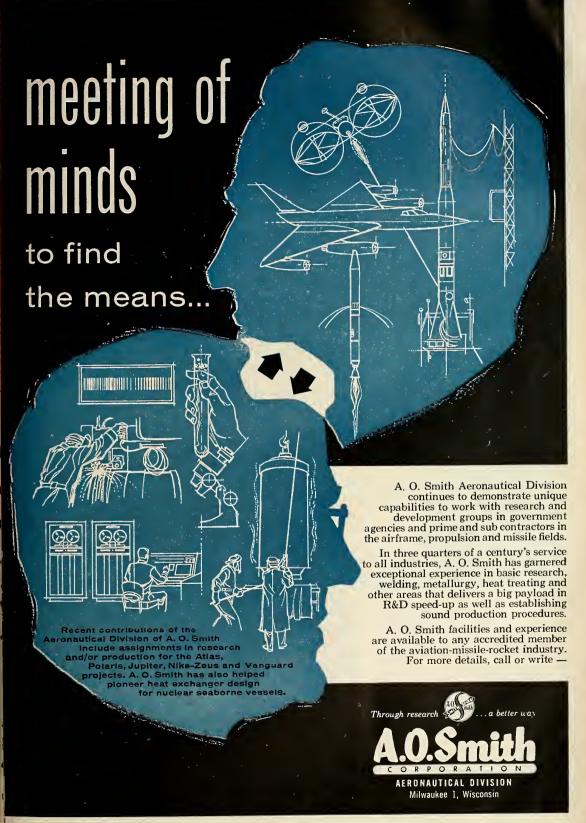
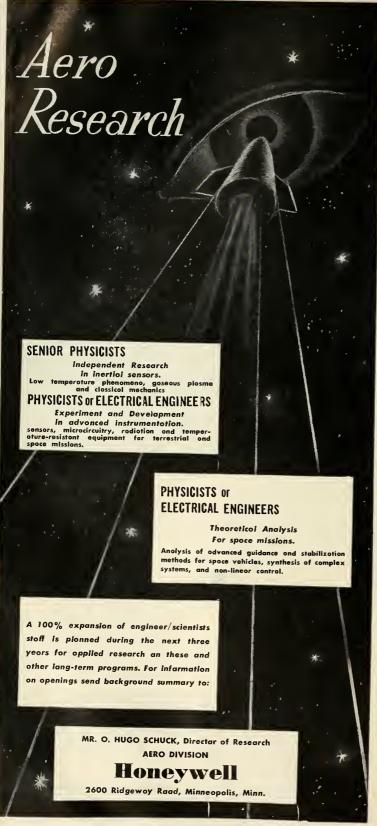


MAGAZINE OF WORLD ASTRONAUTICS

sile Boom in New England ... 13 ght Future for Cryogenics 21 ing & Arming Reliability 30

first missile experiments in the Navy Experimental State at Annapolis to the launching pads at Cape Canavera setting the standards for the control of high pressure fluithe regulators which served as the critical control World War II flame throwers and torpedoes...and manissile development work possible...Grove High Pressure Regulators...frequently imitated but never equal


prove Powreactor Dome Regulator—Model GH-408 · 50-6000 psi inlet...5-3000 psi reduced pressure


SROVE VALVE and REGULATOR COMPANY

5529 Hollis St., Oakland 8, California • 2559 W. Olympic Blvd., Los Angeles 6, California

offices in other principal cities

Subsidiary of Walworth

Executive Editor CLARKE NEV Managing Editor DONALD E. P.
NEWS STAFF
News Editor
News Editor REED F Defense and Legislative BETTY O BETTY O MAKES West Coast RICHARD VAN C COPY Editor RECHARD VAN C Editorial Assistant DAVID NE
Editorial Assistant David NE
Guidance and Control CHARLES D. LAN Support Equipment
ASTRONAUTICS ENGINEERING
Chemistry & Propulsion
Installations and Equipment East Coast
West CoastFRANK Mct
Los Angeles Fred Ht Paris Jean-Marie I Geneva Anthony Vani
CONTRIBUTORS
British AstronauticsG. V. E. THOM PropulsionMICHAEL LOR
Soviet AffairsDr. Albert F Space MedicineDr. Hubertus Strug
British Astronautics G. V. E. Thom Propulsion Michael Lor Industry James J. Haggert Soviet Affairs Dr. Albert Space Medicine Dr. Hubertus Strug Astrophysics Dr. I. M. L. Research Heyward Cannet
ADVISORY BOARD DR. WERNHER VON BRAUN . ROBERT P. HAVI DR. PETER CASTRUCCIO DR. ARTHUR KANTRO
DR. PETER CASTRUCCIO DR. ARTHUR KANTRO KRAFFT EHRICKE DR. EUGEN SAE R. F. GOMPERTZ ALEXANDER S
PRODUCTION AND ART
Art Director William Ma Assistant Art Director BACIL Gr Production Manager J, F, W Ass't Production Manager Elsie (
BUSINESS STAFF
Assistant Publisher E. D. Muhi Advertising Sales Manager W. E. Br
Assistant Publisher E. D. Muhi Advertising Sales Manager W. E. Br Circulation Director L. L. Bret Promotion Manager J. E. Mu Advig, Service ManagerMrs. Gladys Bus New York
Editern Advig. MgrP. B. Kin
New York (17 East 48th St.) P. N. Ander A. B. Scher
Detroit (201 Stephenson Ridg) K .I W
Chicago(139 N. Clark St.) G. E. Yo Los Angeles .(8929 Wilshire Blvd.) J. W. C C. R. MARTZ
Miami (208 Almeria Avenue) R. D. H. Toronto (12 Richmond St. E.) ALLIN ASSOCI
London(28 Bruce St.) Norall & F
Geneva10 Rue Gre
Missiles and Rockets Volume 5 Number
Published each Monday by American Avial Publications, Inc., 1001 Vermont Ave., N Washington 5, D.C.
WAYNE W. PARRISHPresident & Publis LEONARD A. EISERER Executive Vice Presid & General Mana
A. H. STACKPOLEVice Presid

WAYNE W. PARRISH ...President & Publis
LEONARD A. EISERER Executive Vice Presid
A. H. STACKPOLE ...Vice Presid
FRED HUNTER ...Vice Presid
ERIC BRAMLEY ...Vice Presid
ROBERT R. PARRISH ...Vice Presid

Printed at the Telegraph Press, Harrisburg, Second class postage paid at Washington, D and at additional mailing offices. Copyrl 1959, American Aviation Publications, Inc.

Subscription rates: U.S., Canada and Post Union Nations—1 year, \$8.00; 2 years, \$12.0 3 years, \$12.00. Foreign—1 year, \$10.00; years, \$18.00: 3 years, \$26.00. Single cof recomplete of the persons with identifiable commercial or professional interests in missiles an rockets. Subscription orders and changes (address should be referred to Circulation of the professional interests in missiles and recomplete of the professional interests in missiles and rockets. Subscription orders and changes (address should be referred to Circulation of the professional profess

COVER: Raytheon's Hawk, like Martin's Lacrosse, is going to Army's units (see p. 28).

YANKEE Ingenuity in missile field is reflected in wealth of new plants (see survey, p. 13).

ALUMINUM shells for *Redstones* are formed at Reynolds plant. (see aluminum story, p. 18).

ARTILLERY units are receiving Martin Lacrosse solid-fueled guided missiles (see p. 29).

DEMON Automatic checkout system built by Curtiss-Wright is used on *Nike-Ajax* (see p. 33).

missiles and rockets

MAGAZINE OF WORLD ASTRONAUTICS

JULY 6 HEADLINES	
New England's Missile/Space Manufacturing Boom A state-by-state survey shows the Northeast's share of the business is over \$1 billion a year, employing more than 150,000 people—and still growing	13
Parting Words from Maj. Gen. John W. Sessums, Jr. The retiring vice commander of ARDC looks into the missile future in an exclusive interview	16
NASA Seeks to Aid Small Businesses Officials of the space agency plan to keep tabs on company capabilities and keep them informed on upcoming contracts	26
Hawk and Lacrosse Are Added to Army's Arsenal Artillery units are organized in Texas to train in their use28,	29
ASTRONAUTICS ENGINEERING	
Aluminum Use in Missiles Is on the Increase Lightweight, low-cost material is already used by hundreds of millions of pounds; greatest market may be in missile support	18
The Bright outlook for Cryogenics Other systems are in the works, but the advantages of cryogenics will make them the most efficient for years to come	21
Nike-Zeus Will Cost \$1.5 to \$2 Billion Plus in FY '61 But Administration could decide to kill only anti-missile missile under development	24
'Whisker' Research Is Pressed by Government and Indu Five to 10 years may bring usable materials with strength up to six times that of steel	stry 27
ASTRIONICS	
The Remarkable Reliability of Fuzing and Arming An outline of the accomplishments and tricky requirements in a secrecy-shrouded and largely government-controlled field	30
A Close-Up of Two Automatic Checkout Systems Curtiss-Wright's DEMON and Nortronics' NORSCAN are fully transistorized, modularly constructed and completely self-checking	33
SPECIAL SECTION	
For the reader's convenience, an index of M/R stories by categories for the first six months of 1959	37
THE MISSILE WEEK	
Industry Countdown	11
Washington Countdown	12
DEPARTMENTS	
Editorial 7 Contracts Reviews 32, 45 Propulsion Engineering Soviet Affairs People 43 When and Where	47
Memo from the Assistant Publisher50	

OF SPACE TECHNOLOGY... IN

TEST

Testing is a vital part of every stage in the development of missile and space programs at Lockheed Missiles and Space Division.

The Division maintains one of the most completely equipped test laboratories in the world. Equipment includes: altitude, temperature and humidity chambers; shaker and vibration systems; G-accelerators; and apparatus capable of performing chemical, metallurgical, plastic, heat transfer, hydraulic, pneumatic shock, acceleration, sinusoidal and random vibration, structural, electrical and electronic tests. Static field testing; research and development testing on controls; testing in ordnance and hydraulics and high-pressure gas and propulsion systems are conducted at the 4,000 acre, company-owned test base in the Ben Lomond mountains near Santa Cruz, Calif.

Unique Flight Test Concept – Flight testing is conducted at Cape Canaveral, Florida; Alamogordo, New Mexico; and Vandenberg AFB near Santa Maria, California, in a unique manner. All components and sub-systems of a new project are initially tested on known-performance, production missiles. Thus, when the final system is ready for first flight, its individual components already possess flight-tested reliability. This new concept of flight testing is a major contribution and has enabled Lockheed to produce extremely complex missile systems in record time and at greatly reduced expense.

Underwater launch tests, for the Navy POLARIS FBM, are carried on at the Sunnyvale facility and at the Navy test base on San Clemente Island. These include studies of cavitation, wave simulation and skip motion. In addition, structural and other tests are performed at Hunter's Point Naval Shipyard, California.

Engineers and Scientists—Lockheed Missiles and Space Division has complete capability in more than 40 areas of science and technology. Its programs reach far into the future and deal with unknown and challenging environments. If you are experienced in one of the above areas, or in related work, we invite you to share in the progress of a company that has a continual record of achievement and to make an important individual contribution to your nation's competence in space technology.

Write: Research and Development Staff, Dept. G1-29, 962 W. El Camino Real, Sunnyvale, California. U.S. citizenship required.

Lockheed |

MISSILES AND SPACE DIVISION

Systems Manager for Navy POLARIS FBM, DISCOVERER Satellite
Army KINGFISHER, Air Force Q-5 and X-7

SUNNYVALE, PALO ALTO, VAN NUYS, SANTA CRUZ, SANTA MARIA, CALIFORNIA + CAPE CANAVERAL, FLA, + ALAMOGORDO N. M. + HAWAII

Who Owns Man's Brain?

In the Constitution of the United States, a sometimes almost forgotten document in these regimented days, is a paragraph which reads (Article 1, Section 8):

"To promote the progress of science and useful arts, by securing for limited times to authors and inventors the exclusive right to their respective writings and discoveries."

We bring this up in connection with the important controversy over patent rights accruing under contracts to the National Aeronautics and Space Administration. Hearings were held in Washington recently (M/R, June 1) to permit industry attorneys to express their opinions of, and objections to, patent regulations laid down under the Congressional Act which set up NASA—particularly the manner in which they differed from the regulations governing patents under military contracts.

Briefly, under the military regulation an inventor or a company is entitled to the rights to any invention achieved under a military contract, with the Government holding license rights. That is, the company owns the patent but the Govern-

ment gets free usage.

Under the NASA regulations, with a few minor exceptions, the Act provides that any invention achieved during work on any NASA contract is the exclusive property of the Government. This applies to prime and subcontractor alike, no matter how far removed.

Further, any person inventing an article which may have a utility pertinent to the conduct of aeronautical and space activities—whether he is a NASA contractor or not—must declare under oath that his work was not related to any contract with NASA before he can get a patent on his invention.

Although this is a nutshell version of the two regulations, we think it shows that the NASA Act opposes completely the principles of both the Constitution and fair practice. We cannot believe that government has an automatic and complete right to the fruit of the by-product labors of its employees, direct or indirect. Nor do we believe that the burden of proof should fall upon the individual—in this case the inventor.

That NASA itself is not entirely in agreement with the law may be judged from a statement by Administrator T. Keith Glennan regarding the conflicts between the rules of NASA and the military. He said:

"Two such contrary patent policies followed by

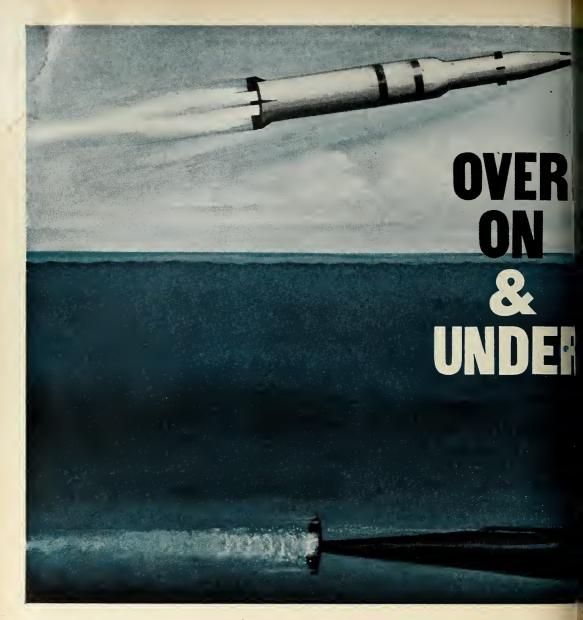
Government agencies working in closely related fields of research and development, can be detrimental to the kind of cooperation that we must have from industry, if our joint effort is to go forward with effectiveness and dispatch. We are well aware of the attitude of industry toward this question. On the other hand, it must be recognized that these rules are written into the law, and we cannot ignore them."

Congress has made it clear that it wants the National Space Act to operate for a while before it makes any changes. We suggest that this should be among the first alterations—and that industry must take the lead in making the situation clearly understood by the law-makers.

Indemnification—Another Problem

While we are on the subject of Congress, industry and space, let's consider another problem which the country must face up to, and fairly quickly—indemnification legislation.

Very shortly we shall have ICBM bases in this country equipped with missiles designed to carry nuclear warheads. Nuclear-armed IRBM's are already on station in England and soon will be in Italy. Very shortly also we shall be testing and launching atomic-powered rockets for spacecraft and atomic-powered aircraft.

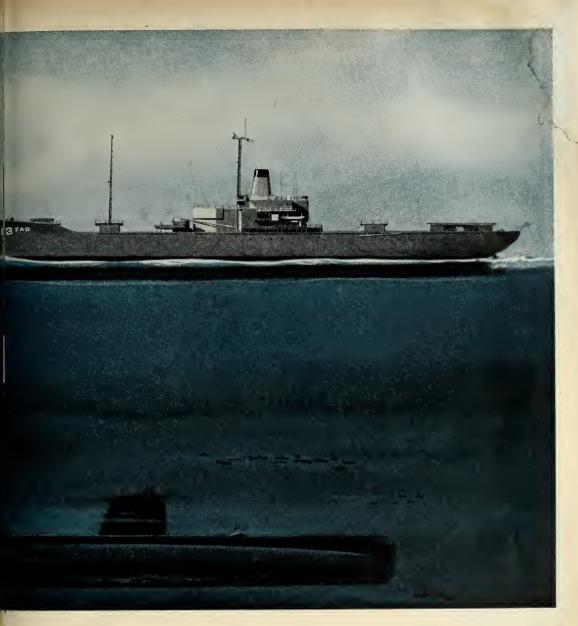

It is not inconceivable that in all this monkeying around with a power we really know little about, and even less how to control, some horrendous accident could occur.

Who is responsible? The Government? The prime contractor? And to what limit? Any corporation could easily be wiped out by the claims which might accrue. And suppose the fault could be traced to some gadget, made by a small subcontractor and in itself harmless—except that it malfunctioned. Insurance companies will touch no such

Two measures have been introduced in the House which cover the situation to some extent by limiting the responsibility of both Government and industry. But they do not really cover all of the aspects—and they appear unlikely to come up at this session.

This is another problem on which the aircraft/ missile/space industry must unite to push for a solution.

Clarke Newlon


A missile streaking through the sky...a ship plowing through the ocea...a submarine gliding through the depths...all guided with unerring a by Autonetics' inertial navigation systems.

Twelve years ago development was under way on the first Autonetics' autonavigator—a system to guide a supersonic missile to a distant target.

Since then, refined versions of this system have shown remarkable ca for guidance over, on and under the terrestrial surface in any craft, at an under any conditions...a significant advance in the state-of-the-art.

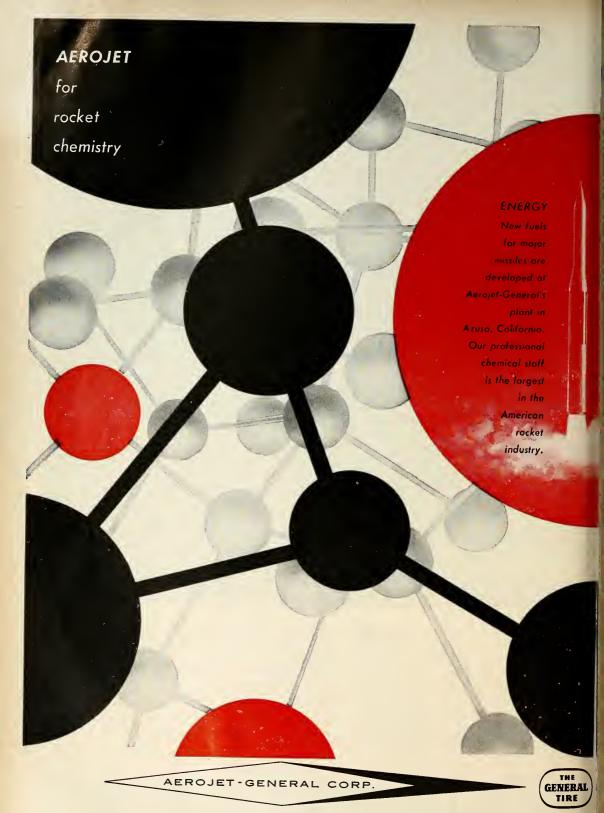
It was an Autonetics' autonavigator that guided an aircraft on the first su daylight cross-country flight by stellar-inertial autonavigation. Another

Inertial navigation

assed the Navy's exhaustive sea tests aboard the USS Island in 1957. And in 1958, Autonetics' systems the USS Nautilus and Skate on their historic voyages the polar ice.

Autonetics is producing in quantity the systems to e Air Force's GAM-77 missile. Its engineers are densystems for America's Polaris-carrying subs and the toan intercontinental ballistic missile. Even more od systems will provide the accurate stellar-navigation added to guide man on his travels through Outer Space.

But the imaginative engineering that brought inertial navigation so far, so fast, is only half the Autonetics' story. New ideas had to be implemented by new manufacturing techniques. Many components of inertial autonavigators—gyroscopes, accelerometers and computer elements—called for precision that was once impossible. Now Autonetics has put it on the production line.


These are the achievements that have given here-and-now reality to inertial navigation...and have made Autonetics first in the field.

Autonetics

A DIVISION OF NORTH AMERICAN AVIATION, INC., DOWNEY, CALIFORNIA • REGIONAL OFFICES: WASHINGTON, D. C. AND DAYTON, OHIO INERTIAL NAVIGATION / ARMAMENT CONTROL / FLIGHT CONTROL / COMPUTERS AND DATA PROCESSING

iles and rockets, July 6, 1959

A SUBSIDIARY OF THE GENERAL TIRE & RUBBER COMPANY

Engineers, scientists - investigate outstanding opportunities at Aerojet. (Plants at Azusa and near Sacramento, Calif.)

Industry Countdown

STRUCTURES

Project Rambler is scratched . . .

