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1. INTRODUCTION

Man has long dreamt of overcoming terrestrial gravitational forces
and of exploring the Sun, Moon and other planets; but only nowadays do
these ideas about interstellar flights have better prospects of being
realized, due to the progress achieved in both science and technology.

Let us briefly examine a few methods by means of which some
inventors have suggested that man could leave the Earth and start out
for interplanetary space:

1. A shot from a cannon (projects of Jules Vernes, Graffigny, Valier
and others). The shell containing the cabin was to be placed in the gun
barrel or inside a volcanic crater and ejected upward with a shot.

However, it would be impossible to put a human being into such a
shell because his body could not tolerate the overload built up by
excessive acceleration. Besides,to overcome the gravitational
forces and the air drag one would need a cannon of really fantastic
dimensions,

2. Ejection by a centrifugal device (Graffigny's project). The missile
containing the cabin was to be attached to the circumference of a large
wheel and the wheel rotated to obtain the necessary velocity. At a given
moment the missile was to be separated from the wheel and hurled into
outer space. This idea, though theoretically correct, cannot yet be realized
(using the existing materials) because it is impossible to construct a wheel
of the required dimensions that will withstand such considerable velocities.

3. The reactive craft. Flight of such a craft is based upon the principle
of rocket flight. Inside the craft the fuel is burnt and the gaseous products
of combustion discharged rearward through the nozzle. This provides
thrust, by means of reaction, and consequently the craft moves in a direction
opposite to that of the ejected gases.

Most of the scientists and engineers who have worked on spacecraft
projects have based theirpropulsion designs on this principle ofaction and
reaction. One should mention names such as Tsiolkovskii, Esnault -Pelterie,
Goddard,Oberth, Valier, Hohmann, Tsander, Hanswindt and many others
who have contributed to the field of rocket motion. From now on I will
restrict myself entirely to this theory because at the present stage of
development of science and technology it is the only one that can be used
for extraterrestrial space flights.

Moreover, I will present only the main theoretical assumptions concerning
thrust conditions of rocket flight. Our chief consideration will be the
problem of launching a rocket and its descent. Flight conditions, especially
orientation in space and navigation,are of secondary importance in this
work and therefore are just mentioned.
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FIGURE 1, Reactive spacecraft

2. THE REACTIVE CRAFT

A general diagram of a reactive craft is shown in Figure 1. The fuel
is pumped into the mixing chamber (the carburetor) and then into the
combustion chamber (c.c. ), where it is burned explosively. The gaseous
products of combustion are discharged rearward through the nozzle, a
gradually widening tube. The passengers' compartment and the provision
stores are situated at the front of the craft. The necessary thrust is
created by reaction (R) to the hot gaseous jet. For flight navigation and
control, vanes inserted into the jet may be used as an elevator (1)
and a rudder (2). Masses (3 and 4), adjustable in their positions along
two mutually perpendicular axes,may serve the same purpose.

Many reactive spaceship designs were suggested by Tsiolkovskii,
Goddard, Hanswindt, Gussali, Hohmann, Oberth, Valier, Tsander and others.

1 will describe some of the most advanced designs in general.

Side view

FIGURE 2. Goddard's multistage rockets FIGURE 3. Hohmann's rocket




Goddard's multistage rocket (Figure 2a and 2b). The rocket
consists of a number of fuel-containing propellant tanks which are
successively jettisoned as they become empty,gradually increasing the rocket
velocity. Figure 2a shows a rocket built of many small parts, while
Figure 2b presents a rocket consisting of a few large stages. The cabin
is situated at the rocket head.

Hohmann's rocket. The cabin is placed at the rocket head

(Figure 3, top).

Most of the rocket volume is occupied by the fuel, which

reduces the rocket mass gradually, as it burns.
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FIGURE 4. Tsander's winged rocket

Tsander's winged rocket (Figure 4). The fuselage of the craft
is a conventional rocket. In addition, its configuration consists of typical
airplane components to facilitate the launching, such as wings, stabilizers,
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FIGURE 5. Oberth’s
compound rocket

propellers and landing gear. It may have skis for
landing on land or water. Wings enable the craft to
glide in the atmosphere on its way back. It must be
pointed out that Tsander's design repeats, in general,
the idea of the French engineer Laurent.

Oberth's compound rocket (Figure 3). The
rocket consists of three parts. The small one contains
hydrogen fuel and the capsule with a parachute. Alcohol
serves as the second-stage propellant, whereas the
third stage is an additional booster rocket. The
launching process occurs under the following sequence.
The booster motor starts functioning and is jettisoned
when its fuel is consumed. Thenthe second stage burns
and when it is its turn to be jettisoned, the small stage
takes over. Finally, while descending, the third stage
is separated too, and the capsule alone performs a soft
parachute landing.

Tsiolkovskii's rocket. Konstantin Tsiolkovskii
is a pioneer in the field of reactive interplanetary craft.
It is impossible to describe here in detail each of his



numerous research works in thisfield. I will only mention that he suggested
eight different types of reactive craft: the first is a straight-nozzle rocket-
engine design (1903); the second is a curved-nozzle engine (1914); the
third is an improvement of the first variant (1915); the fourth is an
experimental rocket (1917); the fifth type is a multi-stage manned
spacecraft (1917); the sixth is a portable rocket (a bag configuration) ;
the seventh is a moon-flight rocket and the eighth is an improved third
type (1927).

This last variant seems to be the most advanced and is presented
in Figure 6. The spacecraft is designed for minimum atmospheric
resistance. The compartments inside are situated as follows (from right
to left): provision stores, pilot compartment, flight-control mass, fuel
tanks (liquid hydrogen and oxygen), fuel-mixing chamber, pumps,
batteries, igniter, nozzle and control vanes. Flight observations
are made by means of a periscope. Another periscope actuates (by
light reflection) the electrical mechanism which automatically adjusts
the position of a heavy mass (flight-course controlling device).

_ Periscope
E - . Periscope
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_— { ‘0l I -y
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FIGURE 6. Tsiolkovskii's rocket
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FIGURE 7. Oberth-Valier rocket

Oberth-Valier rocket {Figure7). Instead of one central nozzle
it has a series of small nozzles situated on the circumference of the
spacecraft's central part. Stabilizers and control fins are fixed
at its tail. The interior of the craft contains fuel tanks, compartments,
instrumentation and provision stores.




3. THE EQUATIONS OF ROCKET MOTION

Basic theoretical principles of reactive spacecraft flight were published
by Tsiolkovskii in 1903. Contributors to this theory of reactive motion
were also made by Esnault-Pelterie, Goddard, Oberth, Hohmann, Lorenz,
Lademann,* Scherschevsky and Valier. One should distinguish between
the following principal flight phases when studying this theory:

a) The general case, when jet reaction forces, gravitational attraction
and atmospheric resistance act upon the rocket; this occurs during the
takeoff and the descent of the craft.

b) Flight outside the atmosphere of the planet but within the limits
of its gravitational field; this is the case when the rocket has actually
left the atmospheric medium, but
remains under the influence of
gravity.

¢) Motion imparted to the craft
by the jet reaction while the forces of
both atmospheric resistance and gravity
are absent; this is a theoretical case
approaching in its concept the case
when the rocket passes the point of
FIGURE 8. Deriving the equation of rocket motion equilibrium between the attractions

of Earth and the Moon.
d) Free flight,when the rocket
is not subject to any reaction force of gases and follows Kepler's
trajectory due only to gravitational forces.

I will first present the rocket-motion equation for the case (a), i.e.,
when jet reaction, aerodynamic drag and gravity act upon the eraft in
the course of its takeoff.

I will introduce the following notations (Figure 8):

M — the initial mass of the rocket;

m — themass ejected up to the moment t. This mass consists of the
gaseous products of combustion and the shell fragments of the propellant
tanks which are detached just as the propellant is consumed;

v — rocket velocity at moment t;

¢ — velocity of the ejected mass;

R — air-drag force;

g — gravitational acceleration;

dm — mass ejected in interval dt;

k — constant ratio of the shell mass (propellant tanks) to the mass of
propellant. The tanks are jettisoned with zero velocity relative
to the remaining rocket mass;

dv — rocket velocity increase during interval dt.

Iwillderive the rocket-motion differential equations according to Newton's
third law, first using the condition that the momentum at the moment t
equals the momentum at the moment t+ dt plusthe impulse of the atmospheric
resistance and gravitational forces:

(M~m) v=dm (1—k) (v—c) + vkdm + (M—m—dm) (v+dv) +
+ [R+ g (M—m)] dt.

* [Thé Russian original reads Lindemann which is obviously a misprint.]



Neglecting the second-order terms, we obtain:

c(1—k)dm = (M—m)dv + [R+g (M—m)] dt . (1)

In solving this equation the following conditions should be
fulfilled:

1) the initial mass M, which consists mainly of propellant, should not
be too large and consequently,

2) the propellant mass m, ejected up to the moment t, should be
minimal;

3) optimum flight velocity v should be chosen so that the resultant
combined air drag and gravitational forces have the least effect.

At a very high velocity v considerable atmospheric resistance is
coupled with rapidly diminishing gravitational effect (i. e., its impulse

is small); on the other hand, at low v air drag is small but the deleterious
effect of gravity will increase;

4) the highest possible efficiency of fuel combustion, i. e., the ejection
velocity (c) of its gaseous products should be the highest obtainable;

5) inthe case of a manned flight the rocket acceleration should not exceed
the limit of human endurance.

Before solving the general rocket-motion equation it is necessary to
clarify several specific questions on which the terms of this equation
depend, in particular:

a) gravitational forces (as if an envelope of gravitational attraction
had to be pierced);

b) atmospheric resistance (as if an envelope of aerodynamic drag force
had to be pierced);

c¢) propellant energy;

d) physiological effects of acceleration.

I will now treat each factor separately.

4. THE GRAVITATIONAL ENVELOPE

A rocket undertaking an interplanetary flight must develop a certain
minimum velocity to overcome the Earth's attraction and air-drag forces
(i. e., as if breaking through the gravitational and atmospheric envelopes
of the Earth). This section will show how to derive the expression
for the gravitational forces of the Earth and other planets of the solar
system, how to find the work and the velocity needed for a rocket to free
itself from the gravitational links and take off into space.

a) Work by gravity

I will derive the expression for the work necessary to move the rocket
out of the terrestrial gravitational field.




The notation r will stand for the Earth's radius and g, for the
gravitational acceleration on its surface.

Let a rocket of mass m be launched up to a certain altitude so that
its distance from the Earth's center is r;. The corresponding gravitational
acceleration will be

U <
B1=§8, I"y

1

the work done by the rocket will be:

I

2

= xr = 2 l_l_)

T = Smgo 2 dr =mg,r (r o) @)
r

If mg, = 1 kg, i. e., the rocket weight is 1 kg and r=6.371. 10%m, then
the work needed to move a body to infinity, i. e., out of the terrestrial
gravitational field, will be:

1

-1 . . 6)2 - -
T, =1-(6.37- 10°) (6.37-106

1
;)=6.37'106kg-m.

I will represent graphically the variation in the rocket weight, i.e.,
the force of its attraction to the Earth with the increase of distance
between the two. In Figure 9 a circle of radius r describes the Earth.
The axis of abscissas is OU. The axis of ordinates, perpendicular to
OU, is drawn through the end of the radius and segment ABon it represents
(on an arbitrary scale) the rocket weight on the surface of the Earth.

I will use the ratio %2 for it, where a is a number dependent on the Earth
and rocket masses.
a
Then in a distance of two Earth radii the rocket weight will be (5;)2 .

a
in a distance of three r, (3_r)2 and so on. In a distance x the weight of

the rocket will be -fg. A curve BCDETFV... traced through these ordinate

values approaches asymptotically the OU-axis. I will prove that the area
limited by the OU-axis, ordinate AB and curve BV (extended to infinity)
equals the area of the rectangle OABM.

I will examine an element of this area which is located at distance x
from the center O and of width dx.

Its area equals:
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This area (DABM) represents the work of the gravitational force
which must be overcome in order to move a body outside the terrestrial
gravitational field. It equals the Earth's radius multiplied by the body

weight (as follows from the formula r- ﬁ).

Arocket traveling from the Earth to the Moon will pass at a certain
distance (x) from the Earth a neutral zone (where the forces of the
attraction of the Moon and Earth are equal) and will then fall onto the
Moon surface. I will denote the Earth mass by M, the Moon mass by
M,; =0.01228 M, the rocket mass by m and the approximate distance
between the Moon and the Earth as 384, 300 km. Thus Newton's law
and the condition of equal attraction forces give

Mm M;m

k x° =k (384,300—x)2 ’

here k is the universal gravitational constant. From this we obtain

x= 345,963 km.

€ dr o
-‘I'p [ F V
I e — -0 U
2 I 7 4 b) 6

FIGURE 9. Variation inrocket weight with increase of its distance from the Earth

b) Flight velocities

I will now find the velocity which a rocket needs in order to escape
the gravitational field of a planet through a horizontal launch.

A planet section is shown on Figure 10. A rocket with a velocity
v= ABm/sec is launched horizontally from point A of its surface. The
planet radius is AC =r.

If the gravitational effect were absent, the rocket would reach point B
in one second. But because of the gravitational attraction the rocket will
approach the center C by a distance BD = g,/2,which is half the acceleration
of gravity. In order to prevent the missile from falling back to the planet
surface and to make it circle the planet (along a path of which arc AD is a
segment) the following condition is to be fulfilled:




AB? = BC?2— AC?
or
2

- 8o y2_ 2_ 8o~
v2=(r+ > }2—r BT+ 5

2
If we neglect % , we obtain:

v=)g, T . (3)

As long as the rocket velocity is the one derived from condition (3),
the rocket will circle the planet as a satellite. An increase in v will
convert the orbit into an ellipse, which will become more prolate at
higher velocities.

