractive and repulsive forces for this body will 
then be 

K = ~ - S = I - - S Q . ~ O ~  
r .6 .R.A (8) 
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For  a black body at O°C, Christiansen found that in 1 sec  1 cm2 of its 

surface radiates an amount Q', equal to 

Q'= (1.21 . (273" = 0.0037 g cal. 

Consequently, the force K' with which a spherical perfect black body 
in outer space, with a radius R cm, a density A, and a temperature of 0" C, 
will attract another spherical perfect black body with a radius r cm and a 
density 6 will be approximately 

indicating that two spherical bodies with temperatures of about O°C, 
densities d=d=10, and radii R=r= iomm will neither attract nor repel 
each other. Dust particles, on the other hand, which have radii not 

* If we assume that a t  the distance of the earth from the sun p = 15 ' lo1' cm, 3 g cal are incident upon 1 cmZ 
per min, or 0.05g cal per sec, then 1 cmz of the sun's surface, a t  a distance &,= 7 .10 '~cm from the center, 
will radiate 

Q,, =MS (&)l = t ~ g  cal/sec. 

**  Since the attractive force of the mass is proportional to Re, and the repulsive force of the radiation is 

proportional to Re. 



exceeding one thcusandth of a mm, will be repelled at 0°C in outer space 
by a force of arl order about a million times greater  than the order of the 
force of Nec~conian attraction. 

GASES 

Lebedev arrived a t  the following conclusions a s  a result  of his experi- 
ments with gases: 

1. The existence of a light pressure on gases has been established 
experimentally. 

2 .  The magnitudes of this pressure  a r e  directly proportional to the 
energy of the light beam and the absorption coefficient of the gas. 

3 .  Within the limits of e r r o r  of the observations and calculations, the 
relation given by Fitzgerald agrees quantitatively with the observations. 

Therefore, the force P with which light presses on a gas layer i s  

where cu i s  the absorption coefficient of the gas layer for radiant energy, 
E is the amount of this energy incident upon the gas layer in 1 sec, and V i s  
the velocity of propagation of light. 

The table shows the values of pressure P obtained with formula ( 6 )  
for various gases, expressed in millionths of a dyne per  cm2. 

G a s  

0.5 methane + 0.5 HZ ..................................... 
0.5 propane +0.5 HZ ..................................... 
0.5 butane + 0.5 Hz ...................................... 
0.1 butane + 0.9 HZ ...................................... 
0.5 ethylene+0.5 Hz ...................................... 
0.5 acetylene+ 0.5 Hz .................................... 
0.5 carbon dioxide t. 0.5 HZ ................................ 

a 

0.0051-0.0011 
0.0115-0.0200 
0.0172-0.0189 
0.0063-0.0012 
0.0068-0.0075 
0.0063-0.0080 
0.0055-0.0012 

P 

0.66-0.98 
1.89-2.10 
2.06-3.03 
0.81-0.97 
0.73-1.04 
0.77-1.00 
0.69-0.92 
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N . A .  R Y N I N  

EFFECT OF ACCELERATION ON ANIMALS 

In two of the previous volumes of this se r ies  on interplanetary travel 
(on p. 144 of "Superaviation and Superartillery," Leningrad, 1929, and in 
"Theory of Propulsion by Reaction, " Leningrad, 1929) we have already 
presented a detailed summary of experiments, made in various countries, 
on the effect of acceleration on living organisms. 

However, it seemed to us that these experiments had by no means gone 
into all the aspects of this problem. Consequently, in order  to obtain a 
comprehensive study of the acceleration effect, several  additional studies 
had to be carried out. 

Before making tests  on humans, we decided to car ry  out some on 
several  types of lower animals, and to utilize the results of these to set  up 
more  suitable experiments with a human being. Two centrifugal machines 
were constructed; the first ,  1 m in radius, had speeds of up to 300 rpm, and 
the second, a centrifuge 0.32 m in radius, had speeds of up to 2,800 rpm. 

The test  animals were placed in special compartments in these machines. 
The animals (flies, beetles, cockroaches, fish (carp),  frogs, mice, rats ,  
pigeons, s i s n n s ,  crows, rabbits, and cats) were observed for effects upon 
them of the centrifugal acceleration developed during rotation. The 
experiments, conducted during the spring and summer of 1930, provided 
material which will be useful in designing a large centrifugal machine for 
future projected experiments with a human being. In addition to the 
rotation, the excess loads [due to acceleration] were also determined for 
the dropping of fresh hens1 eggs onto sand. 

It should be noted that two factors exerted an effect during the experi- 
ments with test  animals: a centrifugal force  causing excess weight (excess 
load) of the animal, and rotation. For  tests  of short duration, the effect 
of the centrifugal force predominated, sometimes even causing traumatic 
disturbances. For  prolonged tes t s  the effect of rotation was greater,  
causing a disturbance of coordination and of the feeling of balance. 

A full report on these tests  is  given in Issue No. 1 of the Bulletin of the 
Institute of the Civil Air Force (Leningrad). Here we present just the 
most important findings. But f i rs t  we should mention that the following 

354 people took part in the physiological observations, under the direction of 
Professor A. A. Likhachev: 'Drs .  M. M. Likhachev, V. M. Karasik, 
A. M.  Vasil'ev, and A. A. Sergeev. 