NASA rejected the proposal of \$1 millionplus high-altitude sounding rocket as duplicating capability of other already well-advanced research programs, such as *Scout*. Embodying new concepts in fibreglass construction and new launching techniques, *Rambler* was submitted recently by a team composed of the University of Michigan, Vickers, Lear, Sparton Electronics, Wyandotte Chemical and Curtiss-Wright.

Amputated in DOD's ...

"master defense plan"—two Bomarc bases at Winooski, Vt., and Madison, Wis.

Don't throw away industrial . . .

security regulations. The program struck down by a Supreme Court ruling last week probably will be reinstated shortly either by Presidential executive order or rush Congressional action. Regulations may be changed to allow alleged security risks to confront their accusers.

Co-op NATO missile/aircraft . . .

production lineup which appears imminent probably will see Italy making airframes and MSE; France—airframes and assembly; Britain—engines; Holland—electronics; Germany—electronics and heavy equipment; Belgium—support equipment and parts.

Great Britain is dickering . . .

for purchase of the Martin Bullpup air-to-surface missile. Whether it will be manufactured in England under license or exported still remains to be decided . . . France is getting ready to spend a reported 16 billion francs over the next six years on space research; may be in the market for hardware. Program, if funded, will be run by National Fund for Scientific Research.

PMR operating contract . .

will be awarded by Navy to Bendix Aviation and Texas Transportation Co. (a new corporation reportedly set up by retired military men.) Contract is similar to Pan American's at Cape Canaveral.

Just revealed . . .

Martin Titan skin structure is about 40% magnesium-thorium sheet and extrusions, accounting for about 2000 of the ICBM's total poundage. Dow Chemical-developed HM21A and HK31A sheet is used in transitional sections, between fuel and oxidizer tanks and between second stage and nose cone. HM31A extrusions are used for external

conduits between fuel and oxidizer tanks in both stages and for internal stringers, longerons and hinges.

PROPULSION

Advancing technology bypassing... boron compounds is apparent reason for Navy's sudden cancellation of \$13.5 million sodium borohydride contract with Metal Hydrides Inc., Beverly, Mass. Other materials are offering higher Isp without the handling and oxidation problems of boron compounds. MHI, which had produced 1.7 million pounds of the missile/aircraft propellant under the contract originally due to expire in May, 1960, plans to go into commercial production.

Powerplant for first Mercury . .

capsule has been delivered by **Rocketdyne** to ABMA. The *Redstone* liquid-fueled rocket engine delivering 75,000 pounds of thrust will lift a capsule carrying animals down a 100-mile course.

ELECTRONICS

Really hot competition . .

can be expected for **Douglas'** ALBM guidance contract. While early version may be simple command system, inertial is certain to be an eventual requirement. Specs probably will demand a complete digital system for stellar acquisition, interpretation and readout measured in seconds rather than minutes. Manufacturer who produces quickly, therefore, has a lucrative opportunity. Secondary requirement probably will be for versatility in stellar acquisition both in the bird and the launch aircraft.

Won by RCA . . .

Boeing Minuteman electronic subsystem contract . . . and insiders say RCA also will get multimillion-dollar Project Mercury tracking due to be announced by NASA July 15.

Advanced infrared detector . . . utilizing photosensitive semiconductor energized by microwayae electromagnetic fields has

gized by microwave electromagnetic fields has been developed by General Bronze Electronics. Wide bandwidth unit (infrared through ultraviolet) with parametric amplifier claims sensitivity approaching the theoretical limit.

SPACE MEDICINE

Space-environment chamber . . . being installed early next year at Republic's astronautics research center to simulate conditions for humans 150 miles up, will cost \$500,000 and be built by Tierney Engineering Inc., Union, N.J. Chamber will be 14 feet in diameter, 30 feet long.

the missile week

Washington Countdown

IN THE PENTAGON

Navy's plans for own ALBM . . .

as broken exclusively in M/R (June 22, p. 9) have come under "roles and missions" fire with the order presumably given to the Navy to keep its hands off because it is a "strategic" weapon. Many industry sources say the project has been driven "underground" and Navy now is busy adjusting for "new requirements" which will permit it to enter the ALBM picture. Original Navy thinking, sources told M/R, is that Navy had planned to get its own ALBM into production at least a year before the AF-Douglas version by using prototype hardware of some of the companies edged out in the AF competition.

Demotion of William Holaday . . .

onetime U.S. missile czar, is now all but complete. Holaday has been "released" from his post as special guided missile assistant to Defense Secretary Neil McElroy and the post has been abolished. But he remains as chairman of the somewhat strengthened Civilian-Military Space Liaison Committee. Holaday's removal strengthens the hand of R&E Director Herbert York.

A Far East AF missile base . . .

is being planned for Okinawa. Cost estimated to date: Nearly \$10 million. The one-time Japanese base is within easy IRBM and ICBM range of Peiping, Shanghai and the big Soviet industrial and military centers in eastern and central Siberia.

Next Discoverer launching . . .

may be held up while ARPA and Air Force scientists try to find out why Discoverer IV failed to go into orbit. Discoverer V normally would have been launched toward the end of July. Whenever it is launched, it will be used to check out the Discoverer system before any new attempt is made to recover mice after putting them into orbit.

French nuclear-tipped missiles . . .

may be carried by the Mirage IV—the new French fighter-bomber now under development. The bomber, capable of carrying a nuclear bomb, will have a range of more than 1350 miles—great enough to reach Moscow. Production is 27 months away.

Reconnaissance satellite tests . . .

are nearer than some think. The Air Foundation is already constructing test stands for Locked's Sentry at Vandenberg AFB. It se \$14.4 million for Sentry facilities. Many consider the U.S.-Soviet race to develop a reconsissance satellite one of the great battles the Cold War.

U.S. wants to construct . . .

installations for Lockheed's Midas—the mis warning satellite—somewhere in Great Brit: The Air Force wants more than \$19 mill for Midas facilities in FY 1960.

ON CAPITOL HILL

Be starred ex-military officers . . .

will not be called to testify for awhile the House investigation of the alleged "mu tions lobby" gets underway. (See M/R Jt 29) First witnesses during the next week so will include Defense Secretary Neil Melroy, Attorney General William Rogers a members of Congress.

Congress is expected to grant . . .

an extra \$137 million for Western Electri Nike-Zeus program. That will put a total \$437 million in the FY 1960 budget for Zer The extra funds will be used for production facilities and pre-production planning. (Spage 25)

Behind NASA's First Real Fight . . .

with Congress over the \$68 million cut their budget is an effort to keep on schedu Project Mercury's attempt to put man space. By contacting newspapers, science ar civic groups, and friendly Congressme NASA hopes to re-instill Congress's pos Sputnik fervor for space projects.

AROUND TOWN

Some of the reports. . .

that are being passed as the "latest" in the nation's capitol:

- . . . Governor Nelson Rockefeller of Net York will emerge in his struggle with Vic President Nixon for the GOP presidentia nomination as the foremost advocate for "Bi Defense."
- . . . The long-range tide in defense plan ning is turning away from massive retaliatio in favor of greater preparation for limited wai

missiles and rockets, July 6, 195

THEON'S plant at Wayland, Mass. This company, prime actor for *Hawk* and *Sparrow*, is area's top missile employer.

SYLVANIA'S engineering and research facilities at Waltham, Mass. Firm also has one plant location in New Hampshire.

New England's Missile Boom

The Northeast's \$1 billion-a-year-plus business

—first in a series of regional surveys

by William E. Howard

soston—A missile/space manucring boom born of scientific t-power is surging through New hand's economy.

All over the six-state area, hardt few years ago by a mass exodus extiles, there is a fever of activity. Tregion now has more than 600 eronic manufacturing firms with a cuct value topping \$1 billion—

of the entire nation's output. he are an estimated 76,000 electors employees receiving \$290 milannually in wages.

Approximately 2600 firms are enud in missile/aircraft component fuction, supplying parts and subsums for virtually every missile/project. The work force in this project in the project of thousands.

n addition, New England houses one 600 basic research and development firms, big and little, which have defined thousands of scientists and excitations intently exploring new horizon in astrionics, propulsion, nucleus, astrophysics and related sciences of the driving new missile exchology.

One billion and growing—What's assope of the missile industry, as u(? Experts on the New England Cancil for Economic Development

estimate that the Northeast's missile volume is well over \$1 billion and the figure is still growing.

So fast has the growth been that officials are hard put to come up with any definite figures. But their estimates indicate that upwards of 150,000 persons throughout New England are hard at work in the field.

Eighty percent of the \$1 billion electronics manufacturing in the region is believed to be missile-related. Pinpointing where the activity lies, though, is difficult. Many companies are strictly components producers supplying both consumer and military markets.

From wave-scoured shores of Maine to the exclusive exurbanite sanctuaries of southern Connecticut, new plants are sprouting behind scenic old fieldstone fences and in dozens of brand new industrial parks. Around Boston, hub of electronics and R&D, carpenters and masons are rushing to complete more than \$50 million of new construction to meet a seemingly never-ending demand for more space for production and laboratories.

Not to be overlooked are New England's clanging shipyards. They are turning out missile cruisers and frigates and *Polaris* submarines under contracts running into the hundreds of millions of dollars. The region is also heavily

dotted with defense installations—SAC, SAGE and Navy bases and other facilities that keep a legion of suppliers

Under construction way "Downeast" at Cutler, Me., for example, is a \$64 million VLF Navy radio station for *Polaris* FBM submarine communication.

· Raytheon largest—The area's biggest single missile employer is Raytheon Mfg. Co., which has two prime contracts-the Army Hawk and Navy's Sparrow III. This week it was awarded a \$161 million contract for more Hawks. More than half of the company's 35,000 employees in New England are in defense production and more than 3000 are working in the Missile Systems Division plants located at Lowell, Tewksbury and Billerica, Mass. This Raytheon division alone farms out an estimated \$10 million to more than 600 Massachusetts subcontractors.

As the nation's only electronics company with two prime missile contracts, Raytheon going into 1959 had a backlog exceeding \$300 million. The company has added 6000 employees since Jan. 1, 1958, and is preparing to hire another 1,500 to 2,000 to man a new ASW plant to be constructed at Portsmouth, R. I.

growth reported in six states . . .

Across the Bay State in Pittsfield, General Electric's Ordnance Division of 3500 employees is pushing development of Polaris inertial guidance and fire control under a multi-million dollar contract. This division also has an \$8 million development contract for the huge Talos magazine, feeder and checkout systems to go aboard the nuclear cruiser Long Beach. The cruiser, incidentally, is being built by Bethlehem Steel at Quincy, Mass., under a \$100 million contract. This shipyard also is commencing work on a \$108 million nuclear frigate which will be armed with Terrier missiles.

GE is in the process of negotiating a \$10 million follow-on for the *Talos* system and is working at Pittsfield on a \$10 million *Atlas* tracker. Missile contracts in the division total over \$50 million. At Lynn, Mass., GE is turning out engines for *Quail* decoy missiles and a complement of missile support equipment including leak detectors, electronic strip chart recorders, insulation test equipment, switchboard instruments and inertial systems components.

Looming large in the region's missile industry is **Avco**, which last month opened a \$23 million research center at Wilmington, Mass. Holder of a \$111 million contract for development of the *Titan* nose cone, Avco employs 1700 and is also deeply involved in shock wave research.

Just off Boston's "Golden Industrial Semicircle"—a congregation of companies along Route 128—RCA is producing miniaturized electronic missile controls and components in a spanking new \$3 million plant. Other leaders of the area are Sylvania Electric, CBS Electronic and Transistron.

Recently this important new industrial area saw the formation of Goodrich-High Voltage Astronautics Inc. to research, develop and manufacture ion propulsion engines for space vehicles.

• Connecticut supplies parts—In a figurative sense, much of the work being done in Massachusetts is to supply the electronic "brains" for missile and space projects. By the same token, Connecticut is caught up in a big effort to provide "innards"—the hundreds of thousands of metal parts and subsystems.

Precisely how important missiles are to the Nutmeg State's economy is evident in a recent report of the Connecticut Development Commission. A survey by that agency shows 224 firms providing parts or services to prime

and major subcontractors. These firms employ a total of 11,000—including 27,000 technical workers—but the precise percentage actually engrossed in missile work is not known.

However, it is believed to be substantial, even when stacked up against the state's total manufacturing work force of nearly 400,000. The CDC says 57 of the state's 169 cities and towns have missile operations underway.

In addition to parts, the state is showing a steady growth in missile electronics and related research.

At Groton last month, the George Washington, first nuclear fleet ballistic missile submarine which will fire its first Lockheed Polaris next year, slid down the ways at the Electric Boat Division of General Dynamics Corp. The sub cost \$100 million and the company is working now on a sister ship, the Patrick Henry, and will soon start a third, the Ethan Allen. Employment at EB is up over 8000 and the company has scores of suppliers and subcontractors through the Northeast.

A few weeks ago the Office of Naval Research handed Electric Boat the managership of an industry-Navy team working on SUBIC (submarine integrated control system) aimed at reducing FBM sub crews from 100 to 12 men. Concept of the project is to create "balanced man-machine partnership" utilizing greater electronic sensing and data processing equipment and a television-type visual display of information.

Largest Connecticut missile employer is the Pratt & Whitney Division of United Aircraft at East Hartford. Many of the division's 35,000 employees are producing J-57 and J-52 engines for Snark and Hound Dog. UA,s Hamilton Standard Division at Windsor Locks with nearly 12,000 employees is producing Nike parts, secondary power packs, air conditioning systems, fuel controls, pneumatic valves and starters for other missile systems.

Other large companies with important missile assignments include Kaman Aircraft, Bloomfield, which is studying electronic countermeasures for *Polaris* missiles; Landers, Frary & Clark, New Britain, producing 2.75 rockets; Naugatuck Chemical Division, U. S. Rubber Co., R&D solid propellant rocket liners; Norden-Ketay, Stamford, analog-to-digital converters for *Atlass*; Lycoming Division of Avco, Stratford, nose cones for *Nike-Her-*

cules Polaris rocket case compo Talos forward-sleeves and Titan bodies, cylinders and heat sinks.

A recently-issued CDC report of 358 Connecticut firms employing 000 scientific and technical works research labs—nearly all invested to missiles. Interestingly en Connecticut has one researched every 25 production workers.

• New Hampshire—Electroni the fastest growing industry in Hampshire, with employment numbering 8750—more than 10° the state's 83,000 total work 1 More than 25% of the electronics duction is missile-oriented, chief the component field.

Leaders include Sanders Assoc Nashua, which started out with a dozen employees in 1945 and grown to around 1000. Sanders won a subcontract from Bendix a tion to develop the guidance "see for Eagle.

Transistors and capacitors are I produced at a Sprague Electric in Concord; Sylvania, with one sistor and diode plant at Hillsbol looking around the Granite State another plant location; Rayth Hookset facility is manufact power suppliers and transformers its other divisions.

At Manchester, precision resi are coming off the production line Tel-Labs Inc. and in Concord, Richard D. Brew Co. is making clines. With an in-house-developed chine tool, Ber-Kit Industries, chester, is finding a profitable market for precision screws.

A fourth FBM submarine, the Lincoln, is being constructed at P mouth Navy Shipyard.

State development officials rethat employment is "tight" in Hampshire. As textiles have decli electronics have taken their place.

- Vermont—Across the state in Vermont, firms are busy suppl machine tools for the missile indu IBM has a large plant at Burlin making relays for data processing vices, and at Bennington Sprague I tric is producing electronic coments and ceramic sheathed wire.
- Maine—Only a few Maine f are turning out missile parts, acc ing to the state's Department of I nomic Development. Alloy Produ Sanford, Portland Machine Tool Maine Metal Finishing, Gorham, the principal ones supplying specitems to various weapons contract

But the DED says the Pine State is "getting ready for the mi age" by becoming an important in the nation's defenses. In addi

the VLF Navy radio facility, a carc base is being built at Bangor the first Snark squadron to bee operational in the nation is now y for action at Presque Isle AFB he potato-growing north country Aroostook County. SAC bases are ted at nearby Loring AFB and estone AFB.

Four hundred technicians are workat a \$20 million SAGE control er-New England's first-located

opsham, Me.

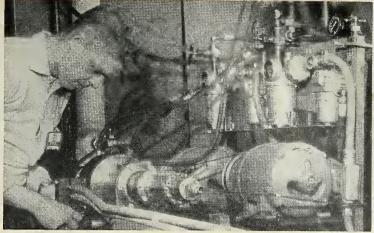
Rhode Island—The Rhode Island elopment Council reports there are o 30 small electronic firms-many hem engaged in defense produc-Speidel Inc., Providence, which sa total work force of 1000 has a ing electronics division which asles components for missiles, acing to RIDC.

also in Providence is Federal Prod-Inc., a gauge maker employing which is firmly established in the

le component field.

Brainpower factor—Traditionally ervative New Englanders are still what awestruck by the young misspace giant rearing up in their t. Where did it grow from? The ronics industry founded after d War II, some experts will tell But other researchers probing into uestion of why New England sudhas a booming new industry bethe answer lies in the areas top aral" resource—the wealth of power generated from its longlished universities, technical pls and research centers.

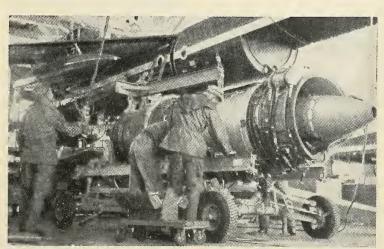
he New England Council notes one-sixth of the nation's entire erch facilities are clustered in the n, along with 13% of the universiand colleges which award higher ges. "There is a very definite cor-con, in our opinion," says one ial of the agency, "between educafacilities and the growth of our


science-based industry."

Iany new companies are being d and founded by the graduates I.I.T., Harvard, Yale, Worcester echnic and scores of other New and institutions of learning. And of these newer firms lean heavily sic research and specialized areas issile/space technology.
/hen RCA opened its new Missile

conics and Controls Department, Irlington, Mass. In the "Golden trial Semicircle" company Presi-John L. Burns commented, "Few y areas in the country offer a er stimulus to intellectual curiosity

doriginal research."


Week: Closeup of Boston's "Golden Semicircle"

TYPICAL OF developmental research work being carried out by numerous New England companies is this fatigue testing of high temperature bearing material.

INSPECTOR at work in Pratt & Whitney laboratory, East Hartford, Conn.

FIRST OPERATIONAL Snark squadron in the nation is ready for action at Presque Isle AFB in the potato-growing north country of Aroostook County, Maine.

Interview With General Sessums

"He is the rare kind of commander who always seems to know exactly what everyone under him is doing . . . and regardless of how occupied he may be with important decisions, if he feels someone has done a good job, he always finds the time to put it in writing in the man's record."

The words were tinged with regret as they came from an officer the other day. For he was speaking unhappily about the retirement of his boss—lean, nimble-witted Maj. Gen. John W. Sessums, Jr., as vice commander of ARDC, a post he had held for the past five years.

Mechanical engineer-trained (University of Tennessee, Air Corps Engi-

neer School) Johnny Sessums has been intimately associated with aircraft and, in recent years—missile—research and development throughout his 30-year career. And his firm guidance will be missed. In the early '30's while in the Canal Zone he flew—and crashed on its second flight—a homemade monoplane with an engine he had constructed from outboard motor parts. During World War II, he headed up the AF's Aircraft Production Division for three years then shipped overseas as chief of plans for the 22nd Tactical Air Command.

Returning in mid-1945 to the U.S., he promptly was made assistant to the chief of R&D at AMC, Dayton. Six years saw him rise to deputy command-

ing general of ARDC at Wright-Pa son AFB, and in 1954—to vice of mander of the entire ARDC comm Along the way, in addition to his we personality, silver-haired Johnny sums has earned the reputation mechanical genius. His associates he is "conscientious in everything does."

ARDC Commander Lt. Gen. 1 and M. Schriever noted Sessums one of the earliest advocates of listic missiles and called the ret general "a voice in the wilderne the late '40's and early '50's." A was in the process of stepping back civilian life last week, General Ses was invited by M/R editors to over the missile development hor

Q. The next 10 years hold promise of big things. Let's take ballistic missiles. We're pushing ahead with Atlas and Titan—the so-called first generation ICBM's—and in a few years will come solid-fueled Minuteman. What do you believe will be the third generation?

A. If I had to bet on it, I would say the pre-packaged liquids. And it is my firm belief that we are going to find the air-launched ballistic missile is really the pay-off.

Q. You mean strategically and from a cost standpoint, too?

A. Yes. The overall cost of defending the country can be greatly reduced with a system using CAMAL, the nuclear-powered, continuously airborne, missile-launching, low level airplane, and the ALBM. With a fleet of these planes, you would need only a few bases. The planes don't have to be accommodated on the ground all at one time—they stay in the air most of the time. On patrol, they could be a terrific deterrent. Not only can they get closer, which helps solve your targeting problem, but by getting closer the magnitude of the problem of detection and destruction reduces very rapidly. Such a force operating on a global basis would be able to strike at all enemy target complexes. It would be a most difficult task for any enemy to locate the constantly moving patrol. I think that with such a force it would be very difficult for any aggressor to launch a surprise attack on the U.S.