Finally, at a certain velocity the rocket will be launched into space
on a no-return parabolic trajectory. This velocity is determined by
equating the work of the gravitational force to the change in the kinetic
energy of the rocket:

2_y,2 1 1
m(v3—v,?) = mg,? (~ - _)_
2 r n
For moving the rocket to infinity (ry=ew) and stopping it completely these
(v =0), we obtain the initial takeoff velocity :

Vo = v 2g0r =VV—2_. (4)

Table 1 presents the values of v and vq for different planets of the
solar system,.

A R\

¢

FIGURE 10. The flight velocity of a rocket

10 For example, a rocket launched from the Earth with a velocity of
7,906 m/sec will circle it; withvelocities between 7,900 and 11,180 m/sec it
will trace an ellipse and at v=11,180 m/sec the rocket will escape on a
no-return parabolic trajectory.



11

TABLE 1. Rocket-launching velocities from different planets

Accelera- Circular>ﬁ Parabolic
Radius tion of i i
2 2 velocity velocity R ks
Planet of planet, gravity gof, M"/sec v= Vg vo=v VE, emarks
2
km g0, m/ sec m/sec m/sec
Sun 695,445 269 187,074,705,000 432,521 611,628  |* tor planetoids
I
Mercury 2,420 5.1 12,342,000 3,573 5,052 g0 =9.81r—“-
E
Venus 6,087 8.42 51,252,000 17,160 10,126 for example,
- ” a for Pallas
Earth 6,371 9.81 62,500,000 7,906 11,180
243
Moon 1,736 1.62 2,812,000 1,676 2,370 :0% 9,81 G—éﬁ =0.37,
Mars 3,391 3.69 9,122,000 3,620 5,119 .
assuming they have
Atalanta 15 0.023"° 345 19 27 equal densities
Pallas 243 0.37" 90,000 300 424
Ceres 402 0.62" 249,240 500 707
Jupiter 71,368 24,94 1,779,818,000 42,188 59,662
Saturn 61,513 10.64 654,498,000 25,583 36,179
Uranus 24,292 8.60 208,911,060 14,453 20,439
Neptune 28,0117 9.60 268,963,000 16,402 23,196

The trajectory of a rocket traveling from the Earth to another
planet will be divided into three distinct phases: 1) the powered motion,
during which the rocket engine functions and up to the moment when the
necessary (almost parabolic) velocity is obtained; 2) the free flight {coasting)
along an elliptical path (a Kepler curve) to the gravity field limits of
the terminal planet and 3) descent on this planet decelerating by means
of the retro-thrust of the rocket engine (both glide and parachute landings
can also be realized).

A rocket launched from the Earth with the velocity necessary to overcome
its gravitational attraction will trace an orbit relative to the Earth; since
the latter circles the Sun, the rocket will simultaneously follow the Earth
and accomplish a path around the Sun, as its satellite.

In order to escape the Earth's attraction and approach the Sun or,
on the other hand, leave the solar system entirely, the velocity of the
spacecraft must exceed the orbital velocity of the Earth which has an
average value of 29.45 km/sec.

If the Earth were alone, immobile in space, a rocket launched from its
surface would be influenced by no other gravitational field. Thus it would
follow a correct elliptic orbit and return finally to the point of takeoff
on the orbit. For high initial velocities, approaching the parabolic
one, such a journey could take a very long time — even millions of years.
Nevertheless, the velocity of the rocket on its return to the Earth would
equal the launching velocity.

Suppose that a rocket leaves the Earth in a direction opposite to that
of the Earth's motion around the Sun (Figure 11). Should its climb be
stopped/at a given altitude, the craft would continue to circle the Sun with
the velocity of 29.45 km/sec {same as the Earth's); but should it regain
its motion in the initial direction of climb, its velocity relative to the Sun

10




would decrease and it would tend to approach the Sun. Thus, by choosing
the correct velocity, it is possible to approach the orbit of any inner planet
of the solar system, Mercury for example, and to circumnavigate it or
even land on it at the right moment. This is the case shown in Figure 11,
curve aefg. (The flight direction of the rocket will be as that of the Earth,
counterclockwise.) At a certain velocity the rocket may even fall on the
Sun. But if a rocket has to reach an outer planet, it must be given a
velocity in the Earth-motion direction; thus its velocity relative to the
Sun will exceed 29.45km/sec and it will trace a Keplerian trajectory
outside the terrestrial orbit. Analogous to the previous case, a rocket

12 can be directed to approach Mars, become its satellite or descend on it.
This case is represented on Figure 11 by the curve abed.

(11)

If a rocket is to leave the solar system and not return to it, its initial
velocity must be 29.45 }/2~42km/sec (equation 4).

5. THE ATMOSPHERIC ENVELOPE

The precise law determining the air resistance in the course of a flight
of a high-velocity rocket is unknown. It is difficult to derive such a law
because it depends on many factors.

Very few laboratory experiments concerning air resistance at high
velocities (equal to and higher than the velocity of sound = 337m/sec)
have been carried out. There are records on experiments performed
in Germany (Gottingen) and the U.S.A. (Washington); in the latter case
the air velocities extended from 0.5 to 1.08 times the velocity of sound.
Since in artillery, however, numerous experiments have been performed to

i1
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determine the air resistance of projectiles, one is obliged for the time
being to use these data for calculations of the aerodynamic drag of a rocket.

Air resistance is influenced by the following factors:

1. Rocket diameter.

2. Rocket shape.

3. Position of its axis relative to the flight trajectory.

4. Air density.

5. Flight velocity. One should remember that the phenomena are
different at flight velocities equal to or higher or lower than the velocity of
sound.

6. Air skin friction with the rocket.

7. Head resistance due to the shock-wave phenomenon.

8. Suction at the rear part of the rocket.

Thus the air resistance of a rocket can be determined by the formula:

R=w1+w2+W3, (5)

where w; — skin friction resistance,
wy — head resistance,
w3 — rear drag.
Sommerfeld simplifies this expression into:

R =w + w,, (6)

where w; — skin friction resistance, wy; — the remaining aerodynamic
resistance. He defines w; as:

w»1=F-a-v2, (7)

where F — cross-sectional frontal area of the rocket,
a — a coefficient of friction,
v — rocket velocity, m/sec,
He expresses the second component of the aerodynamic drag in the form

&2
wy=F-A- (1—V—2). (8)
where A — a coefficient; s — velocity of sound, m/sec.
Thus, at
v=s,
we have
Wo = 0.

The resistance per unit of the cross-sectional frontal area will be:
52
R=w, +wy,=avi+ A 1—‘7).

Finally, relating it to a velocity of v =1 m/sec, I obtain the so-called
air-drag coefficient:
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If the values of a and A; are derived from experiments, then the air-
drag coefficient for the velocity v will be determined from equation (9).
Multiplying it by F and v? 1 will obtain — after Sommerfeld ~ the total
air resistance to the rocket motion.

The atmospheric resistance is ofteh expressed in the form:

R=kF-6%°i-f(a)f(v), (10)

where k — a coefficient,
F — cross-sectional frontal area of the rocket,
6 and 64 — air densities at altitude H and at sea level,
i — shape factor of the rocket,
f (@) — function depending on the position of the rocket axis relative
to the flight trajectory,
f (v) — function depending on flight velocity.
Oberth writes formula (10) in the form:

[
R=kF-— V%,
5o
which gives k= —Ré—— = f(v). The corresponding variation of the
F% v

function k is shown in Figure 12,

Figure 12 shows thatthe f (v) values somewhat decrease at the beginning
(up to 200 m/sec), then sharply increase, reaching a maximumnear 400 m/sec
and from there on decrease more gradually but steadily.

A

000 200.m/sec

FIGURE 12. Change in air resistance after Oberth

The increase of the coefficient near the velocity of sound (330 m/sec)
can be explained by: a) shock waves created at the rocket head [wave drag],
b) creation of a vacuum at its rear. The decrease of the coefficient
at supersonic velocities is explained as follows: the head resistance is
nearly proportional to the square of the velocity (but is about 1.5 times
higher than at low velocities), whereas the rear dragis constantandis equalto
atmospheric pressure multiplied by the cross-sectional area.

Dividing the rear drag by the square of the ever-increasing velocity
I obtain a continuous reduction of the rear drag coefficient.
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If w' denotes head resistance and w'' the rear drag, then for increasing
v the expression

Wl + Wll
[

F— v?
6

k=

goes to the limit

In the case of a rocket the gas ejection reduces the suction at the rear
and at high flight velocities it entirely disappears. The variation of the
k-values is indicated in Figure 12 by the dashed line.

Goddard determines the aerodynamic drag by the following formula:

R=R,F- >, (11)
60

where R, is the atmospheric resistance related to a unit area of the
rocket body cross-section. R,y differs for different velocities.
Mallock's definition of the air drag is:

+ 480 (11a)

v! 0.375
R, = 0.00006432 v? (?)

(in the absolute system: foot, second, pound).
This formula is applicable to projectiles with tapered heads. Here:
v'! — velocity of the body;
v — velocity of wave propagation in air just in front of the projectile:
this velocity equals the projectile velocity in supersonic flight;
s — velocity of sound in undisturbed air.
480 (pounds) — a constant added at v > 730 m/sec (2,400ft/sec) as a
vacuum correction at the rear of the projectile.
Hohmann suggests the following relation to determine the air drag:

R=R0F'i=§v2F-i (12)
where

v — flight velocity;

g — gravitational acceleration;

6 — specific weight of air;

Ry — pressure exerted on 1 m? cross-sectional area perpendicular
to the direction of flight;

F — area of the body cross-section perpendicular to flight direction;

i — shape factor of a body (for a thin plate i=1; for a convex

14




9.35
hemisphere i=0.5; for acone withanapexangle ¢ (sin 9= 2—') ,i=0.11, etc.).

Having determined the projectile climb velocities v at diverse altitudes
h Hohmann presents the following table (Table 2) of v-values and computes

é
expressions z v2, which enter formula (12).

At altitudes exceeding 50 km and at velocities indicated in the table, the
aerodynamic resistance may be neglected.

For altitudes under 50 km Hohmann takes an average value L
= 12,000 kg /m?. g

TABLE 2
2 &
Altitude h, km V2, km’ /sec? g—,kg/m2

0 0.00 0

1 0.04 4,600

2 0.08 8,000

3 0,122 11,000

4 0.162 13,000

S 0.202 14,200

[ 0,243 15,100

8 0.323 15,500

10 0,404 15,200

15 0.606 13,000

20 0.810 8,500

30 1,214 3,440

40 1.620 1,200

50 2.028 3170

60 2.434 110

80 3.250 1.5
100 4,070 0.4

16 Kranz formulates the law of atmospheric resistance as follows:
2, 8 .
R=k~r7r6—°1-f(v)kg, (12a)
°

determining its value separately in each velocity zone.

The notations have the following meanings:

k — coefficient taken by some of the experimenters as dependent
on projectile velocity (whereas others reject any dependence between

the two ),

r — radius of the body cross-section,

7 — ratio between cross-section circumference and diameter,

6 and § — weights of 1 m® air in kg at the time of the experiment and

at normal conditions, respectively,
i — shape factor,
f(v) — function dependent on the projectile flight velocity.
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I will introduce some of the formulae suggested by different

experimenters, which determine R for artillery shells.

1) N.Maievskii (Russia).
a) For a sphere, i=1,

5.
_ 2, 1 .2
R=0.012r°q 1.206 v

R=0.061r? 7!1 206

v2, if 530 > v > 376 m/sec.

2
[1 + (1%) ] if 376 m/sec > v> 0.

b) For an oblong projectile with an ogival head and a radius of curvature

1 to 1.5 times the body diameter,

6
R=0.012 r? LERrTY 201 [1+(488

1D

6
R=0.026r21rl—-2—06v6, if 360 > v > 280;

2
R= 0044r7r1206 ,

2)Hajel (Holland).

2
) ], if 280 >v > 0;

if 510> v> 360 m/sec.

For i=1 for oblong projectiles with ogival heads with radius of
curvature (r) equaling twice the body diameter:

(2r) - 1000-6 i
9.81-1.201

R= -a-vh,

where for v=140 to 300 m/sec
300 to 350 m/sec
350 to 400 m/sec
400 to 500 m/sec
500 to 700 m/sec

(6)

a = 0.084535;

(68))]

a= 0.05423
(8
a= 0.051381
(4)
a= 0.07483
(&)
a= 0.05467

17 3) Maievskii-Zabudskii (Russia).

i=1 (as indicated in case 2)

R=a- r’n 81 i

1.206v where for v =

16

240
295

375
419
550
800

to
to
to

to
to
to
to

240
295
375

419
550
800
1000

m/sec.
m/sec
m/sec

m/sec
m/sec
m/sec
m/sec

0.0140
@
0.05834
(9)
0.06709
@
0.09404

0.0394

0.2616
0.7131

== DNDWw U w N o
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4) Chapel-Vallier-Scheve.
i =1, as in case 2. (Apex angle of the ogival projectile head is 83° = 2v.)

r?-10,000-6- i

for v>330m/sec, R= -0.125(v —263);

9.81-1.206
r?- 10,000 -6 i © 2.5
for v < 300 m/sec, R= —‘m .0.03814 - v H

at v <330 m/sec, i=1;

_vlv—(180°+2y)]

In case the projectile configuration differs from that mentioned above,
then:

at v< 330 m/sec: i=0.67 0.72 0.78 1.10
for ¥y =31° 33.6° 36.9° 48.2°

5) Siaceci.
R=1338-r2-6-i-f(v) kg,

where r — projectile body radius in m,
& — weight of 1 m® of air in kg,

f(v)=0.2002-v — 48.05 + |/ (0.1648-v—47.952+9.6+
, 0.0442 - v (v—300)

1
371+(—"—)°

200

i= 0,896 for an ogival head with a radius of curvature equaling 4r and
a head height of 2.6 r. If the head-height range is from 1.8 r to 2,2 r then
i=1.
Figure 13 shows the effect of velocity on R. For convenience of
6

epresentation the expression 1;%‘ -£(v) is used instead of the function
f (v) itself.

The curve has an inflection point at v=340 m/sec and a maximum at
v=500m/sec. For some of the velocities the f(v)-values are written on
the curve itself.