CONCLUSIONS 

1 .  Insects (dung beetles, German cockroaches, black cockroaches, 
common house flies, and horseflies) can endure excess loads of up to 
2,500 times for  a s  long a s  1 min, without any injurious effects. 

2. Fish (carp) with weights of up to  20 grams in water can endure, with 
only slight disturbance, the effects of excess loads of up to 2,200 times, 
for  1 min (1 I). 

3. Frogs weighing from 23 grams to  65 grams, in water and out of water, 
can safely endure excess loads of up to  23 times, without any disturbance, 
for times up to  5' .  

For  excess loads of up to 2,200 times during times up to 1 I, moderate 
disturbance of motion i s  observed, with a return to  normal after 30 min. 

4. Birds (siskins, pigeons, and crows): 
a) Siskins (weighing 11.4 grams) can safely endure excess loads 

of 39 times for about 2 ' .  If the same loads a r e  prolonged to  5', disruption 
of coordination is observed. 

b) Pigeons (weighing 275 grams) can endure excess loads of 
28 times fo r  2', with slight disturbance of coordination, but for excess loads 
of 23 times over 4 '  the disturbance of coordination is greater.  

c) Crows (weighing 380grams) can endure excess loads of 
23 times for 4150" with only a slight disturbance of coordination. 

5. Mice and rats: 
a) Mice (white, weighing 17 grams).  Reactions to  excess loads 

and their durations were  a s  follows: 

Excess load Duration Effect 

normal 
moderate disturbance 
marked disturbance 
death 

b) Gray r a t s  (weighing 45 grams): 

Excess load Duration Effect 

moderate disturbance 
marked disturbance 

6. Rabbits (weighing from 1,520 to  2,600grarns): 

Excess load Duration Effect 

10 2' slight disturbance 
16-28 2', duration of moderate disturbance 

test 1'55" 
23 2', duration of marked disturbance 

entire test 
6'25" 

10 6'. duration of death 
test 11'15" 



7. Cats (weighing from 3,250 to  3,729 grams): 

Duration of 
Excess load Duration Effect 

entire test 

10 2" 4'10" normal 
28 2 1'55" slight disturbance 
28 2" 4'30" - marked disnubance 

8. Raw eggs (weighing from 38 to 55 grams) can endure without breaking 
(in water and without water) excess loads of: 

39 times, for 30" 
30 times, for 1' 

280 times, for 0.01" (dropping) 

Small cracks without disturbance of the contents a r e  produced for excess 
loads of: 

700 times, for 5" with thick end outside disk in sand 
100 times, for 0.01" dropping into sand in jar with water 
48 times, for 1" in water 

Breakage i s  observed for excess loads of: 

48 times, for 1" without water 
300 times,for 0.01" dropping into sand 
700 times, for 5" in sand with tip outside disk 

The following general conclusions can be drawn: 
1. The larger  and the heavier the animals, the harder it i s  for them to 

withstand excess loads. Some examples are:  

Mice endured .......... 58 
Birds endured ........... 39 
Rabbits endured ......... 28 
Cats endured ........... 28 [times for 2'1 

2. The duration of the excess load has a marked influence on its effect. 
Whereas this i s  less  t rue for frogs and birds, for mice, rats ,  rabbits, and 
cats the duration has a great effect. Some examples are:  

Frogs can endure an excess load of 

Birds " " " " " " 

Mice " " " " " " 

Mice die for an excess load of 
Rats can endure an excess load of 
Rabbits can endure an excess load of 
Rabbits die for an excess load of 
Cats can endure an excess load of 

23 times for 5' 
2,200 times for 1' 

39 times for 5' 
58 times for 2' 
58 times for 5' 
25 times for 3' 
28 times for 2' 
10 times for 6'  
28 times for 2' 
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During prolonged tes t s  the rotation factor had the greatest significance. 
3. Insects, fish, and frogs can endure prolonged excess loads of from 

2,200 to  2,500 times. 



4. The endurance of the animals i s  greatly influenced by the way they 
a r e  placed in the compartment, that is ,  by the uniformity of the pressure  of 
their bodies against the outer wall of the container. For  instance, the 
immersion of the carp and frogs in water resulted in a general increase in 
their capacity to'resist ,  while eggs resisted better in ordinary water than 
out of water, better in salt  water then in f resh  water, and even better in sand. 
Mice with cotton padding around them resisted better than mice without 
the padding. 

5. The tests  with frogs indicated that apparently the same centrifugal 
force may have different effects on them, depending on whether the force i s  
produced by an increased number of revolutions and a small  radius, o r  
vice versa.  However, this conclusion has not yet been verified with other 
animals, particularly with respect to the size of the animal and the radius 
oi rotation. 

Therefore, for different animals, the following excess loads may be 
considered to be completely tolerable: 

- 

German cockroaches, dung beetles 

Black cockroaches, horseflies, house flies 

Carp 

Frogs 

Siskins 

White mice 

Rabbits 

Cats 

Excess- load limit 
and duration 

(' is min and " is sec) 

2,532 
1' 

2,200 
1'10" 

28 - 
1 ' 

48 
2' 

38.9 
2' 

30.7 
2' 

12  - 
2' 

10 - 
2' 

10  - 
2' 
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