Q. Letting your imagination go a bit, how feasible is the CAMAL-ALBM as an anti-missile missile?

A. Of course, the CAMAL concept of operations is not defensive in nature, rather it is a weapon system designed to deter the enemy from launching his ICBM's. It is true that CAMAL would be able to assume tasks of a defensive nature because it will be a very versatile airplane capable of carrying very high payloads. We are talking now, for instance, of intercepting missiles at 18,-000 miles an hour and 700 miles high. This is quite a problem—the defensive missile which may be going even faster than that will always have the disadvantage of taking off last. So, you can't assume you are going to get him half way; you are going to have to get him somewhere between half-way and home plate. CAMAL would put you out to where this half-way business becomes

the ocean—instead of the U States.

Q. That certainly is desirable, would CAMAL have a capabilit combatting a number of ICBM's ing in; a capability superior ground-based system?

A. The Kitty Hawk of the launched missile business is the mile type that we are developing. The studies that were carried o Martin, McDonald and Convairlheed in competition for the Acontract indicate that an airplan CAMAL's size ought to be ab carry several.

Q. And the size can be expect diminish with future developmen

A. Certainly. With the first bomb, you may remember, we I terrible time folding the thing int biggest airplane we had. Compan now to atomic artillery shells now can be shot from a gun. Yo expect increased efficiency in ALBM's propellants, which will r the size of the missile. So, you cawe are either going to come do the size of the missile or be al shoot it further with a bigger if we keep it roughly at 10,000 p size.

Q. Visualizing an airplane out over the ocean hunting missiles, 1 going to be a devilish compuproblem. The airplane would 1 computer.

A. You may be right; you has a problem. But it seems to me that to lick it is by building your det in the plane. This would eliminate need for the ground communication.

rol system we have now, with s of large capacity computers and munication relays for detecting tracking. If you have the weapon oard and the detection equipment oard, all the computer does is put ignals in the missile, and the plane can fire instantaneously, assuming have the authority to launch. All need is a signal, like SAC now or the positive control system.

). It is still going to take a big air-

to carry it all.

Well, it is going to take a big nne to carry a nuclear reactor and ding. This is another point: you say if you have a fleet of these is patrolling the perimeter of an y country, they will just send their ers and shoot them all down. It is to be a long time before there are ic fighters—when you start out 60,000 to 100,000 pounds of cling before you start to fill in the e and the airplane. So, I would he any counter weapon would be issile. It might be submarinehed. But, if your CAMAL has brity to defend himself-take on gts—then I would think that as as a missile was launched at him, ould be able to get the missile hhomever launched it.

. This looks like an interesting sect to tie in the Air Force early ring system, and possibly with the task of anti-submarine warfare.

There are a great variety of posities. And the thing that appeals it is that it offers a chance to save money by reducing some of the weapons systems we have now, hoffensive and defensive.

Of course, any saving with a like this would be very far in a hture. We would still have to go with ICBM base building, cost-

n enormous amount.

Yes. It is just like General Ley says. He will take any new an that is proven. This is true of and Titan. He's not about to take -52's off the line, until Atlas and a have been proved. You have to them in the hands of trained and with a demonstrated capafirst. Target selection (planning d of attack and all these things) ao a factor and poses a much eer problem than the average inical realizes. The CAMAL airplane a new development-it hasn't been lown yet. The ALBM is a new repment. It will be some time bee ve get a really satisfactory airnied ballistic missile. Before you ne built, you can see another ic is going to be a big improve-

On the point of training. In propinion, how many years will it

be before we can muster a 15-minute ICBM retaliation system?

A. Well, the nucleus of the capability will start when the first Atlas becomes operational. That means crews have been checked out on the mechanism. But just having a group of men trained in the mechanics alone is not enough. You are going to have to build up all the accouterments—targeting is a problem we are learning more about every day. I would say soon after we kick off, we ought to have some capability. That capability should increase at a rapid rate as facilities and additional personnel become available.

Q. Let's switch over now to what's ahead in propellants and materials. On improving the specific impulse of solid fuels, what's the outlook on aluminized

perchlorates?

- A. They have shown considerable improvement-something like 20 per cent. I think we are going to see other additives that will be very effective. A great deal of research is going on in the boron field, both as a fundamental fuel and additives, which may produce even better results. We have gotten higher than 260 I_{sp} with solids. But with perchlorates, you must remember they are extremely sensitive and the higher specifics become, the more sensitive they get. This creates a problem in making them meet storage and handling requirements. If they are so sensitive that if anyone just tapped a rocket accidentally and it went off, it wouldn't have much military use.
- Q. Where are you having heat problems with solids—just in the nozzle area?
 - A. In the nose cone, of course.
- Q. How about the casement side?
 A. Well, we aren't having any particular problem, other than trying to get the weight down.

Q. And with liquids?

- A. The big problem here is the motor chamber pressure. A number of people are working on chambers of up to 1000 psi. And with this order of magnitude they are getting into entirely new developments to keep the engine from blowing up.
- Q. Actually, most ARDC work is strictly related to materials. What are the goals in this area of an applied research nature?

A. Beryllium development is a good example of our applied research efforts. It is really a wonder metal, but it is very hard to extract from its ores and not too many exploitable sources have been discovered. Furthermore, we have brittleness and joining problems. Substitution of beryllium for steel has provided us with an extremely sensitive, light weight gyro. Many other specialized applications, such as brake systems, nose cones, satellite structures,

are visualized which could reduce their weight by 50% or more.

Q. Has the toxicity problem been licked?

A. No, but the beryllium industry and the AEC over a period of years have developed many safeguards from which we and our contractors are learning.

Q. Are we trying to build an industry, like we did with titanium? Everyone knows how titanium slumped. Now, are we building up the beryllium effort at the expense of other important metals such as the refractories—like columbium—so all our eggs will be in a beryllium basket?

A. Not at all. We are also concentrating on applied research in the refractory metals. As for building an industry, you will recall that, initially, aluminum and magnesium were primarily aircraft materials. Both have become a boon to the civilian economy. I expect the same pattern for titanium. But money is always a problem. With the J57 Pratt & Whitney engine, there was a large premium for the titanium in it-so large a premium, in fact, that a decision was made at higher levels to cut the percentage of titanium to where it would cost only \$150,000 or so premium over the price of the engine. It would have been fine if we could have afforded to create a terrific market for titanium.

O. What about "whiskers?"

A. Research in "whiskers" is one of our longer-range programs. Such studies may shed new light on problems, such as fatigue, which have long plagued the Air Force. A string of iron molecules making up one of these "whiskers" is out of the ball park for anything we've known in the past for strength—over 2,000,000 psi, many times the strength of any known steel.

Q. What would you say will be the basic material for space vehicles of the foreseeable future?

A. Obviously, it is going to be a long time before we can grow molecules into sheet sizes. So, I think you will see stainless steel alloys, with their terrific strength properties, particularly in honeycombs, being used for quite some time. ARDC, of course, is investigating all approaches of the entire spectrum of basic materials. And you never know what will be coming up, because there are literally billions of possible combinations. In the high-temperature area, we are looking into the refractory metals, ceramics, and graphite and trying all types of cooling tricks -evaporative, porous, ceramic-coating and regenerative systems. Any of these could be a real answer if we come up with ways of improving their characteristics-either by alloying or protective coatings, or both.

Missile Aluminum Uses Increase

The lightweight workhorse of the aircraft industry proves to be a versatile metal for missiles, with support equipment offering the greatest market

by Paul Means

Washington—Aluminum, long the economical lightweight workhorse of the aircraft industry, is now proving to be one of the most versatile materials for missile and rocket development.

The metal is used in almost every type of missile component and support equipment—from solid propellants to warheads, from the largest missile hull to the tiniest electronic component. Aluminum parts carry, fuel, launch and track today's missiles and space vehicles.

Aluminum accounts for approximately 10% of the average missile's weight—second only to steel. The amount of aluminum used is increased in the newer missiles, and as missiles advance from the R&D stage to production.

With more and more missiles moving along the production line, a vast new market is opening up for the aluminum industry.

In 1958—the first year that missiles were produced in any quantity

—the Department of Defense purchased 342,202,000 lbs. of aluminum, 24,451,000 lbs. of which were specifically designated for the A-2 missile program. In 1959, DOD expects to purchase 307,492,000 lbs. of aluminum, 19,199,000 lbs. of which are earmarked for missile use.

Much of the aluminum not specifically designated for missile development finds its way into missile checkout, ground support, tracking and electronic equipment. Also not included in the totals are National Aeronautics and Space Administration aluminum uses not specifically purchased from one of the services.

Expectations are that DOD and NASA aluminum purchases for missiles in 1960—when IRBM's, ICBM's, and space vehicles go into quantity production—will skyrocket, offsetting declining aluminum purchases for military aircraft.

The number of primary aluminum producers, which expanded from four to six in 1958, are: Aluminum Company of America, The Anaconda Com-

pany, Harvey Aluminum Inc., Ka Aluminum & Chemical Corp., Or Corporation, and Reynolds Metals The new producers were Harvey Ormet, which is jointly owned by the Mathieson Chemical Corp. and Rev Copper & Brass Inc.

In back of these companies over 26,000 firms—including most the major missile contractors—thave the capability to fabricate alunum into its desired forms.

 Myriad applications—A comp list of missile parts made wholly partly out of aluminum would be most impossible to compile. A par list would include: light and he gauge sheets for hull and nose or ponents; rod, bar, wire, and sci machine stock for electronic cont and guidance units; angles or extru shapes for internal bracing; foil in el trical components; forgings for fi honeycomb aluminum for wing a tail assemblies; powder for ignition s tems and solid propellants; and alu num in many forms for brackets, f tanks, motor heads, rocket motor tub

ALCOA integrally stiffened, extruded aluminum plate forms the *Titan's* hull.

Representative Uses of Aluminum in Missiles-

MISSILE	WHERE ALUMINUM IS USED	OVERALL WT.—LBS. (Takeoff)	WT. OF ALUMIN USED-LBS.
AEROBEE-HI	nose	231	100
ATLAS	powerplant	200,000	3500
BOMARC	hull, skin, wings, tailskin, fuel tanks, motor components	8500	1500
BULLPUP	major parts	600	300
CORVUS	inner hull, motor fins	not available	not available
CORPORAL	booster components	12,000	4000
DART	motor head, wing spars, wing spoilers, wing bobbin rods	100	5
FALCON	fuel tank, body, fins	100	49
GENIE	not available	104	
HAWK	midsection body, propellant	1200	170
HONEST JOHN	skin, bulkhead, fittings	6000	960
JUPITER	skin, fuel tanks, fins, power- plant	100,000	17,500
JUPITER-C	skin, fuel tanks, fins, power- plant	60-80,000	3,500 (powerplant)
LACROSSE	wings, tail surfaces, structural	500	250
VATA DOD	body, brackets, frames	13,800	5000
MATADOR	toka fina	13,000	2
MIGHTY MOUSE	motor, tube, fins	1000	
NIKE-AJAX	skin, bulkhead, fins, fittings	(without warhead)	460

-propellant core molds; and spin chers for satellite launchers and

e probes.

Aluminum uses in support equipinclude: shipping containers, ries for loading and unloading; way carriers, field loaders and carfield liquid oxygen producers; ge units and trailers; lightweight by generators, launching towers, it; devices, photomapping vans, ling radars, acquisition radars, conic control vans, fire control

cers for personnel.
t is in the latter area—missile supequipment—that aluminum comes feel they have their greatest ex-

oment, and even portable field

ing market.

wo of the most attractive qualities uminum are its weight, of course,

dits cost.

Aluminum has a specific gravity of 7 (one third the volume of steel). The savings in structure allow for of weight in propellants and payable. Aluminum also has a great vertity of uses, requires little maintener, resists corrosion, is non-toxic, that a tensile strength of 13,000 sper square inch—a factor which the raised to 90,000 lbs. per square c with alloys and special heat treat-

Low cost gains attraction—Alum's economy as a structural metal cost important when the missile is cuced in volume. Prototypes are all labor rutshadow material costs. Materials is stage are not necessarily picked

r conomy.

tut as missiles move into full-scale ouction, time and labor costs drop, iche proportion of materials cost to everall cost goes up. It is then that inum's low basic price, easy manibility, and light weight will recom-

mend its use wherever possible to cut unit costs.

And the price of aluminum has been lowered somewhat in recent years by improved methods and foreign competition. It presently sells for about 24.7 cents a pound.

Another advantage of aluminum is that it is in plentiful supply. Major expansion has taken place in recent years in primary aluminum production facilities. This was done partly by the producers to meet expanding demands of commercial and industrial aluminum users, and partly with guarantees from the government to meet military requirements.

The Federal government gave contracts to the aluminum producers after the beginning of the Korean War to expand aluminum facilities under which the government, for a period of 5 to 6 years following initial production from the facility, is required to purchase metal from the new facilities which the producer is unable to use or market in its normal operations.

• Capacity swells—The capacity for producing primary aluminum more than doubled between 1950 and 1958. Additional capacity of 433,000 tons was installed in 1958, representing a 24% increase during that single year.

New facilities installed during 1958 included Kaiser's hot-line at Ravenswood, West Va., the installation of two 16 million-pound plate stretchers, one by Alcoa and one by Reynolds, and a 6000-ton extrusion press installed for the Navy at their Hannibal, Ohio, plant by Reynolds.

Major facilities to be installed during 1959 include Olin Mathieson's new rolling mill at Hannibal, Kaiser's 30 million-pound plate stretcher at Ravenswood, and Alcoa's 14,000-ton press at its Lafayette, Ind., plant.

One drawback of aluminum for

missile use is its comparatively low heat resistance. The metal melts at 1220°F, and begins to suffer measurable loss of strength above 400°F.

Though other metals and alloys have a higher heat resistance, very few can withstand surface temperatures created at very high Mach numbers for any length of time.

Much of this problem has been overcome by research into the effects of high temperatures for short periods on aluminum, and with newer missile designs and flight paths.

Almost every major form in which aluminum is available is used in missiles and missile support equipment: sheet, plate, castings, extrusions, forgings, rod, bar and wire, electrical conductors, insulated wire, foil and powder.

And the fabrication of aluminum in these various forms for complex forced aluminum fabrication companies to devise new special handling techniques and very careful quality controls.

• Tight controls—An example of this is the extreme tolerances that Reynolds must meet in fabricating the aluminum shells for *Redstone* and *Jupiter-C*.

To insure quality, Reynolds, which has been fabricating missile hulls since 1952, employs one inspector for every four technicians working on rocket casings. Each of the more than 20,000 parts, and each stage of assembly, is checked before joining.

Quality control starts for Reynolds, as it does for the other aluminum producers, when the aluminum sheet and plate is produced for missile parts. The metal must be perfect, devoid of scratches and blemishes. Electronic instruments search for possible weak spots that might fail under pressure. Width and thickness of the sheets and plates are measured to tolerances within a few thousandths of an inch, and samples are chemically analyzed.

The sheets are then taped to protect the surface from dirt, scratches, and fingerprints. This tape is not removed until the final assembly is ready for cleaning and finishing.

Reynolds then trims the aluminum sheets to their required length of 220 inches fitting a tolerance of 0.002 inches.

The trimmed sheet is then rolled to form a cylinder, then the ends are welded. Next, the shell is strengthened by spotwelding an aluminum reinforcing bar along the longitudinal weld.

Then the shell is trimmed to exact length, fitting a tolerance of plus or minus 0.015 inches. Aluminum stiffener rings, shaped on a radial draw forming machine, are spotwelded into the shell. There are approximately 24,000 spotwelds on a *Redstone* shell. The shells

SS.E	WHERE ALUMINUM IS USED	OVERALL WT.—LBS. (Takeoff)	WT. OF ALUMINUM USED—LBS.
KITERCULES	skin, bulkhead, fins, fittings	2000	750
LIS	not available	(without warhead) 28,000	25 (known)
SAL	wings, fins, hull skin, motor, wing roots, wing components	13,000	3200
DONE	nose, fuel, body, engine hous- ing, tail fins, hull	40,000	4500
RCANT		22,000	1320
DEINDER	power tube, hull	155	75
IA.	skin, fins, frame	36,000	3900
A OW 1	midsection, body	300	95
Alow III	midsection, body	350	260
.Ld	fins, inner hull	3000	500
R R	shell, structurals, fins		19%
RF R	structural parts, outer skin	3300	52B
	skin	220,000	not available
IC.	skin, tanks, bulkheads, power		
	plant	100,000	11,025
NUARD	skin, fins	22,600	3700
IN	rocket motor tubes	107	not available

Source: Kaiser Aluminum & Chemical Co.

are then welded into sections, which require tolerances of 0.031 for a 34-foot section.

After the sections with the bulk-heads are welded together, with X-rays checking the welds and extremely high tolerances demanded throughout, the piping and tanks are hydrostatically tested for leakage, pressurized to make sure the metal and welds withstand pressure, and optically inspected by instruments to check alignment of all assemblies.

These rigid quality controls follow the shell through final finishing for delivery to **Chrysler Corp.**, the prime contractor.

Other large missiles using aluminum plate or sheet as their frame and covering include Thor, Jupiter, Titan, Snark, Bomarc, Polaris and Minuteman

•Milling and aging—The Titan uses integrally stiffened, extruded plate produced by Alcoa's 14,000-ton press at Lafayette. The 20-foot shapes emerge as inverted vee's. They are flattened into 34-inch widths, and shipped to The Martin Co., at Denver for stretch-forming, chemical milling and welding. Mechanical milling reduces the skin to a uniform thickness. The two faces of the aluminum skins are milled to required dimensional tolerances including the flat surface of the web between the ribs.

After inspection, they are stretchformed in sections as large as 5 feet wide and 24 feet long, inspected for contour, and aged for final strength. Heat treating to a final T-6 condition follows and after additional aging, the panels are finally chemically milled.

Alcoa Aluminum plate is used for Thor and aluminum sheet is used for Jupiter.

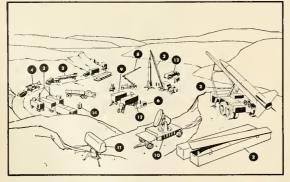
Smaller missile shells can be made of a single precision aluminum cold forging as Hunter Douglas, Division of

REYNOLDS fabricates the aluminum tail sections for the modified Project Merc Redstone scheduled to take the first American on a ballistic rocket flight.

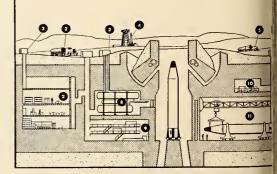
Bridgeport Brass Co., does for the Sidewinder motortube. This tube is typically straight within .020 inches, its inside diameter within .006 inches, wall thickness within .0015 inches. It has a yield strength of 72,000 psi minmum.

• Use in solids—Another not too widely known application of aluminum in the missile industry is as a component in solid-fuel systems.

Polaris' solid-fuel motor, for example, uses a composite fuel made up of very fine aluminum powder in combination with conventional polymer bondings. The fuel is encased in aluminum firing chambers to increase the heat.


Powdered aluminum constitutes 15% of the propellant by weight used in the Army's *Hawk*.

• Promise in support—But according to a recent study by Kaiser, missile support equipment offers small


and medium-sized aluminum facators their greatest opportunity, the case of tactical missiles, alumi will gain widespread application cause of the entire missile bat must be readily portable and, in a cases, capable of being airborne.

Aluminum's light weight, durity, and ease of maintenance in storage make it a favored metal to used in ground transport equipmed designed to take the missile not from factory to test or installation but also from base to base as assig

Small missiles make wide use aluminum containers for shipm. The Sidewinder is shipped in aluminum container 18 inches squ by 35 inches long. The Falcor shipped in an aluminum case impeasures 88 inches overall. The to-surface torpedo Petrel uses an minum case that telescopes into a container to the surface torpedo Petrel uses an minum case that telescopes into a container to the surface to the

SUPPORT equipment aluminum uses include: 1—shipping container; 2—gantry; 3—highway carrier; 4—special loader, carrier; 5—LOX producer, storage and trailer; 6—power generators; 7—launch tower; 8—firing device; 9—photomap van; 10 & 11—track and acquisition radar; 12—electronic control van; 13—

fire control equipment; 14—field showers. Fixed base uses clude: 1 & 6—personnel access; 2, 3 & 8—fuel transport, int and storage; 4—static testing; 5—missile transport; 7—quat and storage; 9—control room; 10—power generation; 1 warhead loading. Drawings supplied by Kaiser Aluminum C

A Bright Future for Cryogenics

Their advantages should enable them to stand off challenges of exotic systems at least until 1970

by Frank G. McGuire

Los Angeles-The outlook for rogenics? Bright and clear. That's the mion of propulsion experts, and they nce a convincing argument to support hr optimism. Despite the approach nuclear rockets, ion and photon yems, and other exotic propulsion lices, it seems the chemical systems be with us for a long time.