I will study more closely a cylindrical projectile with an ogival
head. Its body diameter is 2 r, the radius of curvature of the head is
ry=rn, and the head height is h. The angle between the tangent to the
contour of the head at its apex and the projectile axis is A.

In Table 3 are given the ratios of the head dimensions for different
projectiles and shape factors i (for ogival and conical heads). Here i
is defined as the ratio of resistance of a cylindric projectile with a given
head to the resistance of an identical cylinder with a flat frontal
surface (perpendicular to the axis).

In]
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FIGURE 13. Curve of aerodynamic resistance
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TABLE 3

Iy
= 0.5 1 1.5 2 2.5 3
2r
h
= 0.5 0.866 1.118 1.323 1.638
90°
¥ hemis- 60° 48°13° | 41°25 30°34
phere
cos ¥ 0 1/2 2/3 3/4 5/6
after
0.666 | 0.504 0.419 0.366 | 0,331
« Lesley
b=
s f N
j{
= atter 0.858 | 0,152 0,615 0.617 | 0,571
s Duchenne
a & after
& 0.500 | 0,292 0,204 0,156 | 0,127
- Newton
Q
< after
= a Lestey 0.707 | 0.500 0.409 0.353 | 0.317
; 3
© =
ft
= ater 0.943 | 0,800 0.663 0.628 | 0.575
131 Duchenne
g
1
° after 0.500 | 0.250 0.167 0.125 | 0.100
Newton

Air temperature and density

Air temperature decreases with altitude. According to observations,
however, its decrease ceases at an altitude of about 12 km, and further,
up to 30 km, it seems to stay constant (-60°C).

Remark. The lowest observed temperature in the atmosphere near
the Earth's surface was -86°C.

Air density also decreases withaltitude; a series of formulae were
suggested and many observations carried out to determine it. For
convenience in aerodynamic calculations,characteristic variations of
atmospheric properties versus altitude have been prepared (based on
experimental measurement data obtained by airplanes and balloons).
So-called standard atmospheres have been worked out by the Russians,
the French, the Germans and the Americans.

The curves of Figure 14 show the changes in weight of 1 m? of air in
grams or air-to-water density ratios. The right curve presents weights
at altitudes from zero to 20 km and the left one from 20 to 40 km.

Hohmann assumes in his calculations the following variation with
altitude of the specific weight of air for spaceflights (Table 4).

Tsiolkovskii supposes that the density of matter in space is 1:16 - 1018
of the air density.
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TABLE 4

km

20,

22 |8

24 15 \

28 |12]

Jo|»

22l¢ A

3416

36|«

N

N

N

00 200 W0

800

& w0 200 gram

Annual-average specific weight of air
(the weight of 1m® in grams)

FIGURE 14. Change in weight of air with altitude

Altitude h, km

Weight of 1 m?® air, kg

Altitude h, km

Weight of 1 m® air, kg

0o oW WO

ol R I SRl vl
o Lo Lo WO

1.3
1.15
1.00
0.90
0.80
0.70
0.62
0.48
0.375
0.215
0.105
0.055
0.0283
0.01464
0.0074
0.00376

50
55
60
65
70
75
80
85
90
95
100
105
110
150
200
400

0.00187
0.00915
0.000448
0.000217
0.0001025
0.0000497
0.0000230
0.0000106
0.0000049
0.0000022
0.00000098
0.000000423
0.000000185
0.00000000003
0.0000000000000023
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6. PROPELLANT

a) General properties

One of the most important questions posed in rocketry concerns the
propellant, whose combustion products burst out from the nozzle of the
rocket and propel the latter by the reaction of the gas jet. Therefore it is
essential to know which types of propellant release the largest energy
quantities and what will be the ejection velocities of the gaseous products
of the explosion. Energy is characterized by the calorific value liberated
by 1 kg of fuel and expressed in kilocalories (1 kcal=427 kg - m). Diverse
propellants release a certain amount of work during the combustion process
(i.e., reaction with oxygen) and can be classified according to the following
criteria:

I. Rate of combustion.
A, Slow-burning: wood, coal.
B. Fast-burning,used in internal combustion engines:
gasoline, kerosene, alcohol, etc.
C. Low-explosive: powders.
D. High-explosive: dynamite, pyroxylin, etc.

II. Oxygen content.
E. Oxygen subplied externally: gasoline, wood, coal.
F. Containing oxygen: powder, dynamite, etc.

III. State.
G. Gaseous: illuminating gas, hydrogen, etc.
H. Liquid: fgasoline, alcohol, etc.
I. Gelatinous: nitrogelatin, etc.
J. Powders: gun powder.
K. Solid: compressed gun powder, coal, wood.

IV. Purpose.
L. To obtain heat: wood, coal.
M. To obtain work:
a) In engines.
b) In weapons (rifles, guns, bombs).
¢) In mining (explosions).
d) To explode other substanees (mercury fulminate).

If a propellant containing no oxygen burns in an oxygen-rich atmosphere,
aunit weight of propellant,e. g.,1 kg, will release much more heat energythanthe
same quantity (1 kg) of a prepared mixture of that propellant with oxygen.

Tables 5 and 6 comprise the calorific data (in kecal) and the theoretical
ejection velocities (in m/sec) of 1 kg-quantities of oxygen-bearing propellants
(A) and oxygen-free (B) substances.

A burst produces a certain volume of gases; the larger this volume is,
the more work it can do. The gas particles produced during the combustion
of 1 g of the original propellant will occupy a larger volume if their
molecular weight is lower. One cubic centimeter of any gas contains a
constant number of molecules at equal conditions of temperature and
pressure. Hydrogen molecules are the lightest; 1 g of liquid hydrogen
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converted into gas occupies a volume of 11.2 liters (at 0°). So far no other
substance has been found from which a larger gas volume can be obtained.
The volume of gases increases with the temperature of explosion, but
much less than during the conversion of a solid or liquid substance into
its gaseous state. Raising the explosion temperature by a few thousand
degrees will increase the effectiveness 10 to 15 times. This temperature
depends on how much heat is released in the course of the explosion;

thus to obtain a higher efficiency of the process one should choose fuel
substances which will liberate more heat at optimum conditions of the
chemical reaction. However, it seems pointless to expect further
substantial successes in developing high-explosive fuels. The existing
compounds already produce much heat and very high temperatures: gun
powder — 2,380°, pyroxylin — 3,100°, détonating gas — 3,750°,
nitroglycerine — 4,250°, mercury fulminate — 4,350°, sheddite —

4,500°,%

Because of the quick release of their chemical energy explosives possess
great power. The action of 1 kg dynamite is equivalent for example to the
effect of an engine of 20—30 million h. p., functioning during the same time
(1 kg dynamite burns out in 0.00002 sec).

(22) TABLE 5

Substance Product Calorific value, Ejection velocity,
kcal m/sec

oo @
o O
= 3 4 Water vapor 3,220 5,180
935 3 Hydrogen + oxygen
L — oo g Water 3,736 5,600
c 339
P el
NG = el lce 3,816 5,650
x £ & a
S 2 Carbon + oxygen Carbon dioxide 2,210 4,290
< Gasoline + oxygen Water + carbon dioxide 2,370 4,450
3 g §
= .32 & | Hydrogen Water 34,462
o > 9 B

= a
25 2 Hydrogen Water vapor 29,000
o & S«
) L o
?E 5 oo || Carbon Carbon dioxide 8,100
EYES
. 2 5 Hydrocarbons Carbon dioxide + water 10,000— 13,000
o =

* Certain metals burned in an atmosphere of ozone render very high explosion temperatures as well: lithium
(LiOH — 5,100°), boron (B,0; —5,000°), aluminum (Al,0, — 4, 100°}, etc. (The formulae express the composition
of the ejected products)
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TABLE 6

. Calorific Ejection
Fuel Weight of value of velocity of
3
1m”, kg 1kg, keal gases,
m/sec
Wood..........oivienn O 310-1,390 2,400-4,730 9
Bituminous coal .. ......... . 800 6,500~8,4170 &
Pure alcohol .. .uvviii e . 795 6,700 g,
Petroleum . ..... e N 810—940 | 10,000-11,000 =
Kerosene. .. .... i e 770—-860 10,500 <
Powder for ship's rocket « ... .0 v oo u - 528 314
Powder for an ordinary rocket . ......... - 545 292
Smoky powder producing 290 liters of gas, ., . 1,200 165-1720 2,893 &
Gun powder "Du Pont No. 3" in a steel rocket - 972 1,807-2,290 =
Pyroxylin .. .. .. e . 1,300 1,025 2,900 B
Powder “Infallible” in a steel rocket . .. - 1,278 2,082-2,43¢ | &
Gelatinous dynamite « . ... .o v ennonos 1,660 1,293 = 0
NItrogelatin wvvvev v e vounsns . 1,630 1,550 - A
Smokeless powder « « v v v v v o0 v e . 705-840 1,000-1,570 -
Nitroglycering « .+ « oo v v s v v 1,600 1,580 2,900-3,500
24 TABLE 7
No. Object Conditions Velocity,
km/sec
1 Chlorine molecule At 0°C and 760 mim in Crookes' cathode tube 0.24
2 Carbon-anhydride molecule Thesame ........ e e 0.36
3 Falling body From an altitude of 20km to the Earth's
surface, in vacuum .. oo v oe v v oo vt e e 0.60
4 Hydrogen molecule As in 1and 2; velocity increases in proportion
) to square root of absolute temperature. . . . 1.8
5 Hydrogen molecule In the hydrogen flame arc. ............ 7.04
6 Falling body From infinity to the Earth's atmosphere . ... 11.5
7 Meteorite At an altitude up to 160km. .. ... . ... .. 20
8 Electron In vacuum tube at potential difference of 0.4V 100
9 Mercury atom The same, at potential difference of 10,000V 100
10 Hydrogen molecule On stars at 2,730,000°C .. v v v v e v v n v 269
11 Electron In vacuum tube at potential difference of 1V 295
12 Falling body From infinity to the Sun .. ov oo v w v 600
13 Electron In vacuum tube at potential difference of 5.5V 1,400
14 Hydrogen atom In vacuum tube at potential difference of
10,000V, o oo o v i e v [ 1,400
15 Electron In vacuum tube at potential difference of 25V 3,000
16 Electron In vacuum tube at potential difference of 100V 5,950
11 Helium - (10-30) - 10°
18 Radium - 30-10°
19 Electron In vacuum tube at potential difference of
100,000V, u e e o 58.3-10°
20 a-rays - 300-10°
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It would seem that to obtain greater power one should look for explosives
with a higher rate of dissociation. However, many of the existing substances
are dissociated almost instantaneously (pyroxylin, mercury fulminate).

Disintegration of radioactive elements (which is not a chemical process
but a splitting of an atom nucleus) could serve as an alternative and much
more powerful energy source — tens of thousands times more than the
conventional explosives. If radium (1 kg of which possesses a calorific
value of 3.7 -10%kcal) or uranium or any other radioactive element could
be forced to disintegrate as quickly as dynamite, explosives of outstanding
power could be obtained. So far, however, atomic energy is unattainable.

It is true that sometimes radioactive elements, e. g., radium, disintegrate
spontaneously, but this is a slow process. One gram of radium decays
by half in 1,750 years. Rutherford succeeded in splitting nitrogen atoms,
but that was achieved in a very complicated process which demanded
enormous quantities of energy.

Velocities of some objects are given in Table 7.

b) Computation of propellant energy

Consider an example of energy release computation for a most effective
propellant, a mixture of hydrogen (H) and carbon (C).

Burning means combination of the propellant with oxygen.

Burning hydrogen can produce water (H,O) or water vapor, whereas the
products of carbon combustion may be carbon dioxide (CO,) or carbon
monoxide (CO).

Combination of 1 kg hydrogen with oxygen at t°=0°C to produce liquid
water yields 34,462 kcal. The heat release for the same reaction yielding
water vapor creates 600- 9= 5,400 kcal less, i. e., 29,000 kcal. The difference
(5,400 kcal) is the heat of transformation of water to vapor. Notice that
burning of 1 kg hydrogen produces 9kg of steam.

The heat of formation of carbon dioxide from 1 kg of carbon is 8,100 kcal.

Chemical reactions which take place during combustion are accomplished
in definite weight proportions, corresponding to the atomic weights of the
combustible elements.

Atomic weights: hydrogen (H) — 1, carbon (C) — 12, oxygen (O) — 186.

Water is obtained when two hydrogen atoms combine with one oxygen
atom. One carbon atom burns with two oxygen atoms into carbon dioxide,
with only one into carbon monoxide. Here are the formulae expressing
the above statements:

Hy+O=H;0; C+0,=C0O,y; C+0=CO.

16-1
2
or 8kg; burning of 1 kg carbon into carbon dioxide (CO,) demands

A6-2_4
1 12
carbon monoxide (CO), then

Thus burning of 1 kg hydrogen necessitates = 8 times more oxygen,

.66 times more oxygen or 2.66 kg. But if carbon burns into
16-1
12

=1.33kg oxygen is needed versus 1 kg

carbon.
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In the case of an oxygen-bearing propellant containing mainly hydrogen,
1

. 1 1
the heat released will be only 7773 =9 ¢4y calorific value of pure

29,000
’9 = 3,220 kcal for hydrogen-oxygen

hydrogen. For example,

8,100

mixture and {+266° 2,210 kcal for carbon-oxygen mixture.

It would be advantageous to use pure hydrogen because of its high
calorific value. However, several hydrocarbons, e. g., benzene (CGHG),
pentane (CgH,,), heptane (C;H;¢), methane (CH,), and others of the form
CmH, also possess quite a high efficiency.

Let us determine the calorific value of such a mixture (C,H,). One kg
of it incorporates 12m+ 1 n parts by weight and the fraction of hydrogen.

n
12m+n

26 whereas that of carbon is

12m
I2m+n-

Hydrogen calorific value will be

n
iZm+a 2%

and that of carbon:

12m
m+n 100

The total calorific value of 1 kg of the mixture will be expressed in the
following form:

29,000n+ 97,200m
12m+n

and the amount of oxygen needed for the burning will be

1
16 'm 2+16‘n"2"_32m+ 8n

12m+ n T 12m+n

kg oxygen.
The equation of the chemical reaction will take the form:
n n
CmHn+ m+ Oz':mC02+2_ H20.