Part of the key to the future of apgenic propellants lies in the definiid of the term, from a scientist's point view: "As they exist in a normal tosphere on earth, cryogenics are idified gases whose boiling point is esiderably below vapor pressure at rbient temperatures . . . and which nst be refrigerated in order to be ted under normal conditions." Storpropellants, on the other hand, do have the characteristic of boiling of in a normal atmosphere on earth.

The significant words in both cases "on earth." According to Robert S. Klemer, group leader in Rocketdyne's piliminary analysis department: "When w get out into space, the environnt is completely different, and we in that what is 'storable' in space is

'storable' on earth."

This environmental difference elimines (or greatly reduces) a major disacantage of cryogenics and adds a dicap to the storables. The loweperature nature of such high-perchance propellants as LOX (-297°F), ne (-169.5°F), liquid hydrogen $(-23^{\circ}F)$, and fluorine $(-306.3^{\circ}F)$, nay lend itself very well to makir these chemicals storable in space. Pipellant combinations with higher, re-cryogenic boiling points, such as n ogen tetroxide and hydrazine, will he great usefulness in immediate-retration missiles, but will not dominate th space flight field and may even yield tecryogenics in some missiles.

(There is evidence that almost anythig will boil off in space—even solid propellants and possibly metals. It has been felt necessary to place a diaphragm over the exit nozzle of solidpropellant rockets that will coast for a long time in space, to prevent excess vaporization of the material.)

 Stressing insulation—Despite low temperatures in space, it will be necessary to insulate cryogenic propellents against direct solar radiation to prevent boil-off, and to insulate storable propellants to prevent freezing. Either boiloff or freezing would abort a mission. One method, proposed by Rocketdyne, features the use of lightweight plastic foam which acts both as insulation and as a load-bearing structure. The fluorine/hydrogen tanks in Rocketdyne's suggested space vehicle are mounted directly in the rigid foam, which insulates the tanks and provides support for the vehicle's outer walls. (The outer walls will be painted with a reflective coating to minimize solar radiation effects.)

To reverse the insulating action, the foam "umbrella" that protects the propellants from solar heat is rearranged to provide a reflecting surface to focus solar heat on tanks containing storable propellants to prevent freezing. It was calculated that just about as much insulating foam would be needed to prevent storables from freezing as to keep cryogenics from boiling off. The difference is merely in the design of the foam shield around the tanks. As a result, fuels and oxidizers formerly thought too touchy for space flight-such as fluorine and hydrogen-are just as storable for space missions as nitrogen tetroxide and hydrazine.

The new insulating powder recently developed for propellant tanks was not used in the Rocketdyne design because of the need for structural strength to support the vehicle walls. Actually, slightly larger amount of foam is needed for cryogenics than for storables, but the amount is "negligible," according to Rocketdyne.

 Looking away—A further step taken to control solar absorption by space vehicles is the technique of orienting the vehicle so that it presents as small a surface as possible to the Sun. While the vehicle is pointed nose-first at the sun, reflectors are extended from the sides at the nose to form a shaded area over the propellant tank area. Known as making the vehicle "solar statically stable," the technique is an easy one to carry out and involves keeping the solar-pressure-center aft of the center-of-mass. This method keeps heat away from the cryogenic-propellant tanks. When the reflectors are extended from the sides at the tail, they focus heat onto storable-propellant tanks to prevent freezing.

The Linde Company, manufacturer of cryogenic liquids, also has considerable confidence in the future of cryogenics as rocket propellants. According to C. T. Fallon, manager of cryogenic engineering, the firm expects to begin operation of its liquid hydrogen plant at Torrance, Calif., about April of 1960. This facility is designed to produce over 360,000 pounds of liquid hydrogen per month, 300,000 pounds of which goes to NASA under option. Linde will then truck the propellant to NASA's facilities for use in various programs.

 Gains in storability—The new insulations presently being developed, notably Linde's SI-4, assure almost complete storability of cryogenics. Although few details on SI-4 (Super-Insulation #4) have been released by the company because of pending patent proceedings, its weight and thermal conductivity have been announced. Compared with other standard insulations, SI-4 stacks up as follows:

Santocel thermal conductivity is between room temperature and 90°K, recorded as BTU/Hour-Foot-°F. This

'Specific Impulse Is King!' . . .

reads as 120×10^{-5} . Perlite, another standard insulation, has a thermal conductivity of 90×10^{-5} . This compares with a straight vacuum, which has a rating of 78×10^{-5} (with highly polished surfaces).

The SI-4 insulation rates at 3 x 10⁻⁵ in thermal conductivity, an obvious improvement of 30 times over Perlite, and 25 times over a vacuum. It weighs about 6.8 pounds per cubic foot, compared with the 8-pound-per-cubic-foot weight of Perlite. The figures established by Linde laboratories have been verified by the National Bureau of Standards.

Evaporation losses have also been considerably reduced by SI-4, and in the case of liquid hydrogen protected by the material, amount to 9.3% per year. Normal tankage using Perlite would lose about 200% per year. A LOX tank protected by SI-4 could be expected to lose 2½% to 3% per year through boil-off. The difference is due to the lower boiling point of hydrogen.

The cost of the SI-4 depends not only on production and availability, but also on the technique of application, which is very important. It would however, be a premium product, somewhat more expensive than Perlite. It would unquestionably pay its own way where the colder cryogenics are concerned, such as hydrogen or helium, but the low cost at which liquid oxygen and nitrogen are distributed make it questionable whether the premium cost would be justified in a ground installation. In an airborne vehicle, however, SI-4 has distinct advantages because of its light weight.

• Limits of fluorine-Linde feels that with the high specific impulse of a fluorine/hydrogen system combined with the storability of such cold fluids now possible, there is no great barrier to their use in space vehicles. However, when asked if they thought fluorine would ever be able to compete economically with liquid oxygen, company officials thought not. Agreeing with Rocketdyne spokesmen, they said fluorine would probably be used where specific impulse is the prime factor, but that it is very unlikely that fluorine would get down to the neighborhood of LOX in price-per-pound.

Until the advent of systems with higher specific impulses, there seems an excellent possibility that a cryogenic fluorine/hydrogen system will be the workhorse of our space programs where large payloads are used. • Comparisons—The future of cryogenics in space flight as compared with other propulsion systems has been studied by Rocketdyne, which came up with some interesting results. Starting from a common point, that is, takeoff from a 300-mile orbit around the earth at a gross weight of 25,000 pounds, each vehicle or system was to complete a simulated mission to Mars. Payload delivered to Mars was the determining factor of usefulness.

The solid-propellant system delivered a gross payload of 1600 pounds, exclusive of any propulsion system or related items. Such a vehicle would be available in the early 1960's and a "fairly optimistic" solid propellant was assumed. In addition, higher motorcase strengths were assumed than those of other systems, and more staging was used.

In spite of this, says Rocketdyne, both the storable systems (hydrazine/nitrogen tetroxide bi-propellant liquid rocket) and the hybrid system (liquid chlorine-trifluoride/solid lithium-hydride) came out considerably higher in payload capability—about 2800 pounds, compared with the 1600 pounds for the solids. The pure liquid system (liquid fluorine/hydrogen) outperformed all the previous systems with a gross payload capability of 4000 pounds.

• King Cryogenic—"Regardless of complications," said Rocketdyne's Kraemer, "we found that higher specific impulse would always pay for itself . . . you might say 'Specific Impulse is King!'"

This criteria therefore establishes cryogenic liquids as the most efficient system for a number of years to come. Even with the advent of nuclear and ion rockets in the late 1960's or early 1970's, there will be a need for efficient large chemical boosters to get these low-thrust or radioactive rockets off the ground and away from earth.

The fluorine/hydrogen system will be available in the early 1960's, as will the large solid-propellant system, and other large cryogenic-chemical systems will be on hand even sooner. Advanced nuclear systems expected to be ready for flight by 1970 will bring the payload capability up to 6300 pounds, from the 4000-pound-capability obtainable with the F₂/H₂ system (still using the basic premise of a 25,000-pound-gross-weight vehicle leaving a 300-mile orbit). These advanced nuclear systems have a design I_s of 1080 seconds.

The future of one particular cr genic propellant—liquid oxygen been questioned because of the po bility that liquid fluorine or oz might completely displace it. The u mate theoretical cryogenic combi tion is ozone/hydrogen, but ozone not yet reached the state of devel ment that allows its use as a stand propellant.

The ultimate practical combinati therefore, is fluorine/hydrogen, witl specific impulse of 398 seconds (the retical maximum specific impulse, lb-sec/lb. frozen equilibrium). Liq oxygen/hydrogen holds a spot abten seconds behind at 388 secon With the extremely low cost of Li (less than a penny per pound) and high availability, it is an excellent for use in many vehicles where extreme performance of fluorine is mandatory.

• Trend toward simplicity—Spec equipment for handling LOX is of greater complexity (and in some caseless) than equipment for other or genics. Rocket engines show a continuing trend toward simplification witness the engine used in The Jupiter: components reduced from in 1955 to 5 by 1960.

The turbopump problem is s to be greatly exaggerated, with b. Aerojet-General Corporation and Ro etdyne defending it against advoca of pressurized systems. The reliabi of tubopumps in cryogenic systems much better than generally believ both companies say, and they emp size that the added structural weight a pressurized propellant tank is a m greater penalty than the questiona gain from elimination of the turl pump system.

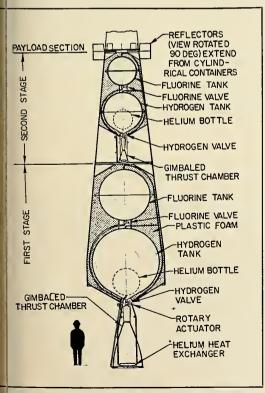
In upper stages that operate extreme altitudes, it is possible—a sometimes desirable—to almost copletely eliminate moving parts, but it claimed there is no valid reason removal of turbopumps from boostages. Even with the near-absolutero temperatures of liquid hydrog (-423°F) there should be no proble of reliability with pumps and valves the equipment is properly designed.

• Pleasing figures—The cost propellants is a major factor in t large booster systems now in the desistage. With the \$900/pound price to on the cesium propellant of an irocket in mind, it is nice to note t 10¢/pound cost of LOX/RP1, or t storable combinations at 70¢/pour or even the solid propellants that r up to \$3/pound. These figures take a tremendous significance when o considers the three million pounds propellant that will be used in just t first stage of the Nova vehicle of

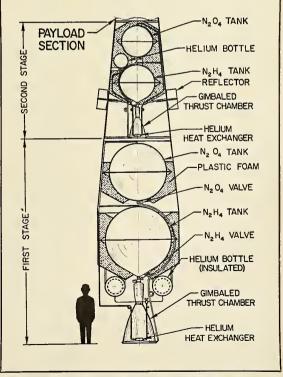
ion-pounds thrust, for example. For these reasons, economy, perrance, availability and relative simicy of handling, LOX takes a back a to almost no other propellant. The the utmost I_{sp} is needed, or the density is a consideration, Fluiwill be used. (It is about one-plagain as dense as LOX.) When comy is the prime factor, LOX/-copen will hold its own. As noted eously, the insulation problem with ygenics varies with the environe, and appears to be an almost irr problem.

hterplanetary travel possibilities in LOX and other cryogenics varies it the area to be covered. In terstal space and closer to the Sun Yus, Mercury areas) there is a ling definition of the storability of cellants, and the scale tends to shift with the series of the properties of the storability of cellants, and the scale tends to shift with the series of the storability of cellants with a fairly good body to the storability of the series of the storability, but it is just a question of a few days e on the moon, there is no real of the storability of the sto

he feasibility, of course, depends ne length of time required before to to earth. The lunar temperatures during the night would aid in the storage of cryogenics while daytime temperatures would hinder storage. Once a vehicle leaves earth's environment, however, the scale pretty nearly evens out among cryogenics, storables and solids, because of the insulation needed for all of them.


• Backing and filling-Evidence has been seen lately that various planning agencies like the theoretical performance of a new propellant combination and try to work it into a program. Once a closer look is taken, however, at things like costs, availability, handling characteristics, etc., a slow backward movement is begun that results in a final choice like LOX/RP1 to fill the requirement. Even though faith in the storables is expected to be borne out by increases in specific impulse to 400 seconds at high altitudes, the cryogenics are likely to be at 460 seconds by the same time.

It has "disturbed" some liquidpropellant experts to see that the government has established research funds for the advancement of solid-propellant chemistry, but has not established any funds for development of storable liquid propellants. The potential of these non-cryogenic liquids has been demonstrated on a small scale, they note, and all that remains to be done is to develop them for full-scale operation.


Combustion-wise, there is a greater efficiency in cryogenics than in other propellants. Smoother and more stable combustion results from cryogenically-liquified gases; the best being two cryogenics, next best is a cryogenic and a non-cryogenic liquid, then two non-cryogenic liquids, and so on down into the more stable states. The more easily vaporized the gas, the easier it is to achieve and maintain a smooth, stable combustion.

So, although ozone/hydrogen is ultimate, it is not practical and fluorine/hydrogen takes over. But this is expensive and requires special handling, and so reverts to economical, available, high performance LOX/-Hydrogen, which has no radioactivity, toxicity or other highly undesirable characteristics.

In the final analysis, therefore, we find that large payloads will be necessary in order to carry out significant space missions, but that they can be put into orbit most efficiently by a cryogenic combination of fuels—the specific choice depending on a number of factors. This situation will probably remain unchanged until at least 1970.

CORINE/HYDROGEN propulsion system depicted by occidyne. Spokesmen see it as the space program workhorse.

STORABLE PROPELLANT space propulsion system, also as pictured by Rocketdyne. Near-complete storability is at hand.

Nike-Zeus Decision Is Looming

Slated to cost \$1.5 to 2 billion in FY '61 alone, the nation's only anti-missile missile under development could be cut back

by James Baar

. . . Thunderer Zeus, who all dominion hath.—The Odyssey

Washington—Nike-Zeus—the nation's only anti-missile missile under development—faces a life or death crisis within the next six months.

Billions of dollars and the future strategic posture of the United States ride on the outcome.

In simplest terms, the Eisenhower Administration in its final days must answer this two-part question:

Shall the Western Electric Zeus system be put into production so that it can become operational on schedule in 1963?

Or

Shall the billions that it will cost be spent elsewhere—if at all?

There is also a third possible choice: The Administration can temporize.

The price tag on this question for FY 1961 alone is about \$1.5 to 2 billion. The total price for Zeus—all payable within the next few years—is almost anywhere from about \$5 billion up. It depends on how much defense you want to buy.

To appreciate the awesomeness and complexity of the problem you should begin by bearing in mind three basic facts:

- The United States today does not have any defense against an attack by Russian ICBM's.
- Zeus, for better or worse, is the only foreseeable defense that the United States can have against ICBM's for at least the next eight to 10 years.
- Russia is expected to have enough ICBM's for a major attack beginning about 1962. And that capability is expected to mount rapidly thereafter.

• Family resemblance—Now, let's look at Zeus, itself.

Basically, it is a huge direct decendant of the Western Electric Nike family of anti-aircraft missiles—the Ajax and Hercules. It was designed from the same general concepts: command guidance, acquisition radar, ground battery computers. And it bears a strikingly similar appearance. However, the advances have been tremendous.

Zeus has three solid-propellant stages. The Thiokol booster engine, which has a 450-thousand pound thrust, delivers its power in about four and a half seconds. The Grand Central Rocket second-stage engine is powered by what the Army describes as "special high-energy propellants." It has a newly-developed plastic nozzle made by Douglas Aircraft,

Both the first and second-stage engines have been static fired successfully. The first-stage engine was first fired at Redstone Arsenal last August; the second-stage engine at Beaumont, Calif., this spring.

The Zeus system has huge radars and computers designed to find and track oncoming warheads and direct missiles to the right areas for interception within minutes. In the final seconds of flight, a precise tracker guides the Zeus to its target.

Major system components are scheduled to be tested later this year at the White Sands Test Range.

• Funding history—The Army, Western Electric and Bell Telephone

Part One of a two-part series on anti-missile missiles.

Laboratory began studies on the system in the mid-1950's. In Jan of 1958 the Pentagon directed Army to proceed with the prograr an urgent basis and scratched the s what similar Convair Wizard that being developed for the Air F However, the Pentagon directed Air Force to proceed with rapid d opment of BMEWS—the ballistic sile early warning system.

So far, well over a half-million lars has been spent on Zeus. I than 80 companies are engaged i development in 17 states from York to California.

This brings us down to the pr slugging match over money for in the FY 1960 budget.

Originally, the Army recomme putting \$1,003,000,000 in the bit for Zeus. This included about million for R&D and more than million for tooling and other pretion facilities as well as some 1 for Zeus bases.

Later the Army reduced its request to \$626 million—\$300 m for R&D, the rest for production f ties. But this figure also was una table to the budget-minded Adn tration. Only \$300 million for R& mained in the Army budget by the it reached Congress.

The net effect of this would been a sizeable delay in the Zeus table. As one Army source put it: production money is needed for lead time items. When you pr dinner, the roast takes just so loo cook. If you delay putting it it oven, the whole meal is delayed

• Change of mind—The Adr tration explaination was that it did not feel Zeus was advanced er for production. However, as the n-fighting in congressional commitpassed, the Administration reced itself. It included an extra \$137 ion for Zeus production facilities he so-called "master plan" for antiraft defense.

The \$137 million is conceded gently to be just barely enough to keep a son schedule. It also leaves the ministration with the painful decisto be made all over again in the cing months as the nation heads a presidential election year. Only time the sums involved are billions and of millions.

At the very core of the problem is question of just how good Zeus army experts will tell you fervently: y good. A number of other Pentace experts will tell you: Yes—and no. It in a sense are correct. It's a mate of premise: What do you want an

r-missile missile to do? Of course, you want it to knock on ICBM's. But how many? And

• Half a loaf—Ideally the answers r simple. You want an AICBM that we knock down all ICBM's fired at in anger—even when the sky is raded with possibly dozens of wards and scores of decoys. All of this city is to take place outside the tosphere where explosives of multination warheads will do relatively ite damage. And the whole show hald cost about \$1.98.

This isn't Zeus. Nor is it anything I known to be feasible at this time. The Army contends—and most obeive experts agree—that Zeus will cable to provide adequate spot decide of vital targets.

This means that if a dozen or so wheads or warheads and decoys are need at a particular target—say a U. ICBM base—Zeus will be capable of preventing the target from being troyed.

Very good. However, here comes brub. In the case of a city like New

TESTING OF the Thiokol booster engine used in Nike-Zeus. The solid-propellant engine delivers 450,000 pounds of thrust in about four and a half seconds.

York or Chicago, Zeus might also make a perfect score. But some of the interceptions might take place not far overhead causing widespread fires. And if Zeus were to bat down nine out of 10 ICBM's, one five megaton warhead on Chicago would be enough.

Finally, Zeus will be able to do some discriminating between warheads and decoys. And the Army contends the system is sufficiently flexible so that even if Russia becomes capable of filling the sky with warheads and decoys, Zeus will become capable of dealing with the problem. However, this contention is open to argument outside the Army.

Obviously all of this adds up to a weapon that is not the ideal anti-missile missile. But the Army contends that to reject it on those grounds is like starving to death because the only food in the house is ham sandwiches and you want pressed duck.

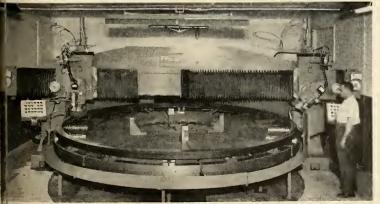
• Strong points—Moreover, these arguments weigh heavily in Zeus' favor:

 No matter how powerful a deterrent force the United States can build, the nation is powerless to prevent an ICBM attack once a war begins unless it has some anti-missile missile system.

• At a very minimum, Zeus would provide a guarantee that a significant part of America's retaliatory force could not be destroyed on the ground by a surprise attack.

• The very existence of Zeus increases the cost of an attack for Russia and raises one more doubt as to whether one could succeed.

• Finally, if the United States were to scratch Zeus and put its cost into offensive weapons such as more ICBM's, how much better off would the United States be if Russia developed an AICBM like Zeus?


"Put it this way," one Army spokesman said. "No defense is perfect. If the enemy wants to get through badly enough, he always can by paying the price of admission. What we're doing with *Zeus* is boosting the price of admission."

• Trouble ahead—It is difficult for many to conclude other than that the Zeus program should be pushed ahead on schedule. However, powerful opposition to it is certain. The root of much of this will be the money problem.

Given no worsening in the Cold War between now and January, the Administration will be even more eager than it was this year, as the presidential campaigns get underway, to call for a balanced budget.

This can mean only one thing: A defense budget frozen somewhere around the present \$40 billion. Nearly \$2 billion for Zeus will be hard to find, indeed.

Therefore, the Administration may be greatly tempted to marshal opposition against Zeus to try to kill it. Or, since it would be easier, postpone costly production and thereby put off having an operational AICBM until 1964—two years after Russia is expected to be in a position to, in the words of Defense Secretary Neil McElroy, "cream the country."

WRLD'S LARGEST ultra-precision hardened bearing was ground by the Kayden Eineering Corp. for production of giant radars needed for the Nike-Zeus system.

NASA Wants Small Business To Get Its Share

Civilian agency has good record in letting contracts to small firms and wants more on its buying list

by Paul Means

WASHINGTON—A new man at NASA intends to make it his business to see that small business gets its share.

But first he needs to know the names of small firms having the interest and ability to perform NASA contracts and subcontracts.

Jacob M. Roey, recently appointed Small Business Adviser, will start by screening a list of small businesses (those with under 500 employees) supplied by the Small Business Administration.

This is only the beginning. As Roey points out, "there are hundreds of small research organizations with competent staffs that have come into being almost overnight. It is our job to locate them and catalogue their interests and capabilities."

He asks any small business interested in having its name added to his list to contact him at NASA's Washington headquarters.

Roey views his job as one of education and information. He informs NASA procurement officers and large contractors of small businesses, singly or in teams, capable of performing certain contracts. He also informs small businesses of upcoming NASA contracts for which they might be capable of being contractor or subcontractor.

• High batting average—NASA's record of letting contracts to small businesses during their first six months of operation has been very good. The last quarterly report from NASA's Ames Laboratory shows over twice as many procurements going to small businesses as to large, and almost twice as many dollars.

Most of the Ames Laboratory procurements were for supplies and services, an area in which small businesses have greater capabilities. But the record indicates NASA's desire to give small business all the work they can handle. NASA contractors also have a good record of subcontracting to small business. E. W. Brackett, NASA Procurement Director, points out that the Rocketdyne Division of North American Aviation, which has the NASA contract to produce the Nova million and a half pound thrust single chamber engine, placed 79.4% of its total subcontract work by volume with small business firms in 1958. Total dollars showed \$40 million going to small business subcontractors and less than \$28 million to large business subcontractors.

Roey's job, then, is to systemize the process, so that NASA and prime contractors know what small businesses are able to perform specific jobs, and so that the small businesses know what jobs are available.

• General aims—Though he is still drafting a policy statement outlining the goals of his job, Roey says the general programs he intends to institute are the following:

 To compile a well-indexed file of small businesses.

2. To screen proposed NASA contracts to determine what portions could be performed by small businesses.

3. To invite small businesses to participate as members of the audience when details of NASA-proposed contracts are explained to potential bidders.

4. To give big business contractors names of interested small firms with subcontracting potentials.

5. To urge big business contractors to set up their own files of potential small business subcontractors.

6. to urge small businesses to pool their resources so that they can jointly bid on larger NASA contracts.

• Some targets—The evils in the contracting process detrimental to small businesses which Roey hopes to overcome include:

1. The natural tendency on the part of some procurement officers and technical staffs to award contracts to large firms of proven reliability.

2. The practice on the part of sollarge contractors to set up a stable subcontractors who then get most the subcontracts without competitifrom the outside.

The area in which small firms ceive a lot of NASA contracts p sently is supply and services. But 1 area which Roey feels holds a grifuture for small business is resear and development.

The Congress recently went on re ord as favoring the letting of contrato small business in this field. Unlithe military program, NASA net R&D work on many small systems a components which small business could handle.

 Made to order—The very natuof the space program indicates the many opportunities exist for small bunesses in this field.

One shot, custom-made spa probes lend themselves ideally to sm business development, since volur production line capabilities which fe small businesses possess are not neede Payloads on top of space probes a satellites vary from shot to shot NASA scientists attempt to increa their knowledge about the univers Much NASA payload contracting as the company to extend the state of the art in a specific field, and individual theoretical ability counts.

On the large space projects, such Mercury, Vega, Centaur, Saturn, at Nova, no one company is big enout to do the entire job. In these cast small electronic, engineering, researc construction, and many other types firms become valuable junior partner on a competing team for the contra and after the contract is won.

Many small handmade items, tr mendously important in relation their size, can best be done in a sma intimate shop, where decisions can I made orally across the shop floor rath than routed through the chief engineup to the executive vice president.

Another reason small business should get their share of NASA cotracts is that the space administratic does not intend to adopt the system concept of procurement, used to son extent in DOD. In the systems cotcept, all contracts for a complete program, including support equipment training aids, spare parts, and other items are placed with one contractor. In such cases, small business can serv as subcontractors, but are shutout a principal contractors.

Brackett states that NASA will usuch a system only in crash program where "time is of the essence;" the the usual procedure will be to "procuvarious items, or segments, separate from different contractors, and integrate and assemble them ourselves

Pressing the Search for 'Whiskers'

Five to 10 years may bring usable materials with six times the strength of steel

by Jay Holmes

Washington—Metal "whiskers," a pidache for handlers of electronic injument, may some day be a boon makers of missile structures, in wich high tensile strength is vital.

Some of these tiny metal fibers, vich grow out of bits of metal under new electron bombardment, have a congth up to six times that of the songest modern steel. The problem ore researchers is to form the whisten into a material that can be fabrated.

The strongest whiskers, which can he a tensile strength as high as 200,000 pounds per square inch, have dimeters of less than a 10,000th of an inthe their strength compares with a ximum of 350,000 psi for modern sels.

Metal whiskers were discovered a sort time after World War II when exincers sought the cause of mystious short-circuits that developed in ectronic equipment after long use. The they took the black boxes apart, investigators found tiny wiry ands jutting from areas of metal sfaces under heavy electron flux. The strands are formed when atoms belout the metal and deposit thems sives in a regular crystal structure, snetimes in the form of a spiral.

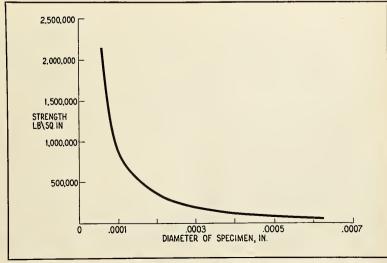
Why are whiskers so strong? A ne pertinent question would be why an't most metals as strong as whisks. For physicists have calculatedf m the difference between electrostat repulsion and bonding energy of rtal atoms—that the tensile strength ca perfect crystal theoretically should t on the order of several million runds per square inch. The difference tween this figure and the much lower reasured strengths of ordinary crystals thered physicists for many years. le discovery of whiskers' high strength cofirmed the theory. The weakness ordinary metal is due to imperfect ns in the crystal structure.

The National Aeronautics and Sace Administration is sponsoring tral-whisker research at California's Propulsion Laboratory and at the Iwis Research Center in Cleveland. Vork is also under way at several inestrial laboratories, including those of

General Electric Co., Bell Telephone and Union Carbide Metals Corp.

• Five years at least—Dr. Harold Hessing of NASA's Washington head-quarters told M/R it might be possible to make usable materials from metal whiskers in 5 to 10 years. "I would say five years at a minimum," he said.

A great difficulty, Hessing explained, is that only one metal whisker in 10 has unusually great tensile strength. So far, he said, no one has devised a simple test of whiskers' strength other than to pull each one individually. "If we can pull it up to a certain load, then we know we've got one of the good whiskers," Hessing commented.


Joining the whiskers is another problem. Bonding material must be ductile and able to carry a shear load. Hessing said it may be possible to devise a method similar to one under NASA study in Cleveland for bonding wires together. The wires, immersed in molten copper, are forced through a funnel-shaped piece of metal. After the wires are forced together and the copper freezes a material of very high strength is formed. NASA scientists at Cleveland have made a package of ordinary steel piano wires ½ inch in diameter with strength of 320,000 psi,

compared with 150,000 psi for unpacked piano wire. There is no reason why such packaged wire cannot be made indefinitely long, Hessing said. The effect of the copper surface on the metal crystals is less than had been feared, he added.

 Search for strength—Tungsten is commonly used in experiments with whiskers because it is one of the strongest of the pure metals. Pure tungsten is stronger than pure iron. Steel, of course, is stronger than both but no one has offered any plan for growing iron whiskers with just the right amount of impurity to make highgrade steel. The accompanying graph shows maximum strengths of pure iron whiskers plotted against diameter. The curve for tungsten would have the same shape and would be a little above that for iron. A graph for tungsten wires bonded as in the NASA experiments at Cleveland would be a little below.

While some scientists are trying to grow longer and thicker whiskers, others are trying to eliminate or reduce them to eliminate short-circuits in electronic equipment. Several investigators report that alloys form fewer whiskers than pure metals. Nickel and tin are popular ingredients of such alloys.

27

MAXIMUM STRENGTHS of pure iron whiskers. Tungsten curve would be higher.

Hawk and Lacrosse Join Armory

Both highly mobile missiles will be deployed overseas in the next year to U.S. and NATO forces

HAWK RATE GYRO is silver brazed at 1300°F in two minutes under controls.

Washington—The Army this month added two powerful new missiles to its armory—the Raytheon Hawk and the Martin Lacrosse.

The first home of the *Hawk* is Ft. Bliss, Tex., where the 5th *Hawk* Missile Battalion of the 57th Artillery has been organized. The 300-man unit will train future *Hawk* missilemen for deployment in the United States and overseas.

Two Lacrosse units—the 5th Missile Battalion, 41st Artillery, and the 5th Missile Battalion, 42nd Artillery—have been organized at Ft. Sill, Tex. Each has about 170 officers and men.

The Mach 2.8 Hawk is designed specifically for intercepting enemy planes and air-breathing missiles flying from tree-top to medium altitudes in an attempt to dodge radar. It complements point defense provided by the

Western Electric Nike-Ajax and Ni Hercules. Its range is about 22 mi

The Hawk has two stages—be powered by solid-propellent mot developed by Aerojet and Thiokol. I warhead is a high explosive. Raythe homing guidance in the missile dire it to its target.

The 1250-pound *Hawks* are hig mobile. They can be rapidly tra ported either by road or by helicop and aircraft. *Hawk* launchers ca three missiles which can be fired rapid succession.

The Mach 2 Lacrosse—a nucle tipped artillery missile—also is hig mobile. The entire system can mounted on a standard two-and-a-h ton Army truck. The system also ceasily be airlifted.

The 19.5-foot missile has a rar

THREE HAWKS ready to go are mounted on mobile launcher at White Sands Test Range. They can be fired in rapid succession.

ASSEMBLING HAWKS at the Raytheon's Missile System sion, Andover, Mass. Hawks may soon be manufactured in Em

LACROSSE, the Army's new surface-to-surface tactical missile, is mounted and ready for launching from standard 2½-ton truck.

o about 20 miles. Its warhead can be lided with a variety of explosives and sped charges. It can pack a nuclear wrhead or a variety of conventional eplosives or shaped charges.

Lacrosse is powered by a solid mot developed by Thiokol Its guidance iterminal and provides a high degree c accuracy, making it possible to hit sall targets such as bunker entrances.

Millions of dollars worth of Lacosses and Hawks are scheduled to be deployed overseas during the next yar both in the hands of U.S. Army wits and NATO troops. Marine units to will be equipped with Hawks.

Five NATO nations are moving tward production of *Hawks* in Europe their own forces through an agreement with Raytheon.

The Hawk and Lacrosse are among to first of the new highly mobile fast-

reacting tactical weapons being developed for the Atomic-age Army. Among those still under development: the Martin Pershing, Davy Crockett, Aeroneutronics Systems Shillelagh and Convair Red Eye.

The 500-to-700-mile Pershing will succeed the liquid Chrysler Redstone

Red Eye is a tube-launched guided missile for use against low-flying aircraft by troops in the field. It is equipped with an infrared homing system.

Shillelagh is a lightweight surfaceto-surface missile designed for use against armor, troops and field fortifications. It is expected to be operational by mid-1960.

Davy Crockett is a light nucleartipped rocket designed to be fired by one or two men in the field. It is being developed as a family of missiles.

BLAST OFF for a Lacrosse. It can carry a warhead an estimated 20 miles.

READY TO GO from its mobile launcher, Lacrosse's terminal guidance enables it to strike enemy positions with pin-point accuracy.

What's New in Fuzing and Arming

Remarkable achievements have been made in a field that is shrouded in secrecy and remains largely government-controlled in the hands of a small group

by Hal Gettings

Washington—The primary function of a missile is to deliver a warhead to a target. Consequently, the warhead—with its arming and fuzing system—is a major subsystem of a missile. All the other subsystems operate only to enable the warhead to perform its function. The design and manufacture of an arming and fuzing system thus becomes a large and important part of a missile program, demanding the utmost in efficient design and reliability.

How do you make an explosive device so safe that it's practically impossible to detonate it accidentally—even if the missile carrying it blows up on the launch pad, or the jet bomber carrying it crashes on take-off? How do you guard against a technician inadvertently putting a voltage on a fuzing circuit? And, after making it this safe, how do you get the thing to detonate without fail at exactly the time and place it's supposed to?

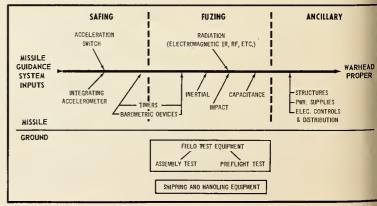
These are some of the problems that face the designers of arming and fuzing systems for both nuclear and conventional missile warheads. That they have solved these problems, at least to a remarkable degree, is evidenced by the fact that we have never had a premature nuclear warhead explosion—even when the weapon was involved in a bomber crash.

The safety factor is considered at least 1000 times more important than any other aspect of reliability. Designers actually shoot for a minimum of 100% reliability so far as safety is concerned.

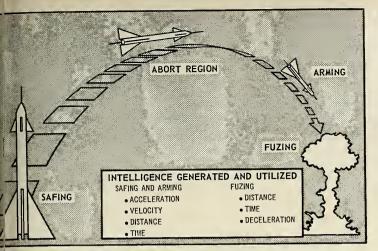
Detonation reliability must then

become a little less than 100% perfect. Design goal is aimed at what is sometimes called the "wooden bomb" concept. This means that the warhead must be capable of being dropped, stored for long periods under changing conditions, mishandled—in short, subjected to practically any sort of maltreatment—and then be ready to go on a minute's notice.

• Shroud of secrecy—A great deal of secrecy surrounds arming and fuzing systems—some no doubt justified, and some perhaps not. Of course, an argument for tight security is the fact that knowledge of the characteristics of a system can lead to second-order deduction of facts about the warhead itself. Knowing the sensitivity range of a proximity fuze, for instance, one can tell much about the size and capability of the nuclear payload. More important, knowing details of the system would allow an enemy to pre-


maturely detonate the warhead.

Several manufacturers have stat privately that some of the governme agencies involved are chiefly interest in keeping fuzing systems in the cat gory of government-furnished equi ment—so that they may either pr duce the system or handle the subco tracting.


Whether this charge is true or n is a moot question. It is a fact, ho ever, that there is no central clearin house for industry information. It conceivable under such circumstance that the state-of-the-art cannot a vance at a rate comparable to that related fields.

Accepting the need for tight s curity in this area, some sort of centragency for coordination of past d velopments and of work in progre would help to provide answers f those with a need-to-know.

The arming and fuzing industry:

INPUTS and components of a typical fusing and arming system.

LICTIONS OF TYPICAL MISSILE SAFING, ARMING AND FUZING SYSTEM AING is defined as handling and launching safety for own personnel facilities and atory; the abort region is the area where the bird may be self-destructed without enation of warhead; arming prepares warhead for fuzing signal.

rip. In addition to the restrictions in limitations mentioned, there is not cone customer—the military—for to profitable commercial products.

Growth of participation—Arming refuzing of a nuclear warhead was the entirely by the Atomic Energy Commission until, in 1953, they agreed oransfer some of the responsibility othe armed forces. General Electric with the first industrial contractor to

hole is in the hands of a small

bulk the barrier and produce a comble system from design through hardwe production—for the *Lacrosse* msile. GE is currently working on thas completed—nuclear ordnance prects for eight major missiles.

Bulova's Research and Developmit Labs have been in the business to a long time and are currently wking on their 17th system. They reputly were awarded a multimillionduar contract for the Army's Pershin missile.

Besides GE and Bulova, there are peaps three other companies with a mor interest in this field: Minneapolit-Honeywell, Maxson, and Avco-Crosle Others involved to a lesser extent in ude Bendix, Philco, Farnsworth, Clins, Emerson, Eastman, Melpar, Wstinghouse, and General Mills. Tere are at least 30 major component supliers.

Several government agencies are in the picture to a greater or lesser dree. Army's Diamond Ordnance Free Lab worked in the field for many yers. They were in at the beginning of the proximity fuze development in 1941, and have maintained their wik in this and related fields until

they probably now have the most complete in-house capability of any agency. DOFL has also done considerable work in electronic miniaturization for fuze circuitry and other accessory areas.

The Navy, too, was concerned with proximity fuze development in its early stages. Naval Ordnance Labs at Corona, Calif., and White Oak, Md., as well as Ordnance Test Station, Inyokern, are today involved with arming and fuzing development.

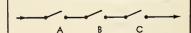
Other government agencies involved include AEC, Air Research and Development Command and Air Force Special Weapons Command.

Picatinny Arsenal has prime responsibility for all Army missile warheads. Their Special Weapons Ammunition Command acts as specifier, buyer, and technical consultant to system contractors. They may also procure components or subassemblies for the prime. Picatinny's Atomics Lab conducts periodic symposia on arming and fuzing for industry contractors.

• Tricky requirements—Due to security restrictions, the problems and design criteria for A and F systems can be discussed only in principle. Several major problems confront the designer: extreme reliabilities, high accuracies, extreme environments, and tactical utility.

The double-barrelled reliability problem puts the designer on the horns of a ticklish dilemma: the safer he makes the fuze, the harder it becomes to make it operate at the proper time. This factor is overcome, to an extent, by use of redundancy in the firing circuits. An oversimplified example would be a circuit such as shown in the dia-

gram. Switches A, B, and C would have to be closed to complete the circuit; the failure of any one would make the system inoperable. If parallel switches were added, then the likelihood of failure is reduced (assuming 100% reliability of the switches themselves). Redundancy has its limits, however, since space and weight are at a premium.


The high accuracies required in an arming and fuzing system are another problem source. The warhead must explode at a precise point in altitude or proximity to the target. It therefore must be sophisticated (almost intelligent), sensitive, and fast. Such complexity further adds to the reliability problem.

This complex and sensitive device must ride a missile through a wide range of extreme environments. It must maintain its integrity through the shock of initial blast-off, a gamut of temperature extremes, acceleration and deceleration, atmospheric re-entry (in some cases), and other shock and vibration.

Tactical utility requires a unit that can be stored for long periods, quickly assembled, easily tested and immediately available. It must be capable of all this in the hands of field-level personnel with training roughly equivalent to that given an ordinary field artillery crew.

The so-called "adaption kit" allows missiles to have a dual capability. Battlefield generals, fleet or air force commanders can choose between either conventional or nuclear warheads—and the missile can be so armed at a split-second command.

• Complications—The most simple fuzing system, of course, is the basic "hammer and nail" type—a pistol firing pin, for example. Starting with this concept. a system steadily grows more complicated. A "safety" is added to prevent premature firing . . . and further equipment is then needed to bypass or remove the safety at the proper time—for instance, a propeller must revolve

SIMPI.E set of series switches are closed to allow fuzing signal to go to warhead.

PARALLELING second set of switches provides alternate path for B signal (redundancy).

a certain number of times or the projectile must rotate fast enough to throw out the safety. Then we can add acceleration inputs, barometric devices, radiation (or other electromagnetic) transducers, or any amount of complicated gear to make our system more sophisticated and safe—and potentially less reliable. It is one of the most complex devices in a missile.

The basic elements and optional control inputs of a typical arming and fuzing system are shown in the diagram. The choice of the various inputs, would, of course, depend on target characteristics, location, altitude, and any number of other factors. The more of these considered necessary, the more sophisticated the system.

A system's components include timers, accelerometers, integrators, gear trains, power packages, amplifiers, a maze of switches and electronics, logic panels, and unique sensing elements—all acting on programmed and sensed inputs to set in motion a chain of events leading to the final "moment of truth." All components must be of a precision and quality not required in other areas. Although designed to be used only once, they must be ready at all times to perform their assigned function with no question as to readiness and reliability.

Little is heard—or can be told—of the actual techniques and mechanisms developed to enable a missile warhead to do its job. Their importance must be judged not by the publicity they receive but by their extremely important part in successful missile systems.

Hoffman Acquires New Data Processing Machine

Menlo Park, Calif.—Capable of performing 480,000 decision-making operations per minute and storing up to 6 x 10⁸ characters of information, a new data processing machine recently was purchased by Hoffman Laboratories Div. of Hoffman Electronics Corp.

First of its kind to be built, the \$800,000 computer, called a Datatron 220, is a digital system with full magnetic-core memory.

To be employed in the performance of the U.S. Air Force electronic reconnaissance system, "Tall Tom," the giant computer was built by Electro Data Division of Burroughs Corp. Hoffman is directing the team of seven companies involved in the program for the USAF Aerial Reconnaissance Lab-

oratory.