4

But if CyH, alsoincludes some extraoxygen,the following quantities should
be used with 1 kg of this mixture:
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16 m-2 for the combustion of carbon

1
16n - 5 for the combustion of hydrogen

and altogether 1 kg contains the following number of parts by weight:

12m+n+16m-2+16-n==44m+ 9n.

o —

The expression for the overall calorific value of 1 kg of the mixture
will be:

29,000n + 97,200 m (a)
4 m+ 9n : a

1 kg of this mixture should comprise

22m+8n 1o oxygen
Zdm+ gn &OXyEED:

I will obtain the following quantities of energy created during the
combustion of different propellants mentioned above (1 kg of mixtures
with oxygen).

Ejection velocity

27 Pure carbon (C):
2
Formula (a): n=0; G= 9—7;14—02 =2,210kcal, or
2,210-427 = 945,000kg-m . . . .. ... .. 3,500 m/sec
97,200 -6 +29,000 -6 _
Benzene (CgHg) G= AT 6156 = 2,380 kcal
or 1,016,000kg -m. ... .......... 3,640 m/sec
97,200 -7+ 29,000-16
Heptane (C,Hys) G = i 730 16 = 2,534 kcal
or 1,080,000kg-m . . ... ... .. .... 3,650 m/sec
97,200 -5+ 29,000-12 _
Pentane (CsHy,) G= 5519 12 = 2,550 kcal
or 1,090,000kg-m . .. ... ... ... . 3,750 m/sec
97,200+29,000 -4
- ’ ' =92
Methane (CHy) G 14594 ,665 kcal
or 1,140,000kg-m . . . . .. ... ... .. 3,840 m/sec
2
Pure hydrogen (H) G= *9,_9(_)_(_)_0_= 3,220 keal, or
1,375,000Kkg 1 « - o o oo 4,120 m/sec
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The ejection velocity of gases depends on the magnitude of this energy
and is derived as follows:

2

3

1
E—Emv

or

be L -)2g G-427-91.5)G.

The high temperature of the combustion process results in a certain loss
of energy due to dissociation. At low pressures about ’/3 of the energy is
lost, whereas at high pressures this loss is insignificant. Therefore, the
ejection velocity formula should be corrected to

v= 73V_G-.

The ejection velocities thus obtained for the mentioned mixtures are
presented above.
Remark: for atomic hydrogen the velocity is taken as v=12,000 m/sec.

Oberth computes the jet velocity employing Zeiner's formula:
Ky—1
K P\
= ‘/2- .81. >0 . — =} K
c 9.8 BT Pov,,(l Po) 0

specific heat of gas at constant pressure

specific heat of gas at constant volume ~

P, — absolute pressure in the combustion chamber, kg/ m?,

P — absolute pressure in the investigated place in the nozzle, kg/m?,

Vo — gas volume, m®,

where Ky, — ratio

Oberth takes for the second-stage alcohol rocket K=1.30. For the
upper stage, where hydrogen and water vapor explode with oxygen, he uses
a different value of K, (which depends on the oxygen-hydrogen weight ratio).
Variation of this ratio from 0.8 to 1.9 changes Ky correspondingly from
1.4 t0 1.383. For oxygen Ky =1.406.

The lowest velocity is ¢ =1,530 m/sec. In his calculations Oberth
assumes ¢ = 3,000 m/sec.*

An example of a rocket engine computation. I will use
the data already introduced to evaluate the performances of a reactive
device patented by A. A. Andreev (recorded 18 February 1921). His idea
is: a knapsack containing liquid methane and oxygenpropellant is fixed tothe
back of a man. Igniting the mixture (after its conversion to a gaseous
state) and forcing the products of combustion throughtwo rocket nozzles,one
should be able, according to the author of the design, to perform air jumps of
22 km in about seven minutes (200 km/hour).%*
* Regarding the theory of gaseous ejection refer also to the article by K.Baetz "Der Raketenschuss und der
zweite Hauptsatz der Warmetheorie.” — Die Rakete, p.89. 1928.
Details about rocket propellants can be found in the article by F.Hoeftt “Betriebstoffe der Raumschiffe”
in the book: "Die Mdglichkeiten der Weltraumfahrt,” p.153, Leipzig. 1928.

e
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The liquid substances in the knapsack were to be kept in fire-resistant
containers (kaolin and refractory clay), which can withstand temperatures
up to 2,000°.

Data for the computation:

Weight of the liquid fuel (methane and oxygen) . . . . ... ... .. 8kg
Weight of knapsack. . . . . . . ... . ... o e 24 kg
Weight of man .. .. . .. 00 oo i 56 kg
Lift margin. . .. ... .. . e e 12 kg

Total « « .. ... 96 kg

Assuming complete combustion, the calorific volume of the 8 kg of
propellant mixture will be:

8X2,665X427=19,103,640 kg - m.
29 Assuming 34% losses the energy obtained will be:
Q=10.66-9,103,640=16,008,400 kg ‘- m.
The work necessary to transfer 96 kg a distance of 22 km equals:
@, = 96-22,000=2,112,000 kg ' m.
Reserve

Q _6,008,400 _ 3
Q, 2,112,000 ’

Assuming the specific weights of liquid methane and oxygen to be 0.75
and 1.4 respectively, 8 kg of the liquid propellant will occupy the following
volume:

L 1,600
liquid meth il Bt 3
q ethane 035 4,570 cm®,
6,400
liquid oxygen - =4.570 em?®.

In the gaseous state 1 liter ofoxygenweighs 1.429 g and 1liter of methane
0.716 g. Due to this information I find that these substances, being gaseous
under normal pressure, occupy the following volumes:

oxygen ?igg =~ 4,500 liters;
methane %—%(1)—(1) =~ 2,235 liters.

The total is 6,735 liters = 6,735,000 cm?.
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The volume of the combustion products exceeds 15 times the initial
volume of the propellant, i.e., 6,735,000 +15=101,025,000 cm®. Supposing
the total area of both exit nozzles to be 8 cm? and the pressure (for a conical
nozzle) 17.76 kg/cm?, the reaction obtained is 17.76 - 8= 142.08 > 96 kg.

Taking the jet velocity as 300 m/sec =30,000cm/sec, I can compute the
burning time

101,025,000 _ _ -
m = 420 sec = Tmin.
This calculation provides only a general notion about the performance

of the device and must be verified by experiments. Notice that the author
assumes 300 m/sec for the jet velocity, whereas methane itself gives

7 .
3,840 m/sec (almost 13 times more). Thus the flight will take 13 minutes
instead of seven minutes. But the accelerations created during the
functioning of the engine of this knapsack -rocket device turn out to be dangerous
for the human being. The design also does not suggest any means of
velocity control.*

7. PHYSIOLOGICAL EFFECTS OF ACCELERATION

In the course of interplanetary flights high accelerations and decelerations
will be encountered. The question is what are the upper limits of
acceleration or deceleration a man can withstand without damaging his
body, and for how long. Also to be investigated is the way a man will feel
during a prolonged flight without acceleration or deceleration, i. e., at
constant velocity in a medium without gravity. Finally, means of
minimizing all these dangerous effects must be found.

I will treat the subject in the following order: a)acceleration-deceleration
effects and how to reduce their influence; b) influence of the absence of
acceleration and deceleration on the human body and means of reducing
these effects.

a) Acceleration and deceleration effects

The weight of a body is determined from its pressure on a certain
support (a balance plate, for example). This pressure is proportional
to the product of the mass of a body and its acceleration. The acceleration
acting on a body on the Earth's surface is the gravitational one and has
values of g between 9.80 and 9.83 m/sec?,
The terms "'acceleration'' and ''deceleration' stand for velocity increase
and decrease, correspondingly. Both represent the same physical effect
of velocity gradient and will be referred to, simply, as "'acceleration effects."
According to the law of relative motion these effects will take place:
1) when the body is at rest but its molecules are subjected to acceleration

* Andreev's design (with the corresponding drawing) is described in N.Rynin "Rakety" (Rockets), p. 76,
Leningrad, 1929. [English translation by IPST, TT 70-50114,NASA TT F-643.]
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(e. g., pressure of a weight on a balance plate) and 2) when the body
accelerates but its molecules stay at rest (e.g., inertia effect on the
passengers of a tram under high accelerations). The effect of acceleration
is measured in the same units as acceleration itself, i. e., in m/sec?.

A pilot pressed into his seat at the highest point of a vertical loop
or bicycle wheels remaining attached to the circumference of the
""devil's wheel' at its highest point are good examples of the acceleration
effect. Accelerations appear under conditions of velocity changes during
a rectilinear motion or while moving along a curvilinear path. The
following formulae apply to a uniformly accelerated rectilinear motion
of a body:

1 v v
2 a’ 2s '

1
v=at; s=zat?; t=v; s=
2 a

where: v — velocity, m/sec,
t — time, sec,
a — acceleration, m/sec?,
s — path, m.

The centrifugal acceleration of a body moving uniformly along a
circular path is

2
v
b=— m/sec?,
r

where: v — circular velocity, m/sec,
r — radius of the circle, m.

It has already been proved at various times that men can withstand the
effects of acceleration without any damage to their health.

1. In war a pilot flying at 60 m/sec performed four successive
spiral turns of 140 m diameter, thus experiencing during 29 seconds an

2
acceleration of approximately 5.15g (b= 6,;—% =51.5m/sec?=~5.15g)
with no negative effects on his health.

2. In Italy experiments were performed with catapulting manned aircraft.
The catapult length was 15 m and the launching velocity at its end after about
1 sec was 28m/sec. Thus accelerations up to 31.7m/sec?=3.17g were
obtained with no harm to the pilot.

3. Similar experiments were carried out in France, near Brest, which
did not affect the pilot at all. The catapult length was 20.25 m, the takeoff
run was 13 m, the velocity at the catapult end = 22 m/sec and the acceleration
about 2 g.

4. A fireman jumped from a height of 25 m. The moment he touched
the canvas his body was in a horizontal position and he went down with it
another meter — with no damage to his health. When he touched the taut
canvas his velocity was v=12g*25 and the subsequent deceleration
a= 2§:f5= ~240m/sec?=~24g.

5. A swimmer in a standing position jumping from a height of 8 m
submerged 2 m,i. e.,anacceleration of 40 m/sec?, without any ill effects.
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6. Another swimmer jumped backwards from a 2-m height and collided
with the water surface with his body in an almost horizontal position (sliding
a little on it). Without being injured his body experienced the following
accelerations: the back skin — 200 m/sec?, the back muscles and the
kidneys — 160 m/sec?, other parts of the body — 80 m/sec?, the head and
the bones — 70 m/sec?,

7. In the course of experiments carried out during aerobatic flights
in the U.S. A. a pilot absorbed for short periods accelerations up to 7.8g,
with no damage.

A human projectile was the name of the flight from a gun demonsirated by
the Italian Hugo Zacchini in December 1927 in the Leningrad circus.

The gun length was about 5m and its inner diameter about 0.6 m.

Before firing, the piston was placed in its extreme position in the gun
barrel. Air pressure was built up in a chamber behind the piston and
Zacchini stood inside the barrel of the head. The moment the piston
was released, Zacchini was pushed out of the gun, traced a parabolic
trajectory and landed on a net. In the course of this accomplishment,
witnessed by the present author, he reached a maximum height of 6 m
traversing a horizontal distance of about 10 m in 1 to 1.5 sec, which
corresponds to an acceleration not exceeding 2 g. According to the manager,
flights to a height of 50 m are possible, space permitting. Moreover,
Zacchini intends to reach a 150 m height in the future, which is hardly
feasible., 1 will prove this with a simple calculation:

Denoting the maximum height by hm, the piston stroke by 1,the gravitational
acceleration by g and the acceleration of the motion inside the gun barrel
by b,I obtain

v =2gh=2bl; or b=glﬁ.

The assumption b=5g, which is the acceleration safety limit, renders
h

lzg. And for h=150m the piston stroke must be 30m.
Putting b= 10g (which is difficult to achieve as yet) gives

1:-%:151’1'1.

Thus for b=5g and 1=5m, I get h=25m. In reality this height will
be somehow reduced by the air resistance.

Leinert's flights from a gun. In principle, the flights performed by
Leinert in 1927 in Germany are the same as Zacchini's. Here are some
specific data on his experiment: gunbarrellength 8m, its inclination
to the horizon 70°, piston stroke 6 m, height 25 m,

I will determine the acceleration effect during the launch and the
descent.

During the launch the height of climb will be {Figure 15)

2

Vo

—Vo© i 2
y 2gs1n

a}

where vy — initial velocity,
a — angle between the gun barrel and the horizontal,
g — gravitational acceleration.
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In this case ¢ and y are known. Therefore
v :Vﬁ;
0 sin‘

The free flight begins from a 6 m-height. Thus y=25—6=19m; a = 70°;
sina =0.940; sin?a =0.883; g=9.81m. Therefore,

2:9.81-19

0.833 =21.15 m/sec.

Vo =

This velocity is developed along a path of
s=8—2=6m and the acceleration will be:

b v _21.15°2
- N A
FIGURE 15. Flight of 2 man 25 2.8

catapulted from a gun

=37.3m/sec?,

i. e., the overload or acceleration effect is almost 3.8 times higher than at
niormal conditions. However the flyer was not injured at all.

The overload while touching the net (stretched at a height of 6 m) with
which he went an extra one and one-half meters was much higher. At such
a braking distance the deceleration equaled:

<

2 21,152
s 2°1.5

|

b= =149 m/sec?;

N
[\

or more than 15.2 times the normal acceleration.
The duration of the free-flight phase:

_ 2vgsine _ 2°21.15-0.940

T g 9.81

4 sec.

Throughout all his flights Leinert experienced no physiological problems.
Notice that at the launch the body axis vector was pointed in the flight
direction, whereas during the descent it was perpendicular to its trajectory.
Should such a flight be performed by means of a rocket, its weight would

be determined as follows.

The acceleration in the gun barrel was 37.3 m/sec?, so the rocket
acceleration should be about 47 m/sec?.

Denoting the rocket reaction thrust by P and its total weight (rocket
engines + payload) by G, I will obtain the relation

v_P
=Y L. g=47 2
b -G ¢ m/sec?.

A rocket producing a thrust of 4.8 kg during a burning time of 0.15 sec
will 1ift (based on experiments) a load:

4.8
.v=g' gt=7—=-9.81-0.15="7.05m/sec.

—
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Relative to the Earth the velocity will be:
' P
v!= (a——l) gt=3.8-9.81-0.15=5.6 m/sec.

The weight of the rocket which provides this effectis 55 gram,thus allowing
1-0.055=0.945 kg for the payload. But to accelerate this payload to a

velocity V=21.15m/sec one must use a large number of rockets.

Denoting the weight of a single rocket by G, the payload lifted by it

by N and the full payload L=100kg, 1 will derive the expression for the
necessary number of rockets:

v 21.15
L ( G')V' } 100 L 5.6 }
n=— {1+ 2} —1] = 0.055 B
G' [ N 0.055 (1+0.945) 1| =

3.78
=1,820 (1.0582° —1)=435,

If these rockets had to lift a man, they would have to be arranged in
four rows (e.g. 100,106,112 and 117 units), whereas the acceleration
exerted upon him would not be very great.*

It is now time to examine the physiological effect of accelerations
different from g=9.81m/sec?. The inner ear is the organ which
is sensitive to velocity gradients. The ability of the human body
to absorb this effect varies according to the circumstances; I will
examine some of these.

Merry-go-round. The radius of the rotating ring is 4 m and the
suspension of the seats is 2 m long. It accomplishes one complete rotation
in 6.5 sec and the seats are deflected outward by 1.15m; therefore the
radius of the circular path is 5.15m. The circumferential velocity is

5.5 m/sec and the centrifugal acceleration 5 m/sec?. Taking into account

the vertical direction of gravity I will obtain the resultant acceleration

V 9.82452=11 m/sec?. Although its vector creates an incline angle of
26.6° with the vertical, a passenger with shut eyes can point correctly
in the vertical direction.

Banked flight along a curved trajectory. Contrary to the

previous case the pilot experiences a different feeling. The earth surface

does not seem immobile to him, but it tilts.

Elevator. The acceleration effect created by an elevator descending
with a velocity of 1 m/sec and brought to a stop within 0.2 m
(i.e.(2.5+g)m/sec? for 2/5 sec) will be much more unpleasant than at a
jump into water when a deceleration of g= 25 m/sec? acts during the same

time interval (% sec).

In general, a moderate roll {e. g., of a ship) is more unpleasant from
the acceleration viewpoint than sudden braking. Moreover, the human
reactions to these velocity-gradient phenomena depend on other factors,
e. g.: whether or not they are expected; whether or not they are experienced
voluntarily, and so on. Experiments performed in 1924 in the U.S. A.in the
course of aerobatics proved that the maximum acceleration a pilot can

® cf. "Die Rakete,” p.28. 1928,
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withstand depends on how long it acts upon him. A pilot safely endures
short accelerations which exceed even 7.8 times the normal gravitational
acceleration (g=9.81 m/sec?). However, accelerations higher than 4.5¢g
and inflicted upon him for a few (10 to 12) seconds affect an airman badly:
the brain lacks oxygen (blood does not reach it) and he feels that he is going
blind.

It should be noted that people with high blood pressure resist high
accelerations better and regain their normal health sooner.

A rocket may experience different types of motion — rectilinear or
curvilinear — rotations with reference to either of its inertia axes,
accelerations and decelerations; human senses react differently to all
of these. Especially peculiar is the effect of the Coriolis acceleration,
which occurs during a combined type of motion (when a body simultaneously
advances and rotates around a certain axis). All these acceleration effects
on men and animals were studied by many scientists (Purkinje, 1826;
Mach,1875; Tsiolkovskii,1895; Prandtl, 1926; Saint-Cyr experiments, 1927;
Harco and others).

Acceleration need not affect human senses seriously. However, decrease
of speed causes fright at the first moment, which can be overcome by
practice. One who will participate in rocket spaceflights will have to be
trained beforehand ina rotating laboratory. Thus he will be immune
to acceleration effects.

The above review of experiments shows that a human organism can
hardly take accelerations exceeding 4 g unless special protective devices
are developed. Assuming that 4 g corresponds to the effective climb
acceleration 4g—g=30m/sec? it is obvious that the cosmic velocity
v=9,000 m/sec can be reached in 300 seconds. However, the acceleration
effect will not be dangerous even at higher velocities, e. g., v=11,160 m/sec,
because under normal conditions it is decreased by the gravitational

300

attraction by S gdt = 2,400 m/sec and by the aerodynamic resistance by

0
another 200 m/sec.

In order to shorten the takeoff time, special devices (e. g., braking
springs on hydraulic pistons) should be designed. Thus the acceleration
effect will be reduced as much as possible. Tsiolkovskii suggested setting
the acceleration endurance limit at 10 g, and staying under it by placing the
man into a water container during takeoff (managing breathing by a special
oxygen-supply device).

Experiments with permissible acceleration. Experiments to find out how
acceleration affects the human body were carried out in Breslau on
10 July 1928. A merry-go-round built by the firm "Willi Vorlop jun"
(Hannover) served the purpose. The distance between the center of gravity
of the man and the axis of rotation equaled 3.2 m. He completed
24 revolutions in a minute (or one revolution in 2.5 sec).

Under these conditions the centrifugal accelerations equaled:
a=472 t% =39.48. t%’ where r — radius=3.2m; t — period of one revolution=
=2.5sec. Accounting for the acceleration (g) of gravity I derive the
expression for the over-all acceleration b= } g%+ a® which renders
b=23 m/sec? for the given numerical values. That means that the man
experienced an acceleration of 2.3 g.
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No interference with normal functioning of the heart, lungs or the brain
was noticed. Neither consciousness nor memory was affected.

On the other hand, the pressure of the body on the outer wall was
hardly bearable. Arms and legs became heavier although they
remained well-controllable. Free muscles, e. g., those of the cheeks,
stiffened, especially when the head was turned. It was difficult to hold the
head straight when unsupported. The center of the merry-go-round
seemed to be located higher than it really was, although not as high as
would correspond to the direction of the resultant force (but only by 40°).

During the following experiment the speed was increased to one
revolution in 1.7—1.8 sec or 10 revolutions in 17.5sec. This corresponds
to a centrifugal acceleration of 42 m/sec? {or 4.3 g). Heart, lungs and
memory functioned normally. The arms and legs worked but appeared to
get heavier. The weight of the clothes seemed to increase. Moreover,
pressure was exerted by the body on the outer wall, The center of the
merry-go-round seemed to be located even higher (by 20 cm).

According to observations of Gillert and Kaiser, who carried out simijlar
experiments with a merry-go-round in Adlershof, Germany, a man
withstood without injury an acceleration of 4%, g while facing the rotation
axis, but looking outwards he lost consciousness in quite a short time.

b) Absence of accelerations

Everything inside a spacecraft moving only under the effect of
inertia and gravity forces will become weightless, All bodies not attached
to the frame of the craft will start floating in its inner space. Released
outside the craft, they will move alongside with zero relative velocity.
Liquids will become spheroidal and cease to exert pressure on the sides of
their containers, and so on.

It is possible to create an artificial gravity by means of rotating the
rocket or the compartment in it around a certain axis. The resulting
centrifugal force will produce the desired acceleration effect. For example,
forarocket 100 m long and rotating at 10 m/sec, the acceleration will

102 2 . 1
be 55~ =2 m/sec? i.e., Y58

8. APPROXIMATE ROCKET THRUST CALCULATIONS.
TSIOLKOVSKII'S EQUATIONS AND STATEMENTS

Having discussed the physical parameters incorporated in the basic
equationof rocket motion (1),I will now examine different cases of rocket flight.
Here are some of the approximate methods of calculating the flight of a
craft propelled by reaction forces.
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a) Vertical flight in a vacuum and outside any
gravitational field

a) Takeoff. Icite equation (1) taking R=0, g =0 and supposing that
the shell (empty fuel tank) is not jettisoned,

cdm = (M —m)dv, (13)
Separating the variables, I will obtain

dm
M—m’

o|%

Integrating this equation will give

dv _ dm
j?— jM—m *C

%= —In (M—m)+C.

Here In is the natural logarithm.
At the beginning of the flight m= 0 and v=0. Therefore

C=1nM.

Then

v
E—lnM—ln (M~—m)=1n M—m

or

v=cln (14)

M-—m’

The velocity v will attain its maximum value v n.x When all the
propellant is consumed, i. e., when m =m,;, m; being the total propellant
mass.

Denoting the remaining rocket mass as M, yields the following form
of equation (14):

M; +m,
v = ¢clp ————
1
max M1

and, defining q, = I—nM—l I obtain finally
1

Vimag = ¢ln (1 + q) (15)
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which renders

c)—1 (16)

ar = exp (v, /

Since equation {15) was first derived by Tsiolkovskii, I refer to it as
"Tsiolkovskii's first equation." Its meaning is as follows:

Statement 1. Rocket flight velocity in a vacuum, with zero
gravitation, proportional to the jet velocity {(c) and increases with the
increase in the ratio of the propellant mass to the total mass of the rocket.
From equation (16) follows:

Statement 2. The higher the jet velocity, the less propellant is
needed in a rocket to attain a certain flight velocity.

39 The lower curve on Figure 16 represents equation (15). The q;-ratios
are plotted on the axis of abscissas, v q,x on the axis of ordinates. The
curve shows that just after the launch the velocity increases rapidly and
then this increase slows down.
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FIGURE 16. Flight velocity and utilization of the rocket,

I define — after Tsiolkovskii — utilization (u,, %) as the ratio of the work
of the rocket to the work of the propellant.
The work of the rocket equals:

2
T, =%M1; or, taking (15) into account:

1

c?

5 M, [in(1+q)P2.

Tl =
The work of the propellant is:
2
c
Tl' = E’ m;y.
Thus the utilization is:

u1=%'=rMn_i[1n (1+Q1)]2=c%1 [In (1 +q))? 17)

This is Tsiolkovskii's second principal equation. It is represented

by the upper curve in Figure 16. Ratios q; are plotted on the axis of
abscissas and the utilization u; on the axis of ordinates.
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On the basis of equation (17) the following statement can be made:
The rocket utilization increases with the ratio q

Statement 3.

(fuel mass to rocket mass), reaching a maximum (64.75%) at ap= 4.
and then decreasing.

Results computed from formulae (15) and (17) for jet velocities of
5,000 and 4,000 m/sec are presented in Table 8.

TABLE 8. Ratios (q) of propellant mass to rocket mass for different cases of flight

Rocket velocity

Gravitation-free medium

Medium with gravitation

Vps m/sec
— takeoff takeoff takeoff and descent
_ Vo= takeoff and
vs = 5,000 =4,000 descent d
m/sec m/sec
q; kp qp b=4g b=10g b=4g b=10g
0 0 0 0 0 0 0 0 0
4172.5 378 0.1 8.87 0.21 0.13 0.11 0.29 0.24
910 728 0.2 16.55 0.44 0,27 0,22 0.62 0,50
1,310 1,048 0.3 22.9 0.69 0.42 0.34 1.01 0.79
1,680 1,344 0.4 28.2 0.96 0,56 0.45 1.45 1.11
2,025 1,620 0.5 32.8 1.25 0.72 0.57 1.94 1.46
2,345 1,876 0.6 36.7 1.56 0.87 0.68 2.49 1.84
2,645 2,116 0.7 40,0 1.89 1.03 0.80 3.10 2.25
2,930 2,344 0.8 42.9 2.24 1.19 0.92 3.78 2.69
3,210 2,568 0.9 45.8 2.61 1.35 1.04 4.51 3.16
3,465 2,172 1.0 48.0 3.00 1.52 1.16 5.32 3.66
4,575 3,660 1.5 55.8 5.25 2.38 1.717 10.44 6.65
5,490 4,392 2 60.3 8.00 3.31 2.39 17.85 10.5
6,900 5,520 3 63.5 15.0 5.32 3.66 38.95 20.7
8,045 6,436 4 64.75 24.0 7.50 4.97 71.32 34.6
8,960 7,168 S 64.1 35 9,84 6.31 116.5 52.4
9,730 7,784 6 63.0 48 12,30 7.67 176 4.2
10,395 8,316 T 61.7 56 14.89 9.16 251 100
10,985 8,788 g 60.5 80 11,88 10.48 344 130
11,515 9,212 9 58.9 99 20,38 11,92 463 165
11,990 9,592 10 57.6 120 23,217 13.32 588 204
13,865 11,092 15 51.2 255 38.95 20,71 1.595 470
15,220 12,176 20 46.3 440 56.35 28.35 3.289 861
17,170 13,736 30 39.3 960 95,27 44,23 9,268 2,045
22,400 11,920 50 31.0 2,700 185.17 11.60 34,844 6,176
26,280 21,042 (100 21.0 10,200 462.2 168.8 214,529 28,156
30,038 24,032 193 14,4 31,635 1,102 345.3 1,217,690 119,929
w© @® @ 0 © [eo] ® © [sY)
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Note. The forthcoming calculation shows that the maximum u, is obtained at q;=3.92155 and equals
64.76%.