The system was dedicated formally here at Stanford Research Institute, during a recent meeting of the Tall Tom management policy board.

--- reviews ----

STANDARD SAMPLES FOR GASES-IN-METALS, U.S. Department of Commerce, National Bureau of Standards, Summary Technical Report.

Eight bars of ferrous materials whose oxygen and nitrogen content have been precisely determined comprise a new type of standard sample now available from the National Bureau of Standards.

In providing these reference materials for the calibration of commercial apparatus used to measure the gas content of metals, the Bureau has inaugurated a program of standard samples for gases-in-metals covering a variety of metal-lurgical products.

RESEARCH ON FIELD EMISSION CATH-ODES, E. E. Martin and H. W. Pitman, Linfield Research Institute for WADC, 69 pp., \$1.75, available from OTS, U.S. Department of Commerce, Washington 25, D.C.

This program was undertaken in two phases, one of which led to improvement of stability of the field emission cathode and the other involving study of the electrochemical behavior of refractory metals used to make field emitters.

In the first part, methods were developed for greatly improving stability of the cathodes by avoiding changes in surface electric field and work function. Experimental testing of fixed voltage operation of a cold tungsten emitter was extended beyond 3000 hours. In other cases current drift rates less than 5% per 100 hours of operation over several hundred hours were observed at currents of the order of 10-4 amperes.

Improvement during repetitive, microsecond, pulsed operation at pulse currents up to 0.1 ampere was demonstrated. Techniques included careful vacuum practice, envelope material nearly impervious to atmospheric gases, and thoroughly degassed refractory metal shaped to minimize encroachment of secondary electrons on tube envelopes.

In the study of the electrochemical behavior of refractory metals, formation and dissolution of oxide layers appeared to have a major influence on surface smoothness and emitter geometry. Developed were an automatically controlled method of emitter shaping and a technique for removing material uniformly from small parts such as small cathode structures. The effect of variation of polishing cell parameters such as temperature, voltage and electrolyte concentration was also investigated.

HIGH TEMPERATURE MATERIALS, Edited by R. F. Hehemann and G. Mervin Ault, John Wiley & Sons, Inc., New York, 544 pp, \$17.50.

This book is based on papers presented at a conference sponsored by the High Temperature Alloys Commitee, Institute of Metals Division, Metallurgical Society, American Institute of M wetallurgical and Petroleum Engin II delves into all classes of material ouse at temperatures over 1500°F many of the related problem areas, illustrated and indexed, the book incresearch paper reports on such sultains refractory metals, dispersion harder gas metal interaction and oxidation esistance. Contributors to the volume top men in the field from govern a industry, research institutes and unitations.

MAN IN SPACE, Edited by Lt. Col. Ker F. Gantz, USAF, Duell, Sloan and Pe New York, 303 pp, \$4.00.

Every facet of the problems invest in man's survival outside the atmosp is covered by pioneering research g in the bio-medical aspects of space fl Human factors from the general to specific problems as weightlessness, ditioning, escape, time dilation, and man performance under space condiare analyzed on the basis of past ex ments and projected into future ne Papers presented include contribution Col. John P. Stapp on biodynar Dr. Hubertus Strughold, "father" of s medicine and M/R contributor, on I factors; Lt. Col. David G. Simons on h altitude experiments; Dr. Hans G. mann on the engineering environm and Dr. Siegfried J. Gerathewold weightlessness. Some of the Pentag top strategists go into the military asp of manned space operations and the i for long-range planning. The appe includes a 14-page glossary of term reading list of astronautic books, graphical notes on the authors and a tailed rundown on Project Mercury, nation's first manned space vehicle pro

AIR RESEARCH AND DEVELOPM COMMAND TECHNICAL SYMPOSI JULY 1958, WADC, U.S. Air Force; 502 \$7, available from OTS, U.S. Departmen Commerce, Washington 25, D.C.

Technical papers and discussions of Air Research and Development Comm symposium on materials for space vehi and propulsion systems, held in J 1958, in Dallas, have been published.

Attending the symposium were resentatives of the major Air Force search and development establishme including ARDC, Office of Scientific search, Air Materiel Command, Cibridge Research Center, and the Wriand Rome Air Development Centers.

Among papers presented on structi materials were those dealing with alu num, magnesium, beryllium, steels, su alloys, adhesives, graphites, plastics, su surface treatments.

Reports presented on electronic I terials included such topics as synth and application, energy transforming I terials, insulation and dielectric materi magnetic materials, and transistors.

Other papers were presented on terials research, materials application processes, and propulsion materials.

Automatic Checkout Systems Compared

Curtiss-Wright's DEMON and Nortronics' NORSCAN are representatives of the fully transistorized development trends in the checkout field

by Charles D. LaFond

Washington—For those who have flowed the rapid development of a omatic checkout, the evolution to sqd-state systems was logical and industry to achieve the desired very-the speed and data-handling capability.

Last week's issue of M/R sumn'rized the results of an industry surv' of checkout systems. It was evidit that solid-state systems are well

p.t the dream stage.

To better understand just how nch has been accomplished with these nwer checkout systems, a close-up of to systems is presented: the Curtiss-Vight DEMON and the Nortronics DRSCAN—both fully transistorized, ndularly constructed, completely self-cecking, and extremely flexible in appreciation. Although the two are similar i overall design, each has certain vique attributes. It is important to the that there are other similar systems, but DEMON and NORSCAN appear to be representative of the devopment trends in tomorrow's autoratic checkout industry.

• Design goal—Both DEMON and DRSCAN were designed to achieve ce principal goal: a broad system coability (1) not limited to any existic weapon system, (2) incorporating splicient functional groups to accomposite many future weapons systems, and (3) adaptable to all levels of testic. In other words, the system designed to be such that the inherent capatity might permit module deletion, and the particular weapon system check-

• Limitations—The one limitation treseen by both manufacturers in their respective systems is the ability of the system applications engineer responsible for determining the programming for each checkout program.

Curtiss-Wright DEMON

DEMON was formally introduced at the Benesia Arsenal in Benesia, Calif., in March of this year. It also has been in continuous use at the Santa Barbara Division of Curtiss-Wright Corporation since December, 1958.

In a current demonstration setup, DEMON is shown (Fig. 1) checking a Nike-Ajax missile system; however, this application utilizes something less than 5% of its total in-being system capability. There are no existing weapons systems today that would require or use the total capability of DEMON, according to Curtiss-Wright.

Company engineers believe that had DEMON been available when the Nike-Ajax was introduced operationally, considerable savings in time and dollars would have resulted. For example, utilization of that portion of DEMON which is now being used to check the Nike missile would cut by more than half the number of personnel required for tests. The skill level of those persons remaining would be several grades lower than previously required. One skilled operator still would be required for each repair crew, mainly to assure the physical quality of the repair.

Another important consideration, they believe, would be a considerable

Editor's Note: The reference to the use of a "trend index" by Curtiss-Wright in Part I of this series last week was in error. The Nortronics "confidence index" is the only such trend-type comparison standard that M/R has found employed in any checkout system. decrease in time and experience required at the Ordnance Guided Missile School, Huntsville, Ala., where Army missile maintenance crews are trained. As an example of the slash in test time required, DEMON now takes less than one minute to locate a faulty component in the missile power supply—as contrasted with several hours on a manual basis. Further, upon location of the fault, detailed visual repair information could be made immediately available to the operator.

• Major subsystems—Referring to Fig. 1, the DEMON system consists of a Flexowriter and the three adjacent equipment racks. The fourth rack contains various stimulus generators used in checking the Nike, including an analog-tape stimulas generator. The missile shown was supplied as Government-furnished equipment (GFE) by the Department of Army (certain pieces of test equipment have been removed from the missile depicted for security reasons).

The following is a brief description of each of the major DEMON sub-

systems as shown in Fig. 2:

• Input-output—Handled by a Model FPC Friden Flexowriter, modified slightly to meet system requirements. Standard 8-channel tape is used. Information can be fed into the system by either punched tape or direct "typing" of coded signals into the file memory. System output is also handled by the Flexowriter. Output signals result in punched tape. This is fed into the receiving mechanism and automatically typed, thus permanently recording the data.

• File memory—Consists of magnetic tape and handling mechanism (paper tape can and has been used), which provides storage of programmed information necessary to perform the following: (1) switching to apply

stimuli to injection points; (2) delivery of appropriate max. and min. values for each test for comparison with measured values; (3) execution of address functions based on go-no go response; (4) delivery of any of the test-block stored contents into the system.

• Buffer memory—Provides timescale changing from the 12,500-character/sec. rate of the file memory to the random rate with which the stored information normally is utilized without significantly delaying acquisition of the information contents when needed.

 Decoder matrix—Accepts stored instructions from the buffer memory, and translates the instructions into an executed pulse delivered at the address specified by each instruction.

• Encoders—Convert all quantities (voltage, frequency, elapsed time) to be measured into binary-coded decimal form. Measurements are performed by comparing numerical data representing the function to be measured with numerical limits programmed by the control system.

• Search control—Supervises the movement of the magnetic-tape file memory, in response to signals arising elsewhere, to prepare for or actually to transfer one test block between file memory and buffer memory.

 Comparator—Evaluates encoded test results with respect to programmed tolerance units. Using simple logic circuitry (subtraction method) the comparison is accomplished in bit coded decimal form. A voltage-si detector is used as an "ON-OFF" c parator and to detect simple switch functions.

• Clock—Used in the testing (in effect, the controlling) of la complex systems. A synchronous of trol logic was chosen in the interest safety and economy in preference a nonsynchronous technique. clock controls transfer of informat between all internal subsystems for all input-output operations.

• Features—A summary of principal features will best illustrate capabilities of DEMON.

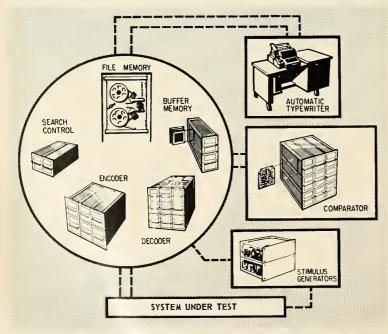
Storage capacity is greater than 1 x 10° bits. The system also include "table lookup" for simultaneous evation of dependent variables (from functional subsystems) over a girange. Buffer capacity is 1792 bits.

Programming is digitally control by magnetic tape (patch boards not employed). To minimize physi test equipment, the system utili magnetic tape for an analog in stimulus to the system under test.

Servo-stimulus control is provice for all high-frequency test signals the cannot be programmed on the analytape. The output of the signal general is precisely controlled through the soft of error feedback circuits which compare the signal generator output against the desired output, independent knob position. Thus signals are refered to the standard against whithe system responses are measured.

A time sharing system is so o signed that it can time share the ce tral control subsystem for a number maintenance work stations simultar ously.

Readout for the test results is provided in terms of distance from g distance from no-go, or distance from any arbitrary given point.


The present DEMON Flexiwrit will print out any information desire from complete test data to select failure data. This is recorded to punched tape, and if desired can I transmitted via teleprinter to stimula a logical supply system and thus is sure that a proper balance of storis maintained.

A new visual readout system, en ploying a view screen, is being developed by Curtiss-Wright. The system we driven by the DEMON control system and will display actual photograph of the malfunctioning area of the system under test, the procedure to be followed in repair (or replacement and the next step to be taken by the operator after repair.

No operational failures have bet experienced in the DEMON, according

CURTISS-WRIGHT'S DEMON checks out a Nike-Ajax. DEMON—along with Nortronics' NORSCAN—represent solid state technology for automatic checkout. (Fig. 1)

SUBSYSTEMS of DEMON. Fully transistorized, system is modularly constructed, completely self-checking, and extremely flexible in application. (Fig. 2)

ca company spokesman. All circuits he been designed for maximum indendence of component tolerance, with prents (resistors, capacitors, etc.) thoughout the system.

Nortronics NORSCAN

Nortronics, a division of the Northp Corporation in Hawthorne, Calif., recently completed its first prototy of NORSCAN, acronym for Northics System Computing Analyzer (& Fig. 3). But, according to a comply spokesman, the system is founded o thoroughly developed and proven accepts.

Principal memory device in NORS-CN is its magnetic drum, having a cacity of over ½ million informa-

tin bits.

A major innovation in the Nortraics system is the employment of a confidence index" (discussed in deta in M/R, June 29). The index is sided from 99 to 0 and provides a mans against which test readings can be compared. This furnishes an accate indication of how good a go rading really is. Either analog or digit signals may be measured against

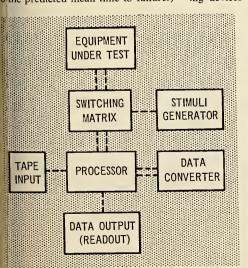
When a time base is added, a rate ochange is generated. From this rate, a predicted time-to-failure (due to conponent drift) is established. This the can be compared with a fixed time in rval to determine a "drift index." Pdicted times-to-failure greater than olequal to the fixed time interval rest, in a maximum rating of 99; those le than the fixed time figure are expessed as ratios with values from 0 to 109. (The fixed time interval is based of the predicted mean time to failure.)

• Principal units and features— (Refer to the simplified block diagram in Fig. 4.)

• Stimuli generator—All forcing functions are generated within the stimuli generator. These may be electronic, pneumatic, optical, mechanical, or thermal. Provisions are made for flexibility in time, amplitude, and phase. Control of function amplitudes and sequence is accomplished by the processor that specifies which signals should be fed to the switching matrix and then into the system.

• Switching matrix—Solid-state devices are used in the switching matrix for switching electronic signals. The matrix is capable of making 10,000 measurements/sec. This can be programmed to read 100 signals on 100 wires in 1 sec., or 10 signals on 1000 wires in 1 sec., or any combination thereof. It also contains basic switching blocks for switching mechanical or pneumatic signals and presents an electrical impedance of one megohm (or greater) to the system under test.

The processor controls the operation by determining which signals shall be switched to the proper wire at the proper time. Outputs from the system under test are sent through the switching matrix. If the outputs are digital signals, they go directly to the processor. If the outputs are analog signals, they are fed to the data converter.


• Data converter—The data converter performs an analog-to-digital conversion with an accuracy of 0.01% and a conversion speed of 25 microsec. The converter contains signal transducers for converting pneumatic or mechanical signals to electrical digital signals. It also has impedance matching devices and contains elements for

making necessary scaling changes.

• Processor—The processor is an internally programmed digital computer, with a magnetic drum as its principal memory unit. The processor also contains an arithmetic unit, display controllers, displays, program unit, output controller, core buffer, and magnetic tape unit. The magnetic drum memory has a storage capacity of 500,-000 bits of information. The core buffer, having a capacity of 1000 bits, is used for instruction storage to allow for minimum program execution time. It is also used as a buffer between the processor and the printer, between the main drum memory and the magnetic tape unit, and between the arithmetic unit and the selection matrices, which send data to, and collect data from, the system under test.

 Tape input—A high-speed tape reader, with a capability of 400 characters per second, provides the input to the processor. Initially, the tape is used to store information on the magnetic drum with respect to test sequence and test limits. Once the information has been stored on the magnetic drum, the operator energizes the test equipment and the test procedure is programmed automatically. Should any changes be made in the system under test, a new tape is inserted, the previous information erased, and new information reflecting the system changes is placed on the magnetic

• Data output—The data output is under complete control of the processor. A number of different outputs from each unit may be used. The types of output depend upon the operating usage of the test equipment. They may be visual, oral, punched tape, punched

SIPLIFIED block diagram of Nortronics' NORSCAN broad capabilities. (Fig. 3)

PROTOTYPE CONSOLE of NORSCAN. Magnetic drum memory device in system has one-half million information bits capability. (Fig. 4)

card, printed copy, or any combination of these. Information from the magnetic tape memory may be printed in clear text for purposes of reliability reports, record keeping, and logistic determination. Reprovisioning data is also available as an output by programming the processor to provide punched cards or punched tape whenever a malfunction occurs in the system under test. This information can then be further processed or used directly to order replacement parts.

• Magnetic tape file-To store information permanently for future reference, such as malfunction prediction through the confidence index system, all data is recorded in a magnetic tape file. The unit might be comprised of an Ampex Model 800 recorder and a series of read-write amplifiers. If, for example, 30 amplifiers were employed, 15 channels would be available. A 1/2inch-wide magnetic tape can store 200 bits/inch/channel. A 2500-foot tape could accommodate 7.5 x 106 bits with ease. Since the magnetic tape unit also records the results of the analyzer's self-test, a complete record is obtained on the unit and is available for analysis.

Fibreglass Tower Used with UCLA Antennas

Los Angeles—A fibreglass tower with interchangeable antennas has gone into operation at UCLA. The 18-foot structure, utilizing fibreglass to prevent metallic distortion of radiation patterns, rests on a pillbox base and both tower and antenna can be rotated independently on vertical and horizontal axes.

The tower was built by Blaine Electronetics and can be operated either by controls inside the base or by laboratory controls two floors below. A transmitting antenna 60 feet away illuminates the tower antenna.

The antenna is being used for various projects in advanced teaching of electrical engineering, radar, communications and other fields. One program under way involves research into transmission of electromagnetic signals between a missile re-entering the atmosphere and the ground. This transmission is difficult because of the ionized layer surrounding a re-entry vehicle.

Leach Opens Laboratory for Solid State Research

Los Angeles—A new laboratory designed for flexible research into solid-state devices has been opened by the Leach Corporation. Located at the firm's relay division, the lab will "develop solid-state packaging with no preconceived ideas," and will endeavor

to meet the rapidly changing logic of space control and communications.

According to company officials, the lab will augment other work being done at previously-established electromechanical and chemical labs, as well as the new Leach Production Reliability Center. The lab has been well equipped with general and specific solid-state development instrumentation to permit fast study and checkout.

The lab has already developed a new programming timer which combines subminiature crystal can relays with solid-state devices in a common circuit for use in sequence progr

The solid-state package development philosophy at Leach is based the belief that "even in the most relutionary electronic fields, no new vice has ever succeeded in complet supplanting the old." Therefore, Leach engineers are looking to the comof combining components based on opeculiar characteristics of each until This design logic, they predict, will the outgrowth of research in scattate packaging.

Recruiting Heavy at Military Electronics Me

Washington—A "highly successful" third annual National Convention on Military Electronics here last week pointed up the importance of missiles in the military electronics industry. Almost all the technical sessions were devoted, at least in part, to missiles applications of electronics systems and components.

The convention, sponsored by the IRE Professional Group on Military Electronics, was attended by nearly 400 engineers—almost twice last year's figure. Some 80 exhibitors showed their latest developments in the field. Although nothing outstandingly new was to be seen at the exhibits, several items such as a pocket-sized computer and the free world's largest radar set attracted considerable attention.

The exhibit that drew the largest

crowds was Martin's moon-satellite | ball machine. Walter Mitty-type as designers could crank guidance a thrust data into the machine alaunch a steel-ball satellite which co orbit or land on the moon if the calculations were correct.

Engineer recruiting was especial heavy. At least 25 major comparing had representatives at the meeting at the competition for qualified peowas the fiercest since before the stret out. One recruiter estimated that the were about 10 jobs available for every eight men interested—a demand ab double that of last year.

Two General Electric engineer R. S. Grisetti and E. B. Mullenceived the annual M. Barry Carl Award for their paper on basel guidance systems.

FIRST OPERATIONAL configuration of Avion's CODES Commutating Detect System was exhibited at the 1959 Military Electronics Show in Washington. The mu channel, highly sensitive, infrared receiver (first described by M/R, April 20, 19: employs single-channel electronics by commutating the stored outputs of 30 detec cells and uses a single amplifier. It was developed for Air Force Cambridge Reseat Center to study satellite-detection feasibility using IR techniques.

Missiles and Rockets Editorial Index

Readers are invited to save the olwing six-month index covering MR issues of Jan. 5, 1959 through us 29, 1959. This index is a reference ue to major news and technical reles published in M/R during the ir half of the year.

ASTRIONICS

Atennas

ALMCO PROJECT; Radar reflector said to hely cut weight, cost, by M/R Staff, 3/23/59,

Ceckout

PUSH FOR AUTOMATIC CHECKOUT; Fully restorized systems are rapidly being developed to is operational, by Charles D. LaFond, M/R sciate Editor, 6/29/59, p. 39.

Emmunications

CESSFUL AME IS UNVEILED; Page Communians' gear tested in North Atlantic is expected ond more use on ionoscatter circuits and offers critial for increased channel capacity, by Cles D. LaFond, M/R Associate Editor, 6/22/59,

CIMUNICATIONS SATELLITES: A LARGELY e relay system, now technically and economi-feasible, still gets little non-military atten-by Hal Gettings, M/R Associate Editor, /59, p. 38.

THE EDGE OF INTERSTELLAR SPACE: In 1962 A will fire minimal payload rocket and in next-years will perfect communications for re-eng its data, by Hal Gettings, M/R Associate kpr, 4/13/59, p. 19.

NOISE TEMPERATURES IN PARAMETRIC

CKHEED DELIVERS 9-LB. RUGGED TV SYS-

mponents

F REPORTS ISSUED ON CAPACITORS, TRAN-ORS; by M/R Staff, 2/9/59, p. 79.