1 now find the derivative of (17):

_ U (1+qy7*
uy = —

qi
2 1+
= Ll&iq_—ql)_ [0@+a0¥ y14qy
1 = Ly [2q; — (qu +1) In(1+gp).
o (Tvqpef 0™ :
The condition for maximum is:

2q; —(1+qy) In(14q) =0

or converted to common logarithms:

(1+qyp
flgp =2q; — (14 qp 1g M‘“ =0,
41 I carry out the calculation using Newton's method and first compute the derivative of the previous f{q):

, _, lg(i+qy
f'{qp =1 - -

1st approximation for the root q;=4:

2nd approximation for the root q;=4 — 0.0776 = 3.9224:

-~
=

{499 = 4 g008s,

qs

—-

3rd approximation for the root q; = 3,9224 —0.00085= 3,9215:

M = 0,000007;

FIGURE 17

4th approximation for the root q;= 3.92155 + 0.000007 = 3.921557.
The maximum u; = 0,6476 (or 64.76%) is found at q; = 3,92155.
If a rocket moves with constant acceleration b, the time it takes to
consume all its propellant is:

Vimax

b

= (18)

I now determine the flight velocity which corresponds to the best
utilization. The ratio between the work produced to the work consumed
can be written in the form:

me?  my {c—v)

2 2 e\ v
U = m102 = (2 —Z> E‘-

2
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The highest value of u;, will be achieved when 2 —% =% or at v=c.*

B') Ascent and descent assisted by reaction thrust.
I now examine the following case (Figure 17). A rocket is launched from
point A in a medium where no atmosphere or gravity exist. Consuming
a part of its fuel it reaches point B at a certain velocity vomax. It then
turns 180° around its transverse axis and by means of retro-thrust
decelerates down to zero velocity at point C (BC = AB). This case is
essentially equivalent to the following one. A rocket launched from A with
an initial velocity vimaxarrives at B with zero velocity and, falling back,
regains the same viga,at A (thereturntripis represented by the dashed line).

I denote the propellant reserves at the takeoff by m,.

The propellant mass necessary for a rocket of mass M; to take off from
A and arrive at B is

my = qp - My;

the same for the propellant mass m; from A to B is
my'=q; - my .

To decelerate the mass M; from B down to A, we need
my = qq - My.

The total propellant mass is
my = 2my +my' =2 My + qmy = qy (2M; +my).

Dividing both sides of the equation by M, and denoting % =(,, [ have:
1

@=a 2+q).
But
2qptqf=(1+q )P - 1.
Thus, finally
gp=0+q)f - 1. (19)

This leads to the following statement.

Statement 4. For a rocket ascending and returning by means of
reaction of gases in a medium without gravity and atmosphere, the ratio of
the propellant mass to the mass of the rocket equals

(1 +Q1)2_ 1,

where q; is that same ratio, necessary only for ascent.

*  Professor B. Stechkin also worked on the problem of determining thrust and efficiency of a jet engine working
in air (“Teoriya vozdushnogo reaktivnogo dvigatelya" (Theory of Jet Engine). — "Tekhnika vozdushnogo
flota,” No.2. 1929, e.g.,at v =600 m/sec, uy =0.182),
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Substitution of the corresponding ratios q; in the formula (19) yields the
qs-values (see Table 8). Comparison of q; and q, columns shows the
remarkable increase of the ratio of propellant-to-rocket mass in the case
of a descent assisted by a decelerating retro-thrust.

b) Vertical flight in a gravitational field

@) Ascent. Assumingfirstthatthe gravitationalacceleration equals g and
is constant, I begin to examine the case of a rocket taking off in a
gravitational field.

The burning time of a given propellant mass does not depend on whether
or not the rocket travels through a gravitational field. Thus, analogously
to equation (18):

Vimax  V3max

t=""p = g (20)

where vamax is rocket velocity at the moment when all the propellant is
consumed. Obviously vam,x< Vimax-
Taking equation (15) into account I obtain from (20):

Vamax= C (1—%) In (1+q) (21)

Should I wish to obtain the same velocity as in the non-gravitational case,
i. €., Vimax. I would have to take a certain ratio qz of the propellant mass mj,
to the mass M; of the rocket. This ratio is determined by the formula:

Vimax = © (1—%)1:1 (1+qs) (22)

which yields

Vimax _b

but, according to {16):

Vimax

e °© =q +1.

Therefore (23) is converted into:

o
o

a3 =(q;+1) Pl (24)

This is Tsiolkovskii's third equation. Together with equation (21) it
leads to the next statement.
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Statement 5. The smaller the gravitational force, the higher will be
the flight velocity. Besides, to reduce g3 it pays to increase b, i.e.,to
impart to the rocket a higher acceleration in order to facilitate a faster
escape from the terrestrial gravitational field.

Values of qs computed from (24) are presented in Table 8.

1 now calculate two examples to find q; and the ascent time, one for
b=10g, the other for b=4g (see sec.7). Taking the rocket velocity as

Vimax=11,990 m/sec; ¢=5,000m/sec.

First example:
b=10g.
From relation (22):
11,990 = 5,000 (1 —110) In (1 +gqg),
hence

qs = 13.32.
Ascent time

11,990 _

—m—“' 133 sec.

Second example:

b=4g;
1
11,990 = 5,000 (1—2) In(1+qy);

qg =23.27; t=400sec.

Without gravity the same velocity could be attained at q; =10 during
the following ascent time: in the first case

11,990

= —'T—O"g——= ~ 120 sec

and in the second case

11
t= 990 _ 300 sec.
4g

I will now compare the work done by the rocket during its travel in a
gravitational field to that done in a gravitation-free medium.
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1 assume, the same as Tsiolkovskii, that gravitational acceleration (g)
does not change with altitude; then we obtain results much less favorable
than in reality.

From mechanics, the work done by a rocket in a gravitational field is:

2
v
Ty = 8% g,
and in a medium without gravitation
2
v
T] = _lrg_ax_ Ml'

Taking (20) into account, the ratio of these two quantities of work is

etk - (5 (1)
~3 - Y3max = = -2 (25)
T1  Vimax g b

This formula confirms statement 5.

B) Ascent and descent by reaction of gases. To
determine the ratio q4 of the propellant mass to the rocket mass in
this case, ] make use of the formula (19), in which q; is substituted for g;.
From the relation (24)

b 2b

— 2 s
Q4={1+ |:(<h+1)b_g ‘1]] *lz(%*l)b—g -1 (26)

I have calculated the g4-values for different q; and for b=10g and b=4g.
They appear in Table 8.

Values of qy,qs2, g3, q4 for different c (5,000 and 4,000 m/sec) and
b (10g and 4g) are plotted versus v in Figure 18.

¢) Inclined ascent in a gravitational field

If a rocket possessing its own acceleration (b) is launched vertically
(i.e., along a radius of the planet), its effective acceleration in a medium
subjected to the influence of a constant gravitational acceleration (g) will be
b—g.

But if it follows an inclined trajectory, its relative acceleration will be
higher. For example (Figure 19), if the angle the rocket path makes with
the vertical is v, its relative acceleration will be

b1=Vb2+g2—2bg cos 7. (27)
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In the limit, its acceleration in horizontal flight will be:

b= b2 g2,
and

COS’Y=g.

o8

46 Iwill now examine how the work of a rocket changes at different ascent angles
(keeping the initial fuel reserves and burning time constant).
One must keep in mind that the work is proportional to the square of the
acceleration. Thus the ratio of the work done in an inclined ascent to that
in vertical ascent is

_b?+g®—2bg cos v

u! b—g)p . (28)
I denote
b=ng.
Then
= n?g? + g22—2ng2cos v _ (n®*+1—2ncos v)
gh-1p (n—1F

In the limit case (that of horizontal ﬂight):

_g_t
CcoS ¥ b n,
then
w=ntl
-

Table 9 presents values of u' for different v, for
1
cos v = from 1 to o

and
n=4 and n= 10,

The data of Table 9 are plotted in Figure 20 in the form of two curves:
one for u' at n=4, and the other at n=10,
Both these graphs and the relation (28) lead to the following conclusion:
Statement 6. For flight in a vacuum it is advantageous to keep
the launching angle and the acceleration as low as possible.
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TABLE 9

w
Y
n=4 n=10
0* 1.00 1.00
10° 1.02 1.00
20° 1.05 1,01
30° 1.12 1.03
40° 1.20 1.06
50° 1.32 1,09
60° 1.44 1.12
70° 1.59 1.16
75°30 1.66 1.19
80° - 1.20
84° 50' - 1.22

47 d) Launch in a medium with gravity and atmosphere

Atmospheric resistance reduces the rocket velocity. The smaller the
launching angle, the more energy the rocket will have to spend to overcome
this aerodynamic resistance. Thus the air-drag factor cancels the
advantage of the inclined launch, which otherwise could diminish the effect
of gravity.

I will now evaluate the influence of the atmosphere in a vertical launching.

The upward acceleration without taking the atmosphere into account is

dv_ . rg
L s

where ry — the Earth's radius,and r=ry+h,where h — the ascent altitude
of the rocket.

But 3—:= v and therefore

o2
vdv = (b—go — | dr.
r

Integrating, I obtain

2 2
¥ =pr+ 80,
2 r

The constant C is determined from the condition that at the Earth's
surface r=ry and v=0, thus

C=—ry (b+ g)
and
2 r
Letr=ro) (b-a ). (29)
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The overall atmospheric resistance can be represented by the resistance
of an equivalent air layer 50 km thick with an average specific weight
of 0.2 =6 throughout it.
The resistance is given by (see (12)):
v 0.2

R= z cF-i= 10 veF - 1.

The deceleration caused by this resistance is

R 0.2 F .
I\_/l=l_—.vz.—]\7[-1‘ (30)

Adopting Hohmann's assumptions I will take a 600-kg load per m? of the
rocket frontal area; its shape factor i=0.12 and the average ascent
speed through this layer is about 0.775 km/sec.

Then
=02 1 SmeE? _ 2
ba =705 "5op  0-12 775" =2.4m/sec’.
48 Therefore, instead of acceleration b the rocket will receive an

acceleration of
(b—2.4)m/sec?.
For example, b=40 will yield:
b—2.4=37.6m/sec?.

Computing from (29), for r= 6,370 we obtain

v _ .6,370) 2 .
= 50{0.0376 —0.0098 * 255 |= 1.395 km / sec
instead of
0
50(0.04 —0.0098 g—:%?)): 1.515 km?/sec?,
or

v=1}2-1.395=1.67km/sec

instead of

v-y2:1.515=1.74 km/sec.

Thus the flight duration will be

v _ 1,670
b—b,—g 37.6—9.8

t= = 60 sec
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instead of

1,740

L1780 _ 57 6 sec.
40-9.8 sec¢

The mass ratio will be (from (24))
_ b
gq= (g +1)b-8-24 —1 (31)
instead of

b
q3=(q1+l) b-g — 1,

Assuming, for example, q; =10, b=4g, I will get:

qs=10.8
instead of
gz =10.2.

Hohmann has compiled into table form a comparison of mass ratios at
different flight accelerations and jet velocities (c).

49 TABLE 10
A3 q4 q3 Yy q3 9
Accelerations, m/sec’ ........... 30 30 | 100 100 {200 200
Flight time,sec ...........cv0ts 448 456 117 123 31 64
c=4,000M/SEC v vvrvurnnnnnnn. 28,7 30 18.7 29 17.2 25
Cc=5,000M/sec .. v vvirrnnannn.. 14.6 15 10.4 12 9.8 13
Final velocity v, km/sec ,....... 9.68 - 10.65 - 10.89 -

Examination of equation (30) reveals various means of reducing the
aerodynamic drag effect: a) increasing the mass of the rocket;
b) diminishing its cross-sectional area; c) lowering flight acceleration;
d) improving the aerodynamics of the rocket (decrease i). In general, even

at b=10g the masses increase (see Table 8) by 18—15%, whereas at b=4g
only by 5—3%.

9. THE LATEST STUDIES IN ROCKET FLIGHT
The classic work by Tsiolkovskii was followed by many works by

scientists who studied in detail many specific problems in reactive propulsion
and spacecraft design. I will mention some of them: 1) Esnault-Pelterie
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"Considérations sur les résultats d'un alldgement indéfini des moteurs,"
published in France in 1913; 2) Robert Goddard "A Method of Reaching
Extreme Altitudes,"” which appeared in the U.S. A. in 1919; 3) Hermann
Oberth ""Die Rakete zu den Planetenriaumen," a book published in Germany
in 1924; 4) Hohmann "Die Erreichbarkeit der HimmelskSrper," which
appeared in Germany in 1925,

Further, in the years 1926—1928 works of Valier, Lorenz, Lademann,
Manigold, Scherschevsky, Pirquet, Crocco and new publications by Oberth,
Esnault- Pelterie and many others appeared.

I shall just point out the principal contributions of certain authors,
drawing the attention of the reader interested in details to the bibliography
at the end.*

50 a) Esnault-Pelterie's work
Esnault -Pelterie writes the basic equation of rocket motion (1) inthe form:
cdm = — Mdv,

Further, he accounts for the gravitational work and develops the
calculation of a rocket traveling from the Earth to the Moon and back to
Earth. He distinguishes between three distinct phases in such a flight:

1. The rocket takes off from the Earth's surface and accelerates up to
the velocity which enables it to escape from the terrestrial gravitational
field.

2. Combustion (energy release) is cut off and the rocket is driven
forward by inertia.

3. At a certain point in the approach to the Moon the rocket turns through
180° around its transverse axis and the reignited engine decelerates the craft
down to zero velocity at the Moon surface. An analogous sequence of events
takes place during the return trip. The author assumes a very low
permissible acceleration, namely 1.1g.

The initial rocket weight is taken as 1,000kg, of which the propellant has
a share of 300kg. Under such conditions the necessary jet velocity has to
be 65,300 m/sec and the propellant must produce 512 - 103 kcal per kilogram,
which no existing fuel can supply. Therefore, Esnault-Pelterie suggests
using radium for fuel, which can supply this energy and more.

b) Goddard's work

Goddard introduces an original method of solving the basic equation
of rocket motion (1):

¢ (1—k)dm=(M—m)dv+[R+g(M—m)]dt. (1)

* A similar account of the history, technological theory and literature pertaining to interplanetary
communications can be found in N.Rynin's “Mezhplanetnye soobshcheniya” (Interplanetary Flight and
Communication), No.1 “Mechty, legendy i pervye fantazii” (Dreams, Legends, and Early Fantasies);
No.2 "Kosmicheskie korabli v fantaziyakh romanistov" (Spacecraft in Science Fiction); No.3
"Luchistaya Energiya v fantaziyakh romanistov” (Radiant Energy in Science Fiction); No.4 "Rakety”
(Rockets). [ Translated by IPST, TT-50111, TT-50112, TT-50113, TT-50114.]
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He assumes that a rocket flight can be realized if the initial rocket mass
M does not exceed a reasonable maximum value. This leads to a definition
of a constraint imposed on the problem: the mass (m) ejected at the
time (t) should not be lower than a certain minimum value. This condition
of minimum man is used while integrating the equation of motion (1).

The following reasoning proves that such a minimum of mass does exist
(granted that a given mass has a predetermined velocity at a given altitude).
If at a certain intermediate altitude the ascent speed is excessively
high, the air resistance (which depends on the square of the velocity) will be
high as well. On the other hand, if the ascent speeds are too low, the
appropriate jet reaction will have to overcome the Earth's gravity for too
long a time. Both cases demand excessive quantities of propellant. It is
obvious now that the ascent speed has a suitable value for each
altitude. To put it in a different way: the unknown function

v="~f(h),,

where h is the altitude, has to be determined in order to keep m at the
minimum value.

Integration of the equation (1) leads to a variational problem which seems
insoluble to Goddard.* Instead he suggests the following approximate
solution:

He divides the altitude h into a large number (n,y) of intervals and
assumes that R, g and the upward acceleration are constant throughout
each interval. Let v in each interval be given by v=bt, where b — constant
acceleration. Then equation (1) assumes the form

dm _(M—m) (b+g) +R
dt ~ c(1—k) ’

and its solution is

_brg . b*g
e ¢ Mb+g)+R [e <0 c].
b+g

The constant C is found to be—1 from the condition that at t=0 we have
m=0. Thus

_ b+g .
m=(M+l>(1 —e =0 ) (32)

b+g

This equation is applicable to every altitude interval throughout which
R, g and b remain constant.
Introducing the condition that the payload that reaches the highest point
of the trajectory equals 1 1b, the equation can be further simplified.
In this case the initial rocket mass necessary to lift this unit payload
up to the desired altitude will be the sum of n, initial masses for the separate
intervals.

® G.Hamel in Berlin solved this problem later and found a minimum v of about 1,000 to 1,100 m/sec at an
altitude of h=100km.
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Assuming the final mass in each interval to be M=m=1 and substituting
this value in equation (32) Goddard obtains the mass at the beginning of the
interval under examination

b+g b+g

—_— t
R e _ c(1—k)
T ( 1)+e (33)
52 If R and g equal zero, then
bt
Mzec(l—-k)_ (34)

The ratio of masses in equations (33) and (34) indicates the effect
of R and g on the mass increase. When this ratio is minimum, M will
also be minimum for the same interval. The total initial mass necessary
to lift 1 1b of payload up to a given altitude will be the product of the
minimum masses (M), obtained for each interval.

Goddard takes the following values for his calculations: k= lls-;

c(1—k)=2,134 m/sec (or even less). He derives the aerodynamic resistance
from relation (11). He divides the atmosphere (which is assumed to extend
up to an altitude of 2,685 km) into nine intervals and chooses accelerations
(b) as b=15 m/sec? and 45.7m/sec?.

The results of Goddard's calculations of the initial-to-final mass ratio
for a powder rocket are presented in Table 11, He carries out the
computations for ¢ (1—k)=2,134 m/sec and b=45.Tm/sec?®. Knowing b,
he is not obliged to compute the minima of the masses but determines them
directly from equations (33) and (34), in which all the right-side parameters
are known for each interval. The time t of every interval is found from
mechanics — according to the condition of motion of bodies projected

1
upward in a vacuum. The equation is h=vyt+ Eblt"’, where vy, h and b,

are known.

TABLE 11

Altitude,km ..., 56 186 704 [s9)

Flicht time . sec 114 19 285,082 475.99 Foe)
1ga €, 5eC 114,13 450,95 475,43 <

M

v T 3.665 6.40 12.33 602.0

M,

¢) Oberth's work
Oberth writes the basic equation of rocket motion (1):

c{l—k)dm= (M—m)dv+ [R+g (M—m)dt] (1)
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in the form:
edm + mdv+ Qdt=0;
let
k=0; M—m=m'; Q=R+g (M-—m).

From now on I will explain Oberth's reasoning, using the notations of
equation (1) and assuming k=0 in it. The term cdm is transferred to the right
because the ejection velocity is opposite in sign to the flight velocity:

(M—m)dv+[R+g(M— m)] dt+cd (M—m)=0
or
m'dv+ Qdt+ cdm' = 0. (35)

At first Oberth treats the rocket motion inside the terrestrial
atmosphere and, as Goddard did, determines the optimum velocity, i. e,
the velocity at which: 1) momentum {M—m)dv is constant, and 2) propellant
consumption dm is minimum.

Let a rocket at an altitude h pass through an air layer of such a small
thickness dh that through this interval the air density and the rocket mass
m' remain practically constant, whereas the momentum shows a constant
increase by mdv.

The time of traversing this layer is dt= (i’—h and the equation (35)
changes into:

m'dv K Q dm’
MOV = 4 22 =
c 0. (36)

Assuming m'dv and dh constant I differentiate with respect to v:
Q) (dm'
.d_(v pde dm | T\aR)_
dv dv dh dv
The supposition ¢ = const obliges the second term of this equation to

equal zero.
The condition of minimum propellant consumption gives:

R (4m) - o

dv ~ dh d dv

and then
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But Q=R+ gm!', gm' being the body weight and R its aerodynamic
resistance:

R=k:-F-B- v

Here k is the aerodynamic drag coefficient, which depends on the shape
of the rocket and its velocity v.
54 Substituting these values in the expression for Q, we obtain

9: FBkv+m_'g,
A\ v

and in the expression of the derivative we have

Q

\v m'g (k dk

—_—= + + =l
dv v Fp v dv)

Setting this expression equal to zero I obtain the optimum velocity %)

v _ m'g (37)

FB(Vd—k+ k)
s . dh s
Multiplying all the terms of the equation (36) by e and substituting the
optimum velocity v instead of v results in Oberth's basic equation. This

equation describes the rocket motion for minimum propellant consumption:

th dm'

— =0. (38)
C mc m

The following quantities enter this equation in connection with (37):

2
r
g-—981 . m,
h—hy
——Har
B =.Boe H s
k= const at v >460m/sec,

H'=6,300m.

Computations based on the method revealed above bring Oberth to the
conclusion that an acceleration of 30 m/sec? has to be imparted to a manned
spacecraft in 332 sec in order to pierce the double envelope of the
Earth's gravity and aerodynamic resistance. Thus it will reach an altitude
of 1,653 km and a velocity of 9,954 m/sec. The escape into space will be
guaranteed at this point because the computed velocity exceeds the parabolic
one.
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To overcome the Earth's gravity, the rocket experiences at the beginning
of these 332 sec a deceleration of 9.81, and at the end of this interval
6.17 m/sec? (on average 8 m/sec?), thus losing 2,656 m/sec of velocity.
The atmospheric drag losses amount to 200 m/sec. Therefore the rocket
should develop a velocity of 9,954 +2,656 + 200 =12,810 m/sec. If the rocket
follows a curvilinear and not a vertical path, this velocity can be attained
in 3, of the previous time interval, namely in 260 sec. The gravity
deeeleration effect will result in 2,000 m/sec (instead of 2,656), and the
thrust will speed the rocket up to 12,100 m/sec.

An unmanned craft can undergo higher accelerations and, making its
way up in a shorter time, it will "spend” only about 800 m/sec on the
decelerating effect. Should this effect be absent, the rocket would attain
the parabolic velocity of 10,923 m/sec at the altitude of 280 km, where the
gravitational acceleration equals 8.996 m/sec?. Therefore, the overall
velocity needed will be 10,923 + 800=11,723 m/sec.

“w, IBOkmps 0

4, 80sec Ly 8V sec

7-E¢ Hmin

Start of:

free flight
h,=89.4km, v,= 5139 m/sec, t,= 8.15sec
h;=56.2km, vy{= 3000m/sec, t,= 40sec
hy=7.75km, vy = 500 m/sec, ty= 8sec
ho=5.55km, vy =60

HR action ls Msec

AR action
booster actiony, . ysgsec

FIGURE 21. Rocket flight, after Oberth

Oberth suggests a three-stage rocket design (Figure 5) for an unmanned
investigation of the upper atmosphere. The launch is to be carried out in
the following sequence {Figure 21).

The rocket is lifted by means of dirigibles from a given point {a) on the
Earth's (or sea) surface up to an altitude of h'g=5.55 km. There it is
released from the dirigibles and a booster rocket takes it in 8 sec up to an
altitude hy=7.75km; a velocity v, =500 m/sec is imparted to it at
the same time. At that altitude the booster is jettisoned and the second-
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stage alcohol rocket (AR) takes over. In 40 seconds it takes the craft up
to an altitude of h; = 56.2 km, speeding it up to a velocity v, = 3,000 m/sec.
Now it is the turn of the hydrogen engine (after the AR has been jettisoned).
It brings the vehicle in 8.15 sec up to the altitude h, =89.4 km, imparting
to it a velocity v,=5,139m/sec. Here the last jettisoning takes place
and the upper cabin, equipped with stabilizers, performs a free ascent up
to the highest point of the trajectory at hg=1,960 kmm. Then tracing an
ellipse it descends by parachute to a point (b) on the Earth's surface.
This point will be behind (to the west of) the launch point (a), which has
passed in the meantime to point (a,).

Weights of the rocket components are the following:

HR — Hydrogen rocket:
Head including instrumentation and

parachutes . ............. . 3.6 kg
Propellant . ... ... ... v.... 3.3 kg
Fullweight . ... ............ 6.9 kg
56 AR — Alcohol rocket:
Shell without propellant. . ... ... 51.2 kg
Propellant . ............ ... 481 77 kg
Fullweight . .. ............. 538.97 kg
Weight of both rockets., ........ © 545.87kg
Booster with propellant. . ... ... 220 kg
Total . ....... 765.87 kg

Concluding his work Oberth introduces a few ideas about construction
of a manned spacecraft, which will circumnavigate the Moon and return to
Earth (performing a parachute descent).

The weight of this suggested craft:

for one astronaut . . ... ......... 300t
for two astronauts ... ....... ... 400t

d) Hohmann's work

Hohmann carries out his calculations for the following gas-jet velocities:
2,000, 2,500, 3,000, 4,000 and 5,000 m/sec. He assumes a solid propellant
of conical shape (Figure 3). The cabin is situated at the top of the cone,
which is to burn gradually upwards. However, only low gas velocities
are possible with this design. For higher velocities a nozzle is
indispensable, Introduction of the latter or of liquid propellant causes
considerable dead weight. Hohmann investigates flights in which a rocket
undergoes accelerations of 15, 20, 25, 30, 40, 50, 100 and 200 m/sec?.

He formulates the basic rocket motion equation in the same form as
Esnault -Pelterie and in addition takes into account the gravitational effect.
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For a manned rocket flight he assumes an acceleration of about
30 m/sec?.

The deceleration of the rocket in the course of the takeoff, caused by
the air drag, is expressed by Hohmann by the following formula (see
equation {12)):

He also assumes

F_ 1 m? 52
Mo const = 800 kg/secz' i*=0.12; g=10.

Further, at altitudes beyond 50 km and velocities obtained there, the
aerodynamic drag may be neglected, Then at an average velocity value of
780 m/sec and a mean specific weight of air 0.2 kg/m®

~0,27802 _ 2
0=10-600 0.12=2,4 m/sec?.

In Table 12, Hohmann presents the results of his calculations at different
jet velocities and several assumed accelerations. Thedataare computed for
a launch influenced by the Earth's gravity and atmospheric resistance
for different flight velocities.

TABLE 12. Initial-to-final rocket mass ratios

Flight acceleration of the rocket, m/sec? 20 100 200
Flight velocity, m/sec 9,680 10,650 10,891
2,000 m/sec 933 468 602

. 2,500 m/sec 235 138 166
Mass ratios at

different 3,000m/sec 95 60 71
nozzle velocities

4,000m/sec 30 22 25

5,000 m/sec 12 13

While decelerating during the descent back to Earth by means of retro
jet reaction, the initial-to-final mass ratios equal approximately the squares
of the numerical values given in Table 12,

Further, Hohmann investigates different rocket flight cases in
interplanetary space., He introduces the calculation of the weight of a
spacecraft carrying two astronauts.

He also suggests equipping the cabin with retractable wings in order
to facilitate gliding upon the return to the Earth's atmosphere. According
to him, landing should be performed with a parachute.

I will introduce the results of Hohmann's calculations for a rocket
launched up to an altitude of 800,000 km. When this altitude is attained,
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a certain quantity of propellant will be necessary to change the trajectory
into an elliptic one, pointed back at the Earth.

Thus a journey into space and return along an elliptic path will be
carried out as follows (jet velocity 2,000 m/sec):

1) A 30 m/sec?-acceleration of the missile up to a 8,490 km altitude
in 8 minutes.

2) Flight up to the extreme point of the trajectory — 800,000 km.
Duration 349 hours.

3) Return along an elliptic path to an altitude of 6,455 km (beginning
of deceleration) — 354 hours. The total flight duration is about
one month.

The rocket weight for this flight must be:

Two astronauts .. ... ..o oo v v e e 200 kg
Provisions ... ... vt v v vv v 240
Kerosene for heating .. ............ 60
Oxygen for breathing and kerosene
burning . . . ¢ o v v v i it e e e e 200
Tanks for liquid oxygen. ............ 140
Wings and control surfaces .......... 240
Outer shell of therocket ., . .. ........ 780
Propellant for flight corrections on
thewayback..........co0 0 200
The same for ascent. . . .. ... v v v v v 740
Total. .. ... 3,000 kg

The initial weight of the spacecraft will be 933 times this total value
(see Table 12),i.e., 2,799 tons. If the propellant's specific weight is
1.5 ton/m?®, the rocket dimensions (Figure 3) will be: total height 37.58 m,
base diameter 22 m, height of head 5.38 m, frontal section diameter 1.6m,
base diameter of the head 0.77m.