USES 'WOOFERS' TO TEST COMPONENTS; M/R Staff, 1/12/59, p. 31.

mputers

NR TO RESEARCH PHOTOCHROMIC MEMORY; M/R Staff, 5/29/59, p. 32.

HLGREN DEVELOPS COMPUTER; ris, machine will handle half-million bits of rmation each second, by M/R Staff, 4/27/59, 129.

ata Processing

ICO DESCRIBED AS A NEAR-UNIVERSAL FACILITY; Programmed tester developed by ronics automatically checks out complex mili-hardware; company says it will sharply cut s, by Charles D. LaFond, M/R Associate or, 3/30/59, p. 29.

W, COMPACT UNIT CONVERTS DATA IN-GHT; by M/R Staff, 2/2/59, p. 31.

eneral

SCOW BRIEFS; by Dr. Albert Parry, Conuting Editor M/R, 6/22/59, p. 40.

ST COAST INDUSTRY; by Fred Hunter, M/R ociate Editor, 6/1/59, p. 48. CTRONIC OUTPUT TO DOUBLE BY 1965; at's the future for electronics in MSE? by liam E. Howard, M/R Associate Editor, 5/25/59, 25.

GE'S NEW SLAVE MECHANIC HAS 'FINGERS'; 'Handyman'—result of four-year development—will go to work in radioactive areas, by M/R Staff, 4/20/59, p. 40.

HIGHLIGHTS OF IRE CONVENTION; Transistor output to pass \$350 million by 1963; sales to near 3300 million, by Charles LaFond, M/R Associate Editor, 3/30/59, p. 14.

INTEGRATED ELECTRONICS FOR SMALL MIS-SILES; Prime consideration in design and manufacture is that the missile be considered as a round of ammunition, by Gordon E. Sylvester, 3/2/59, p. 21.

CONTINUED GROWTH IN MILITARY ELEC-TRONICS; Armed Services seeking those companies with electronics capabilities to serve as missile, astronautics prime contractors, by Raymond M. astronautics prime contractors, by Raymon Nolan, M/R Associate Editor, 2/9/59, p. 26.

FUTURE OF ELECTRONICS: GROWTH WITH ASTRONAUTICS; EIA President David R. Hull gives a probing look at missile electronics today and predicts tomorrow's uses, 2/9/59, p. 28.

THE AGE OF THE ELECTRON; Guest Editorial, by Dr. Ernst Weber, 2/9/59, p. 7.

ELECTRONICS BUYING SHOWS QUARTERLY IN-CREASE; by M/R staff, 2/2/59, p. 31.

AMPHENOL AND BORG FIRMS MERGE ELECTRONICS OUTPUT; by M/R Staff, 1/19/59, p. 27.

195B ELECTRONIC SALES HIT RECORD \$7.7 BILLION; by M/R Staff, 1/12/59, p. 27.

TWO NEW REPORTS ISSUED ON ELECTRONICS; by M/R 5taff, 1/5/59, p. 29.

Infrared

UNIT COOLS IR GEAR TO AS LOW AS 60° K; by M/R 5taff, 5/25/59, p. 32.

AVION DEVELOPS NEW IR SEARCH SYSTEM; CODES, built around commutating infrared de-tector, will be modified for satellite tracking, by Charles D. LaFond, M/R Associate Editor, 4/20/59,

TWO APPROACHES FOR COOLING IR DETECTORS; by M/R Staff, 2/16/59, p. 23.

SERVO CORP. MANUFACTURES 12-INCH IR DOME; by M/R Staff, 2/16/59, p. 24.

Guidance

MIDCOURSE GUIDANCE IS NECESSITY FOR IN-TERPLANETARY TRAVEL; Venus flight would re-quire orbit about the sun and eventual cap-ture by planet, by L. T. Seaman, 2/9/59, p. 40.

SPACE NAVIGATION POSES NEW REQUIRE-MENTS; Automatic, self-contained inertial systems will be required to provide precise velocity vector control, by Frederick Stevens, 2/9/59, p. 37.

INTERPLANETARY GUIDANCE FOR MAN IN SPACE; Existing components will be accurate enough for unmanned probes with possible radio control for cutoff and staging. But next generation of manned vehicles will impose a different set of requirements headed by reliability, by Lawrence S. Brown, 2/9/59, p. 67.

THE HOW AND THE WHY OF INERTIAL GUID-ANCE; While basic principles have been known for many years, solution of some of the problems peculiar to ballistic missiles is only now becoming a reality, by F. K. Mueller, 2/9/59, p. 49.

SIMPLIFIED GUIDANCE PROPOSED: by M/R Staff, 1/12/59, p. 27.

LEAR DESIGNS GUIDANCE FOR MANNED SATEL-LITE; Broad features appear feasible in system for integrating accelerometers and retrofitting strap' gyros, by M/R Staff, 1/5/59, p. 26.

Gyros

FREE ROTOR GYROSCOPE DEVELOPED BY AUTO-NETICS; by M/R Staff, 5/11/59, p. 21.

ROLL REFERENCE GYRO STARTED BY SPIRAL SPRING; by M/R Staff, 3/9/59, p. 44.

NEW APPROACH FOR LIQUID FLOATED GYROS: Norden Division of United Aircraft gets patent for unheated gyro that mechanically compensates for temperature variations, by M/R Staff, 2/16/59, p. 18.

GYRO DRIFT DEMANDING NEW MEASURE-MENT TECHNIQUES; by Ralph Hookway, 1/19/59,

SPERRY DEVELOPS NEW FLOTATION FLUID: by M/R Staff, 1/12/59, p. 27.

Measurement

NEEDED: NEW VELOCITY MEASUREMENT UNIT FOR SPACE; Is the Optik—based on speed of light—the answer for the confusion in scientific terms? by Maj. William C. Mannix, USAF, 4/27/59,

LET'S CONSIDER THE OPTIK; editorial, by Clarke Newlon, M/R Executive Editor, 4/27/59, p. 7.

GYRO DRIFT DEMANDING NEW MEASUREMENT TECHNIQUES; by M/R Staff, 1/19/59, p. 22.

Miniaturization

GE OFFERS NEW MICROMODULAR CONCEPT: Company claims eraser-size device named TIMM utilizes heat losses and lends itself to stacking for varied uses, by M/R 5taff, 5/25/59, p. 28.

MINIATURIZATION—A SWELLING TIDE: Chain reaction of new breakthroughs could lead to microscopically small parts before trend runs its course, by Heyward E. Canney, Jr., M/R Contributing Editor, 6/8/59, p. 39.

Optics

GIANT MIRROR CREATED FOR NSF'S NEW OB-SERVATORY; Corning's reflector largest built in 25 years, was made by 'sagging' and must cool for seven months, by Donald E. Perry, M/R Managing Editor, 2/23/59, p. 23.

THEODOLITES DETERMINE AZIMUTH FOR JUPITER; Optical-electronic combination provides method for automatic alignment and monitoring of inertial guidance systems, by M/R Staff, 2/2/59, p. 29.

Plasma

PLASMA ENGINE DELIVERS NEARLY 2-LBS.; Republic's experimental magnetic pinch engine produces over 4000-lbs. at peak with 1700 sec. 1st, by M/R 5taff, 6/8/59, p. 34.

ARGMA'S PLASMA JET TEST FACILITY IN OPERA-TION; Prototype model for aerodynamic heat-ing tests reaches 50,000° fusing argon gas with 13,000 fps flow rate, by M/R Staff, 3/23/59, p. 39.

Power Sources

MINIATURE BATTERIES HAYE HEAVY MISSILE USE; Yardney's latest 5ilvercel may make possible more pre-flight tests for reliability. Early model saw service in Viking; many employed in today's birds, by Donald E. Perry, M/R Managing Editor, 2/23/59, p. 28.

Production

NEW BLOCK GROUP STRESSES MODULAR CON-CEPT; by M/R 5+aff, 3/9/59, p. 43.

INTEGRATED ELECTRONICS FOR SMALL MISSILES; by M/R 5taff, 3/2/59, p. 21.

RADAR DEFENDED AT AFCEA; by M/R Staff, 6/1/59, p. 40.

Telemetry

RECORDER SIZE AND WEIGHT CUT; Ampex AR-200 weighs one-third as much and is half the size of previous magnetic tape recorders, by Charles D. LaFond, M/R Associate Editor, 6/15/59, p. 35.

NEW BLOCK GROUP STRESSES MODULAR CON-CEPT; K-Block modules produced by A5COP can be used in various telemetering systems as well as data multicoding, by Donald E. Perry, M/R Managing Editor, 3/9/59, p. 43.

NEW COMPACT UNIT CONVERTS DATA IN FLIGHT; by M/R 5taff, 2/2/59, p. 31.

EGLIN TELEMETERING CONTRACT IS FOR \$500, 000; by M/R Staff, 1/19/59, p. 25.

Thermo-Electricity

PROSPECTS FOR THERMO-ELECTRICITY; Heavy investment in research gives hope for long-lived power units for space application, by Hal Gettings, M/R Associate Editor, 6/22/59, p. 29.

Tracking

RADAR IS STRONGLY DEFENDED AT AFCEA CONVENTION; by Hal Gettings, M/R Associate Editor, 6/15/59, p. 40.

NASA'S PROJECT MERCURY RANGE TO COST \$12 MILLION PLUS; Worldide tracking system with unprecedented reliability must be operating within year, by Paul Means and Hal Gettings, M/R Associate Editors, 4/18/59, p. 26.

AVION DEVELOPS NEW IR SEARCH SYSTEM; by M/R Staff, 4/20/59, p. 32.

SIMPLIFIED TRACKING GEAR PROVIDES MUCH DATA; Independent Sohio station uses interferometer principle to track satellites—even Lunik—and records on two-channel direct-writing oscillograph, by Donald E. Pierce, 3/16/59, p. 29.

RADIO SEXTANT CAN TRACK SUN, MOON CON-TINOUSLY; by M/R Staff, 3/9/59, p. 44.

NASA PLANS INCLUDE EAST-WEST MINITRACK FENCE; Other goals are two additional parabolic dishes for continuous deep-space tracking, and developing safe tracking and communications for man in space, by Paul Means, M/R Associate Editor, 3/2/59, p. 13.

U.S. AGENCIES SILENT ON LUNIK TRACKING; by Frank McGuire, M/R Associate Editor, 2/2/59, p. 21.

THEODOLITES DETERMINE AZIMUTH FOR JUPITER; by M/R 5taff, 2/2/59, p. 29.

TEMCO DEVELOPS TV SURVEILLANCE SYSTEM; by M/R 5taff, 1/12/59, p. 31.

Transistors-Tubes Semiconductors

MINIATURIZATION—A SWELLING TIDE; by M/R Staff, 6/B/59, p. 39.

SIMPLE SOLION MAY FILL LOW FREQUENCY GAP; by Charles D. LaFond, M/R Associate Editor, 6/1/59, p. 39.

TUBES AND TRANSISTORS: WHERE DO WE STAND? M/R survey shows that if anyone wins 'battle' it'll be to benefit of entire industry, by Hal Gettings, M/R Associate Editor, 6/1/59, p. 41.

RCA DEMONSTRATES SOLAR CELL USING GAL-LIUM ARSENIDE; Company also shows new 'funnel' diode and rectifier, calls development of vital importance, by M/R 5taff, S/11/59, p. 16.

NEW WAY TO 'GROW' GERMANIUM; by M/R 5taff, 5/4/59, p. 26.

HOW NBS RESEARCHES SEMICONDUCTORS: Studies include crystal growth, electrical and optical measurements, carrier lifetime, nuclear magnetic resonance, and theory, by Charles D. LaFond, M/R Associate Editor, 4/27/59, p. 31.

RCA DEMONSTRATES THIMBLE-SIZE TUBES; by M/R 5taff, 4/6/59, p. 48.

TRANSISTORS VS. TUBES; . . . are arbitrary military design specifications jeopardizing U.S. security? by Donald E. Perry, M/R Managing Editor, 3/16/59, p. 21.

PHOTO-DUO-DIODE SHUTS OFF CURRENT IN DARKNESS; by M/R 5taff, 3/9/59, p. 44.

TUBE SAID TO RUN YEARS ON WEAK SOLAR POWER; by M/R Staff, 2/2/59, p. 31.

38

ASTROPHYSICS

Astronomy

SPACE OBSERVATORY IN THREE YEARS? NASA is spending \$3.5 million to solve the termaining problems and bring a revolution in astronomy; 1.5 million pound thrust engine clusters are believed adequate, by Hal Gettings, M/R Associate Editor, 6/29/59, p. 42.

OHIO STATE TEAM MAKES LOW-COST RADIO TELESCOPE; Staff Report, 5/4/59, p. 27.

WHAT IS TOPOGRAPHY OF MOON'S OTHER SIDE? That terrain may be rougher with more craters and smaller mares, astronomer believes, by Dr. I. M. Levitt, Contributing Editor, M/R 2/16/59, p. 14.

DETECTION SEEN POSSIBLE BY STAR OCCLUSION; ACF technician proposes to AAS meeting that telescope be mounted to a space platform and stabilized by slaving it to three reference stars, M/R 5taff Report, 1/12/59, p. 23.

BIG PINE TELESCOPE TO GO IN OPERATION SOON; M/R Staff Report, 1/5/59, p. 14.

General

HEAT AND METORITE IMPACT EFFECTS STUDIED; M/R Staff Report, 6/15/59, p. 22.

IONOSPHERE REPORTED BIGGER THAN SUP-POSED; M/R Staff Report, 5/11/59, p. 41.

Nucleonics

TOP SCIENTISTS FIND ARGUS OPENING NEW AVENUE TO EXPREIMENTATION; First detailed discussion of historic tests confirms theories of Christofilos, who calls for further projects, by Charles D. LaFond, M/R Associate Editor, 5/18/59, p. 37.

NUCLEAR EXPLOSIONS IN SPACE (first in a series of four articles); A scientific explanation of PROJECT ARGUS and how an electron accelerator could lead to creation of an artificial particle belt, by Prof. 5. Fred Singer, M/R Contributing Editor, 3/30/59, p. 33.

NUCLEAR EXPLOSIONS IN SPACE (second of a series of four articles); Trapped radiation will be problem for manned vehicles. Close burst to ICBM could make its bomb inoperative. Defender may have to revise anti-ICBM strategies, by Prof. S. Fred Singer, M/R Contributing Editor; 4/6/59, p. 36.

NUCLEAR EXPLOSIONS IN SPACE (third of a series of four articles); High-altitude blasts seriously interfere with radio and radar. Complete knock-out of electronic defense is unlikely. Artificial release of molecules could sweep up extra ionization, by Prof. S. Fred Singer, M/R Contributing Editor, 4/13/59, p. 21.

NUCLEAR EXPLOSIONS IN SPACE (last of series of four articles): Many techniques exist for detecting trapped particles. But high-altitude bursts at some latitudes might leave no traces. Adequate inspection procedures may be difficult to establish, by Prof. 5. Fred Singer, M/R Contributing Editor, 4/20/59, p. 26.

Radiation

RADIATION EFFECTS: WHAT'S BEING DONE? by Charles D. LaFond, M/R Associate Editor; 6/B/59, p. 37.

NEW DETAILS ON RADIATION; Staff Report; April 6; p. 40.

PARAFFIN WAX MAY BE BETTER FOR SHIELD-ING; Researchers feel hydrogen atoms in wax could absorb more neutrons than plastics, by W. C. Parle and A. M. Erskine, 3/16/59, p. 34.

RADIATION CAN BE AVOIDED; Van Allen advocates polar launchings; proposes that two radiation belts be mapped by 100-pound payload satellite, by Norman L. Baker, M/R Associate Editor, 1/5/59, p. 13.

INNER VAN ALLEN RADIATION BELT IDENTIFIED; Staff Report; 6/15/59, p. 39.

MANAGEMENT & GOVERNMENT

Air Force

AF SEES IMPROVED SYSTEM MANAGEM Weapon System Project Offices are repor getting the job done more efficiently alth there's still the problem of just when produpeople should take over, by Betty Oswald, Associate Editor, 6/29/59, p. 35.

AF PUSHES RESEARCH ON DETONATION PLEM, by James Baar, M/R Associate Ex 6/15/59, p. 23.

U.S. DECIDES TO PUSH ALBM—'INVULNERA DEFENSE WEAPON; Douglas wins competition begins design study based on concepts tester Lockheed, Convair and Martin; GE said to guidance contract, by James Baar, M/R Asso Editor, 5/18/59, p. 19.

BOMARC WILL SOON MOVE INTO U.S. DEFENSE ROLE; Boeing surface-to-air missile to first base this fall, may displace Nisy James Baar, M/R Associate Editor, 5/4/59, p.

THE DEATH OF A MISSILE; One of 40,000 p fails and a 75-foot bird of space (Atlas) b up—pictures by Cornell Capa, story by Erica M/R Associate Editor, 5/4/59, p. 17.

ANDERSON PROMOTED FROM ARDC TO H AMC; Popular commander becomes a confer for chief of staff after hectic but rewarding ef to speed missiles, by James J, Haggerty, Jr., i Contributing Editor, 3/9/59, p. 18.

Army

MEDARIS GIVES HIS BASIC PROCUREM PHILOSOPHY; M/R 5taff, 6/29/59, p. IB.

ARMY EXPANDING BREAKOUT POLICY; Cong sees increased opportunities for small business Army taking "standardized" components a from primes and buying under competitive ding, by Erica Karr, M/R Associate Editor, 6/8 p. 13.

AOMC RECOMMENDS 'NO FUNDS' FOR MISS ABLE; Only B Lacrosse battalions; Prototype shing testing soon; Chrysler submits Jupiter target missile, by Donald E. Perry, M/R Maring Editor, 3/30/59, p. 13.

ARMY IN THE SPACE BUSINESS (editorio 2/2/59, p. 7.

ARPA

ARPA—A DANGEROUS COMPROMISE (editori 4/13/59, p. 11.

Budget

20 ICBM SQUADRONS IN BUDGET, M/R SI 2/2/59, p. 21.

BUDGET HOLDS \$7 BILLION FOR MISSILES; { million for space exploration; Minuteman, Ho. Dog, Polaris, Nike-Zeus programs to be acce ated in \$40 billion defense budget. ARPA ws \$455 million; NASA budget is \$485 million, Clarke Newlon, M/R Executive Editor, 1/26, p. 21.

Congress

CAN CONGRESS DEFINE 'INFLUENCE'?;
James Baar, M/R Associate Editor, 6/29/59, p.

CHAIRMAN SEEKS BROAD R&D POWER; R Overton Brooks feels his House group should his jurisdiction over all non-military research and velopment bills; sees this as step toward Depment of Science, by Erica Karr, M/R Associ Editor, 6/29/59, p. 32.

U.S. SEEKS WAYS TO CLOSE TRANSLATION Goby James Baar, M/R Associate Editor, 5/25/p, 35.

DEPARTMENT OF SCIENCE: STILL 'IFFY'; Hoov type commission recommended in Congression hearings to decide how to centralize scattered forts in science, by Erica Karr, M/R Associeditor, 4/27/59, p. 30.

MAHON TO DEMAND MORE ATLASES; by Jar Baar, M/R Associate Editor, 4/13/59, p. 34. W PON SYSTEM CONCEPT FACES TRIAL; House grp is set to quiz industry and Pentagon spokesmi in lengthy hearings airing charges of monorization and profiteering, by James Baar, M/R Acciate Editor, 4/6/59, p. 15.

HISE GROUP URGES RELIABILITY PROGRAM; Jo is to recognize that reliability must be baland against other factors, by Betty Oswald, 4/\$9, p. 27.

U. SURVIVAL IN THE ATOMIC/MISSILE AGE— Two eminent lawmakers write their own widely digent views on the Russian threat and how th U.S. should counter it. By Senator Stuart Syngton and Rep. James G. Fulton, 3/30/59, p. 8.

PROUREMENT OVERHAUL SOUGHT; Saltonstall bi aimed at cutting lead time and Pentagon rel tape, has strong support in industry and anny some high DOD officials, by Erica Karr, M Associate Editor, 3/9/59, p. 39.

WAT WILL BE OUTCOME OF PROBE OF STL? Caress may recommend that STL sever all fin cial ties to Thompson Ramo-Wooldridge, and the a limit be placed on profits and salaries of copany officials, M/R staff, 2/16/59, p. 13.

H SLE OVER SIZE OF RED LEAD; Five Congrisonal committees set to probe defense/space or rams, by Erica Cromley, 2/2/59, p. 13.

CIGRESS SEES URGENCY IN SPACE-MISSILE CLS, M/R Staff, 1/19/59, p. 18.

EISLATING FOR THE SPACE AGE (editorial), 1//59, p. 9.

R.D. REPORT SHOULD GUIDE 86TH CON-SSS; Soviet space lead estimated at 12 to 18 in his; U.S. will require 5 years to catch up, Caress told, by Paul Means, M/R Associate Edito 1/19/59, p. 17.