Results of Hohmann's calculations for different cases of rocket flight
into space are presented in Table 13,

e)Valier's work

Valier, elaborating on Oberth’s studies in his investigations, arrives
at the following conclusions:
With an assumed jet velocity of 4,000 m/sec and final rocket velocity
of 19km/sec, the initial-to-final mass ratio for Oberth's hydrogen rocket
is about 43.1. A craft with such a performance can reach the limits of
the solar system, whereas to reach just the limits of the Earth's gravitational
field a ratio of 12.1 will suffice.
A flight to Jupiter and descent onto it will require a flight velocity
172 times higher than the jet velocity, and the initial-to-final mass ratio
must be 4.7 trillions [10%%]. A journey from Earth to Jupiter,
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TABLE 13

(V=]
gﬁ ’g § Duration Initial weight of Initial weight of rocket in tons at different nozzle velocities, km/sec
Route E .%.)’ E of flight projectile head, tons
&g 2 2.5 3 4 5
15 | 1192sec 7,570 1,270 388 81.3 35.7
20 762 " 2,010 438 159 44.8 29.9
25 565 1,160 282 110 34.1 16.7
Ascent from Earth prior to attainment of escape velocity, 80 a8 - 825 216 88 28.7 14.6
ignoring air drag 40 319 1 587 164 70 24.2 12.8
50 248 495 143 62 22.2 11.9
100 117 = 347 108 49 18.7 10.4
200 57 299 95.5 44.7 17.2 9.8
30 | 456 933 235 95 30 15
Same, taking air drag into account 10071 123 ! 468 138 60 z 12
,taking air drag into account...................... 200 64 - 602 166 n 25 13
Flight from Earth to an altitude of 80,000km and return
journey to Earth (circumnavigation of the Moon)......... 30 | 30% days 3 2,799 - - - -
Ascent from Earth, circumnavigation of Venus® and landing i
onEarth ... . 30 | 2.15 years | 83,000 - - - -
Ascent from Earth, circumnavigation of Venus** and landing 3
onEarth ... i 1.58 years 1 82,000 - - - -
Ascent from Earth, circumnavigation of Mars, and landing on
Barth. ..o 30 | 1.5 years 16.72 567,000 69,500 17,600 3,150 1,130
Retumn trip Earth—Venus .............oiiiiunnnn... ., 30 | 176 days 1 64,800 8,800 2,800 620 260
Retumn trip Earth —Venus with refueling.................. 30 - 2menwith supplies | 670,000,000 117,000,000 1,600,000 74,000 1,240
Flight from Earth to Mars with landing on Mars........... 30 | 265 days 9 875,000 76,500 15,000 2,200 690
Flight fromMarsto Earth. Refueling on Mars. Landing onEarth 30 - - 1,430 515 265 118 71
Flight from Earth to Moon with landing on Moon ......... 30 | 15 days 2.6 8,250 1,610 555 144 64
Flight from Moon to Earth, Refueling on Moon, Landing on Earth 30 - 2.6 8.9 6.9 5.9 4.8 4.3
Flight from Earth to Moon. Landing on Moon. Fueling on Earth 30 - 2.6 28,000 4,250 1,250 890 700
Flight from Moon, circumnavigation of Venus and Mars
without landing, return flight with landing on Moon....... 30 - 2 men with supplies 2,070 780 411 194 124
Flight from Moon to Mars with landing descent on Mars . ... 30 - same 3,190 860 370 136 6
Flight from Moon to Venus with landing on Venus ......... 30 - " 200 99 817 38 29
Return trip Moon — Mars. Landing on Mars. Fueling on Moon 30 - " 75,000 11,800 3,600 850 360
Same, to Venus 30 - " 290,000 36,300 9,900 1,780 680

* Circumnavigation of Venus until a favorable (close) position of Earth is established.

** Without waiting for a favorable conjunction.



circumnavigation of Jupiter and return without landing on it will necessitate
only 1!/, times more propellant than the flight to the Moon.

Some results of rocket flight calculations carried out by the scientists
mentioned are compared in Table 14,

TABLE 14

Scientist and year

Tsiolkovskii
1903
Esnault-Pelterie
1913
Goddard
1909
Oberth
1923

Valier

1924
Hohmann
1925

2.0

=1
o
-3

Jet velocity, km/sec 3.63 2.134 3.0 4,

o
]
f=23
oK
w

2

Flight acceleration, m/sec 45.1 45.7 40 - 100 30

—
<
[=1
=
o
oo

Launch from Earth into
infinity 9 - 43.5 602 200 - 10 933

Launch from Earth and

landing on Moon 9 - - - - 12.1 - 8,250

Takeoff from Earth,
circumnavigation of
Moon and return to
Earth <9 - - - 200 - - 933

Launch of Earth
satellite 5 — - - - — - -

Launch from Earth for
flight to Mars <9 - - - - - - 875,000

Launch from Earth for

flight to Venus 21 - - - - - 54,800

Initial-to-final mass ratio

Launch from Earth and
travel to another
solar system 21 - - - - 43.1 - -

Takeoff from Earth,
circumnavigation of
Mars and return to
Earth 10,000 - - - - - - -

zarth 40,000

Takeoff from Earth,
descent onto Moon,
return to Earth using
retro jet thrust - 1,43 - - - - -

10, SIDEREAL NAVIGATION
Questions of orientation in space and sidereal navigation during

interplanetary travel have been investigated very little so far. The
following problems will have to be solved:
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1) Determination of the velocity of flight.
2) Determination of the acceleration of flight.
3) Determination of the spacecraft position relative to the planets.
4) Determination of the position of meteorites encountered.
5) Determination of the limit of a planet's atmosphere.
6) Determination of temperature in interplanetary space.
7) Methods of observation of outer space.
8) Determination of solar radiation.
9) Determination of the influence of meteorites, etc.
10) Determination of flight-direction variations.
11) Flight stability.
12) Controllability.

Knowing the flight acceleration and time at different moments, one can
find the flight velocity. Time will have to be measured by spring watches,
acceleration by devices based on the principle of inertia. The rocket's
position in space can be determined by observing different stars and planets
and taking into account its velocity and flight time. Approaching meteorites
may be detected visually or by special instruments yet to be invented.
Collision of a spacecraft with a meteorite is very improbable. Entry into
an atmosphere may be detected by an increase in heat of the rocket skin or
instruments, or it may be detected visually. Temperature and solar
radiation in space will be measured with special instruments. Observation
of the outer world can be performed with periscopes and special reinforced
transparent glass. The influence of meteorites on rocket course will be
corrected by engine bursts. Flightdirectionwillalsobe changedbybursts.
Stability is maintained by bursts or by gyroscopies in combination with
moving masses inside the rocket.

11, CONCLUSIONS

The discussion of the results of the investigations carried out by different
scientists leads to the following conclusions:

1. Taking off from the Earth and reaching considerable altitudes is
possible,and will be more easily attained, the higher the acceleration
imparted to the rocket.

2, Launch of a manned spacecraft is much more difficult to realize
because of acceleration limitations (not higher than 4g) during the ascent
and the descent.

3. Descent of a manned craft onto the Earth with the aid of retrorockets
is not advantageous. It seems that a combined landing will have to be
adopted. The re-entry maneuver will begin with circling the Earth in
elliptic orbits. These orbits will gradually become circular (due to the
decelerating effect of the atmospheric resistance) and then the last stages
of gliding and finally parachute-landing will take place. The scheme in
Figure 22 presents a launch withsuch a descent on re-entry, after
Hohmann. The Earth on the figure is hatched and the atmospheric limits
are indicated by the dashed circle. The rocket takes off from (a) and
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62 climbs up to (b). It follows an ellipse on its way back and re-enters the
terrestrial atmosphere at point (c). The air resistance decelerates
the craft and gradually shortens the elliptic orbit,converting it into
a circle (d). The rocket glides farther down to (e) and finally performs
a parachute landing. .
4. It is easier to realize a space flight with a higher ejection velocity
of the combustion products.
5. An inclined launching is much more advantageous than a vertical one.
6. In general, the problem of interplanetary flight can be solved.
But to realize even a lunar circumnavigation it is necessary to carry out
a series of experiments and investigations, which will demand considerable
resources,

FIGURE 22. Take-off and descent of a rocket,
after Hohmann

12, LITERATURE ON INTERPLANETARY
FLIGHT

Numerous publications in the field of interplanetary flight have
recently appeared. Many works deal with specific aspects of the general
problem. I have collected about 300 references in Russian and about 200
in other languages.
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Here I limit myself to a list of the most recent and important scientific
works (in chronological order) on the subject:

1. Tsiolkovskii, K. Issledovanie mirovykh prostranstv reaktivnymi
priborami (Exploring Outer Space with Reaction Devices). —
Zhurnal "Nauchnoe Obozrenie," Sankt-Peterburg. 1903.

Second edition 1924.

2. Tsiolkovskii, K. Issledovanie mirovykh prostranstv reaktivoymi
priborami. Reaktivnyi pribor — Raketa (Exploring Outer Space
with Reaction Devices. A Reaction Device — the Rocket). —
Zhurnal "Vestnik Vozdukhoplavaniya,' Nos.19—22. 1911;
Nos.2,3,5—7,9. 1912,

3. Esnault-Pelterie, R. Considérations sur les résultats d'un
allegement indéfini des moteurs. — Journal de physique, théoretique
et appliquée. Cinquiéme série, p.218, Paris. March. 1913.

4. Tsiolkovskii, K. Issledovanie mirovykh prostranstv reaktivnymi
priborami. (Dopolnenie k I i II chasti truda togo zhe nazvaniya.)
(Exploring Outer Space with Reaction Devices, (Supplement to
Parts I and II of the work with the same title.)), Kaluga. 1914,

5. Goddard, R. A Method of Reaching Extreme Altitudes, Washington.
1919.

6. Riabouchinski, D.P. Théorie des fusées. — Bulletin de 1'Institut
Aérodynamique de Koutkhino, fasc. VI, Paris. 1920.

7. Oberth, Hermann. Die Rakete zu den Planetenriaumen, Berlin und
Miinchen, 1. Auflage. 1923. 2. Auflage. 1925,

8. Valier, Max. Der Vorstoss in den Weltenraum. Eine technische
Moglichkeit, Miinchen. Berlin: 1, Auflage 1924. 2. Auflage 1925.

9. Hohmann, W. Die Erreichbarkeit der Himmelskorper.
Untersuchungen iiber das Raumfahrtproblem, Minchen und
Berlin. 1925,

10. Riabouchinski, D.P. Sur la résistance des fluides et la réaction
d'un jet. (Revue générale de l'aéronautique.), Vol.6, p.81, 1925.

11. Pegna, Giovanni. Le artiglieri di grosso calibro sopra piattaforme
aeree.— L'ala d'Italia, pp.13,151. 1926,

12, Crocco,G.A. 1 Projettile a reazione.— Rivista aéronautica, No. 3.

1926.
13. Costanzi, Guilio. A proposito di superaviazione.— L'ala d'Italia,
p.439. 1936,

14, Tsiolkovskii, K. Issledovanie mirovykh prostranstv reaktivhymi
priborami. (Pereizdanie rabot 1903 i 1911 g,, s izmeneniyami i
dopolneniyami.) (Exploring Outer Space with Reaction Devices.)
(Re-edition of the 1903 and 1911 works with changes and additions.),
Kaluga. 1926.

15, Tsiolkovskii, K. Kosmicheskaya raketa. Opytnaya podgotovka.
(Space Rocket — Experimental Setup), Kaluga. 1927.

16. Die Rakete. Zeitschrift des Vereins fiir Raumschiffahrt E. V. Breslau.
1927, 1928, 1929,

17. Manigold, G. Der Vorstoss in den Weltenraum. — Zeitschr. fir
Flugtechnik und Motorluftschiffahrt, p.249. 1927,

18. Lorenz, H. Die Méglichkeit der Weltraumfahrt, — Zeitschr. des
Vereins Deutsch. Ing., No.19. 1927,
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19.

20.
21.

22.

23.
24.
25,
26.
217,

28.

29.

30.

Lademann, R. Zum Raketenproblem.— Zeitschr.f. Flug. und Motorluft,
No. 8. 1927,

Scherschevsky, A. Das Raumschiff. — Flugsport, Nos. 20, 21. 1927,

Die Moglichkeit der Weltraumfahrt. Herausgegeben von Willy Ley,
Leipzig. 1928.

Esnault-Pelterie, R. L'exploration par fusées de la trés haute
atmosphére et la possibilité des voyages interplanétaires, Paris.
1928.

Valier, Max. Raketenfahrt. Verlag R.Oldenburg, Minchen — Berlin.
1928.

Gail, Otto Willi. Mit Raketenkraft ins Weltenall. Stuttgart. 1828,

Scherschevsky, A.B. Die Rakete fiir Fahrt und Flug, Berlin. 1929,

Noordung, Heimann. Das Problem der Befahrung des Weltraums,
Berlin. 1928,

Kondratyuk, Yu. Zavoevanie mezhplanetnykh prostranstv
(Conquering Interplanetary Space), Novosibirsk. 1929.

Rynin, N. Mezhplanetnye soobshcheniya. Mechty, legendy i pervye
fantazii (Interplanetary Flight and Communication. Dreams,
Legends, and Early Fantasies), Leningrad. 1928 *

Rynin, N. Kosmicheskie korabli v fantaziyakh romanistov
(Spacecraft in Science Fiction), Leningrad. 1928.%*

Rynin, N. Rakety (Rockets), Leningrad. 1929,

[Available in English translation, TT70-50111, NASA TTF-640.]

** [Available in English translation, TT70-50112,NASA TTF-641.]

[Available in English translation TT70-50114, NASA TTF-643.]
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