CIGRESS SET FOR RENEGOTIATION FIGHT; Instry groups press for elimination of 17-yearol Act labeled costly and discriminatory, by E.: Halmos, M/R Contributing Editor, 1/12/59, 3.3.

OSITION DEVELOPING TO PRESIDENT'S NCIL; M/R Staff, 1/5/59, p. 14.

CIGRESS WILL KEEP EYE ON SPACE PRO-D.M; New space committees being formed; no stry ready to battle for new renegotiation of by Erica Cromley, 1/5/59, p. 15.

Cntracts

AIY EXPANDING 'BREAKOUT' POLICY; Conples sees increased opportunities for small busiel with Army taking 'standardized' components
try from primes and buying under competitive
viling, by Erica Karr, M/R Associate Editor,
vil 59, p. 13.

ONG LOOK AT RENEGOTIATION (editorial), 59, p. 7.

A PATENT RIGHTS DEBATED; Question is much proprietary interest should space agency cin over inventions performed under contract, staff, 6/1/59, p. 17.

LINES FOR THE V-2; the need for less comspecifications (editorial), 3/23/59, p. 11.

A, DOD HAVE WIDELY DIVERGENT PATENT HTS, 3/2/59, p. 14.

ancing

ALLS OF MISSILE BUSINESS FINANCING; with can be deadly. But here's where to get ital—while you still can, an M/R staff report, /59, p. 17.

dustry

MATTER OF THE MUNITIONS LOBBY (ediol), 6/29/59, p. 7.

KE UP AND LIVE; better communications by ristry essential (editorial), 6/22/59, p. 7.

K. HOFFMAN RECEIVES M/R's GODDARD PHY, M/R staff, 6/1/59, p. 23.

EDUCATE OUR YOUTH OR RUSSIA WILL; stry urged to increase participation in scholarawards (editorial), 4/20/59, p. 11.

ROETIC CHAMPION OF THE COMPONENT ROACH, by Erica Karr, M/R Associate Edi-4/6/59, p. 43.

/6/59, p. 43.

HOFFMAN . . . THE POWER BEHIND ROCKET-DYNE, by Erica Karr, M/R Associate Editor, 3/23/59, p. 26.

LOCKHEED EMPHASIS IS SYSTEMS MANAGE-MENT; Perfecting ability in systems management is setting pace at Lockheed Missiles and Space Division, by William O. Miller, M/R Associate Editor, 2/2/59, p. 16.

Missile Business— Outlook and Trends

DEFENSE CONTRACT PROFITS, by William E. Howard, M/R Associate Editor, 5/25/59, p. 50.

SPACE MARKET, by William E. Howard, M/R Associate Editor, 5/11/59, p. 49.

D-P's GROWTH; Daystrom-Pacific to Enter Systems Work, by Richard van Osten, M/R West Coast correspondent, 4/20/59, p. 34.

ESTIMATING MISSILE EXPENDITURES; Unfortunately there are no definitive answers; but with forward planning company resources could be directed to proper business success, by Douglas S. Evered, Missile Division, North American Aviation, Inc., 2/2/59, p. 26.

NASA

NASA PATENT RIGHTS DEBATED; Question is how much proprietary interest should space agency retain over inventions performed under contract, M/R staff, 6/1/59, p. 17.

NASA SPACE FLIGHT CENTER NAMED FOR GODDARD, 5/4/59, p. 38.

NASA MAY HAVE TO ASK FOR MORE FUNDS; Eight satellite launchings, 2 space probes and 45-50 sounding rockets may require additional funds above requested \$485 million, M/R staff, 4/20/59, p. 24.

NASA EXPANDS NACA PROCUREMENT SET-UP; Procurement chief says agency is decentralizing contracting and prefers doing business with established companies, by Erica Karr, 4/6/59, p. 25.

HETS PROGRAM: SPACE COOPERATION (editorial), 3/9/59, p. 7.

SPACE 'PROGRESS' BY 1969? by Paul Means, M/R Associate Editor, 2/2/59, p. 25.

NATO

NATO MISSILE BUILD-UP AT STAKE: Outcome of East-West Conference over Russia's May 27 Berlin ultimatum will affect \$1 billion in U.S. missile aid, by James Baar, M/R Associate Editor, 4/27/59, p. 13.

Navy

NAVY'S REORGANIZATION TO AFFECT RE-SEARCH; Rear Adm. Hayward—probably next DCNO—discusses what's needed from industry, by William O. Miller, M/R Associate Editor, 3/30/59, p. 24.

Pentagon—DOD

PRIORITY RULES ARE REVISED, by Betty Oswald, M/R Associate Editor, 6/29/59, p. 19.

THE NEW DEPUTY SECRETARY OF DEFENSE (editorial), 6/15/59, p. 9.

HOW IS DOD MOVING ON RELIABILITY? Some observers say it is in all directions but Air Force has come up with a new reliability monitoring system which should give better standards, by Betty Oswald, M/R Associate Editor, 6/1/59,

PROPOSED—A UNIFIED STRATEGIC COMMAND (editorial), 6/1/59, p. 9.

THE NEXT DEPUTY DEFENSE SECRETARY (editorial), 5/18/59, p. 9.

CONCURRENCY—PRIME NEED IN PENTAGON (editorial), 5/11/59, p. 7.

WEAPON SYSTEM CONCEPT FACES TRIAL; House Group is set to quiz industry and Pentagon spokesmen in lengthy hearings airing charges of monopolization and profiteering, by James Baar, M/R Associate Editor, 4/6/59, p. 15.

QUARLES BEST TO REPLACE McELROY (editorial), 3/30/59, p. 7.

SOME VIEWS OF DOD RESEARCH CHIEF YORK; Pentagon's first R&E director gives priority to weapon system on basis of importance of its mission and encourages industry to do more research on its own, by Paul Means, M/R Associate Editor, 3/23/59, p. 21.

PROCUREMENT OVERHAUL SOUGHT; Saltonstall bill, aimed at cutting lead time and Pentagon red tape, has strong support in industry and among some high DOD officials, by Erica Karr, M/R Associate Editor, 3/9/59, p. 39.

THE NEW LINE-UP IN SPACE (editorial), 2/23/59, p. 9.

DOD CHIEFS BACK BUDGET: REGRET CUTS; Sentiment heavy in Congress for restoring many budgetary cuts, M/R staff, 2/9/59, p. 21.

NEITHER LIFE NOR DEFENSE ENDS AT 40 (editorial), 1/26/59, p. 11.

THE CASE OF DR. YORK AND MR. JOHNSON (editorial), 1/12/59, p. 57.

IDA'S 'BRAIN FACTORY' GUIDES WEAPON CHOICES; Five universities work with Pentagon to provide staff for secret projects, by E. E. Halmos, Jr., M/R Contributing Editor; 1/5/59, p. 20.

Procurement

MEDARIS GIVES HIS BASIC PROCUREMENT PHILOSOPHY, M/R Staff, 6/29/59, p. 18.

NASA EXPANDS NACA PROCUREMENT SET-UP: Procurement chief says agency is decentralizing contracting and prefers doing business with established companies, by Erica Karr, M/R Associate Editor, 4/6/59, p. 25.

PROCUREMENT OVERHAUL SOUGHT; Saltonstall bill, aimed at cutting lead time and Pentagon red tape, has strong support in industry and among some high DOD officials, by Erica Karr, 3/9/59, p. 39.

Renegotiation

A LONG LOOK AT RENEGOTIATION (editorial), 6/8/59, p. 7.

CONGRESS SET FOR RENEGOTIATION FIGHT; Industry groups press for elimination of 17-yearold Act labeled costly and discriminatory, by E. E. Halmos, M/R Contributing Editor, 1/12/59, p. 13.

Research

AF PUSHES RESEARCH ON DETONATION PROBLEM, by James Baar, M/R Associate Editor, 6/15/59, p. 23.

Russia

RED THREAT FROM ANTARTICA; U.S. and other nations are worried about Russian bases build-up and submarine missile launching potential, by James Baar, M/R Associate Editor, 6/1/59, p. 15.

SOVIET AFFAIRS; USSR plans scientific information center, by Dr. Albert Parry, M/R Contributing Editor, 6/1/59, p. 47.

SOVIET AFFAIRS; Soviet press evaluates U.S. missilery, 4/20/59, p. 48.

WHEN RUSSIA PUTS MEN IN SPACE (editorial), 4/6/59, p. 6.

SOVIET AFFAIRS; Russians claim space lead, by Dr. Albert Parry, M/R Contributing Editor, 1/12/59, p. 38.

WORLD MUST SOLVE BRAND NEW PROBLEM OF MOON RIGHTS; Authorities seeking answers find few precedents to work with and most consider U.N. control the most feasible, by Donald Cox, M/R Contributing Editor, 3/23/59, p. 24.

Taxes

WITH GOYERNMENT RECONSIDERING FAST TAX WRITE-OFFS, WILL 1959 BE 'BOOST' OF 'BUST' YEAR FOR SPACE RESEARCH' by William E. Howard, M/R Associate Editor, 4/20/59, p. 19.

Weapon Systems & WS Management

AF SEES IMPROVED SYSTEM MANAGEMENT; Weapon System Project Offices are reportedly getting the job done more efficiently although there's still the problem of just when production people should take over, by Betty Oswald, M/R Associate Editor, 6/29/59, p. 35. HOW DO WE MAKE WEAPON SYSTEM INTEGRA-TION WORK? AF has established Project Offices with broad authority for overall management of all phases, by Betty Oswald, 6/15/59, p. 24.

STRATEGIC READY RESERVE STUDIED; Contractual personnel would maintain and operate complex weapon systems even in tactical use under proposed plans, by Donald E. Perry, M/R Managing Editor, 5/4/59, p. 13.

'FATHER' OF DYNA-SOAR AWAITS AF DE-CISION, by Erica Karr, M/R Associate Editor, 5/4/59, p. 29.

SMALL ALBM MAY GO ON F-10S; Republic's Mach 2 fighter may be built in Europe under NATO nations' share plan, by Clarke Newlon, M/R Executive Editor, 4/27/59, p. 14.

RELIABILITY IS OUR MOST IMPORTANT HEAD-ACHE (editorial), 2/16/59, p. 7.

MATERIALS

Ceramics

MISSILE NEEDS POSE CHALLENGES FOR CERA-MICS; Industry expects demand within decade for materials that will take temperatures up to 4000°F in missiles, by R. T. Inglis and D. L. Krout, Jr., 3/9/59, p. 34.

Connection (welding, etc.)

WELDING REDSTONE; Extreme care exercised at Reynolds plant precludes faulty welds, by M/R Staff, 6/8/59, p. 29.

Environmental Effects

SPACECRAFT MATERIALS PROBED BY SYMPO-SIUM; by Frank McGuire, M/R Associate Editor, 5/25/59, p. 56.

IR ANALYZERS MONITOR GIANT WIND TUNNEL; by M/R Staff, 5/11/59, p. 41.

SOVIET AUTHOR WRITES ON THERMAL MATERIALS; by M/R Staff, 3/2/59, p. 29.

Explosive Forming

INDUSTRY PUTTING INCREASED EMPHASIS ON HEF PROCESSES; But the physical and metal-lurgical problems still remain largely unanswered with techniques being debated, by Frank McGuire, M/R Associate Editor, 5/6/59, p. 28.

Metals

BERYLLIUM STRUCTURE MADE; by M/R Staff, 6/B/59, p. 41.

NAA'S NOVEL APPROACH TO STAINLESS STEEL HONEYCOMB PANELS; Company sees "new era" in vehicle construction; process includes original heat-treating cycle, by Frank McGuire, M/R Associate Editor, 5/11/59, p. 23.

LOW COST BRAZED STEEL HONEYCOMB STRUCTURES; Martin's new hardened alloy solves problem of uneven filleting in brazing and allows opening of tolerances, by Clarence A. Boyce, Jr., Martin Co., 5/4/59, p. 33.

METALS CONGRESS DISCUSSES PROBLEM SOLU-TIONS; Great strides reported in such fields as increasing metal strength and test methods, 3/23/59,

'BREAKTHROUGH' IN TUNGSTEN FABRICATION; Fansfeel research opens new applications for missile electronics, propulsion and structures, by Donald E. Perry, M/R Managing Editor, 3/23/59, p. 22.

Outlook

WHAT'S COMING IN MATERIALS RESEARCH? A leader in the field says costly and less glamorous production research has been neglected but novel techniques are being developed for fabrication and screening of new materials, by Arthur R. Lytle, Union Carbide, 4/6/59, p. 30.

HERE'S 1959 OUTLOOK FOR MISSILE MATERIALS; Metals will remain the mainstay, but competition from plastics will mean more teaming with ceramics, by Alfred J. Zaehringer, Associate Editor, M/R, I/26/59, p. 24.

Plastics

SINGER'S CAST EPOXY RESIN MIRRORS REQUIRE NO COSTLY HAND WORK; Polishing and finishing eliminated in plastic replica process. Mirrors withstand 20,000g in shock tests, by M/R Staff, 3/2/59, p. 16.

MISSILES, SATELLITES & RESEARCH VEHICLES

Foreign Astronautics

REPORT FROM WEST GERMANY; Reds have "hundreds" of 700-mile missiles facing Western Europe; Germany would make Hawks under license; French atomic complaints, by Clarke Newlon, M/R Executive Editor, 6/29/59, p. 45.

BRITISH ASTRONAUTICS; More successful Seasing trials; Rolls-Royce building Rocketdyne motors; Thunderbird comes into service with Army, by G.V.E. Thompson, M/R British Correspondent, 6/29/59, p. 28.

ON DISPLAY AT PARIS AIR SHOW: The Continent's biggest Space Age exhibition, by Jean-Marie Riche, M/R French Correspondent, 6/29/59, p. 24.

BRITISH ASTRONAUTICS; Government evasive on how much will be spent for space flight program; planetary probes and manned flight ruled out already, by G.V.E. Thompson, M/R British Correspondent, 6/8/59, p. 30.

SWISS FIRM TURNS OUT MOST MISSILES IN ITALY; Contraves AG developing into big supplier with its RSD-58 and RSC-57 missiles, by Anthony Vandyk, M/R Geneva Correspondent, 6/1/59, p. 22.

FRENCH ASTRONAUTICS: Air-to-Air and Ground-to-Air Missiles, M/R Paris Correspondent, 5/11/59, p. 19.

BRITISH ASTRONAUTICS; Progress on 24-channel time multiplex system; No decision yet on a British spaceflight programme; Blue Steel readied for test at Woomera, by G. V. E. Thompson, M/R British Correspondent, 5/11/59, p. 17.

FRENCH ASTRONAUTICS; S.E.P.R. test facilities are believed to be best on Continent; firm builds and tests both solid and liquid-fueled engines, by Jean-Marie Riche, M/R French Correspondent, 4/13/59, p. 28.

U.S. BUYING SS 10-11 FOR FORCES IN EUROPE, by Frank G. McGuire, M/R Associate Editor, 3/2/59, p. 32.

BLACK KNIGHT ENGINE DESCRIBED; by Anthony Vandyk, M/R Geneva Correspondent, 2/2/59, p. 24.

SEDOV COMPARES WEIGHTS OF U.S./SOVIET ROCKETS; M/R Staff, 2/2/59, p. 19.

EUROPEAN GROUP STUDIES BUILDING U.S. MISSILES; M/R Staff, 2/2/59, p. 21.

Research Vehicles

AEROJET'S NEW SOUNDING ROCKETS; Company is already taking orders for Astrobee series reportedly costing less than Aerobee but offering improved ease of handling, thrust alignment and attitude accuracy, by Frank G. McGuire, M/R Assistant Editor, 6/15/59, p. 25.

SCOUTING THE FRINGE OF SPACE; X-15 manned research vehicle rehearses for first flight, by Erica Karr, M/R Associate Editor, 6/1/59, p. 31.

NASA REPORTS SUCCESSFUL S-STAGE SOUND-ING ROCKET, M/R staff, 4/13/59, p. 38.

X-15 DROP SOON; Guidance to be tested in early phase, 2/16/59, p. 26.

Satellites

VANGUARD ORBIT TRY FAILS AS REGULATOR BREAKS DOWN, M/R staff, 6/29/59, p. 33.

NASA SPACE LAB PLANS OUTLINED; ARS ring also hears debate on the long-term value. Project Mercury holding facility' and report ramjet, ion engine and APU developments Frank G. McGuire, M/R Associate Editor, 6/2 p. 24.

U.S. MAY SEEK PACT TO SILENCE OUTW SATELLITES; Delegation at Geneva meeting also propose radio frequencies to be reserved space use only, by Paul Means, M/R Asso Editor, 6/1/59, p. 24.

ABMA RECEIVES FIRST OF SATURN ENGI Jupiter test stand being modified to accommo cluster of Rocketdyne H-I liquid engines, staff, 5/25/59, p. 36.

ADAM MAKES COMEBACK IN MERCURY, Paul Means, M/R Associate Editor, 5/4/59, p.

DISCOVERER, YES; VANGUARD, NO! Polar s lite capsule is believed to have reentered; n netometer try invalidated by second stage troi 4/20/59, p. 22.

EXPLORER V WILL CARRY HIGHLY COMIPAYLOAD; by Paul Means, M/R Associate Ed 3/27/59, p. 20.

DISCOVERER I ORBIT DUBIOUS; Intermittent nals may be caused by satellite's tumbling solar heat reviving cold batteries, M/R s 3/9/59, p. 20.

PIONEER DEVIATES IN TRAJECTORY; But stage Jupiter fired perfectly with less than second lift-off delay by ABMA team, by Means, M/R Associate Editor, 3/9/59, p. 20.

WEATHER SATELLITE WILL HAVE THREE C ERAS; Later meteorolgical experiments will responsibility of Weather Bureau Section, by F G. McGuire, M/R Associate Editor, 3/2/59, p.

REDS SAY LUNIK MADE 'COMET,' by Frank McGuire, M/R Associate Editor, 2/23/59, p. 3 SCOUT COULD ORBIT 150 LBS, M/R staff, 2/16

U.S. RESEARCH AIMS AT SPACE LAB, by CI Newlon, M/R Executive Editor, 2/2/59, p. 12.

RE-ENTRY NAVIGATION: 'BREAKTHROUGH' NOT REQUIRED, by Raymond M. Nolan, I Associate Editor, 1/26/59, p. 29.

LOCKHEED SPACE STATION INTERESTING AGENCIES; Satellite Laboratory could be in eration in 10 years; Cost estimate put at \$2 billion, by Norman L. Baker, M/R Associate Ed 1/19/59, p. 19.

STANDARD NAVIGATION AIDS COULD GU SPACE TRAVEL; M/R staff, 1/19/59, p. 27.

LUNIK BECOMES SOLAR SYSTEM'S Tenth "Plar Indications are Russians may have hoped to moon; exploit demonstrates know-how in velor guidance, by Norman L. Baker, M/R Assoc Editor, 1/12/59, p. 21.

USSR LUNAR PROBES WILL ORBIT CLOSE SURFACE. By Lt. Cmdr. John A. Fahey, U.S. N. Intelligence School, 1/12/59, p. 22.

MISSILE SUPPORT

Electronics

ELECTRONIC OUTPUT TO DOUBLE BY I What's the future for electronics in MSE? William E. Howard, M/R Associate Editor, 5/25 p. 25.

General

THE GOLDEN FIELD OF MISSILE SUPPORT (
torial), by Clarke Newlon, M/R Executive Edi
5/4/59, p. 6.

ARS MEETING STRESSES GROUND SUPPLEQUIPMENT; Pre-launch problems, data hand and missile performance comes up in techn papers delivered by specialists, by William Miller, M/R Associate Editor, 3/30/59, p. 16.

Launching Facilities

HOW TO HANDLE 24-MEG THRUST; Special isitics will be needed for 1.5 million pounds; boosters, by Chauncey J. Hamlin Jr., North Artican Aviation, 6/29/59, p. 16.

F8h, SUB PROVIDES NEW MARKET; With 45 hiss-launching boats possible, lion's share of som 34.5 billion should go for support equipment, by onald E. Perry, M/R Managing Editor, 1/8, p. 31.

MITEMAN RAIL CONCEPT PUSHED; 200 missile rail appear possible which should open up a who new field of missile support equipment oung into multi-million dollar program, by Willian E. Howard, M/R Associate Editor, 6/1/59,

us SEEKS MANUS LAUNCH SITE; ARPA has engiering plan to spend millions on tying island ntc/MR; NASA may help in development of the han selected, by William E. Howard, M/R Ass ate Editor, 5/18/59, p. 21.

BILDNS FOR ICBM LAUNCHING FACILITIES; Air pree wants \$343 million in FY '60 alone to hard Atlas and Titan bases . . . advent of Mineman will swell outlay, by William E. Hovd, M/R Associate Editor, 5/11/59, p. 13.

CA OPERATING AT ONE-FIFTH CAPACITY, by

INVESTMENT TO REACH \$250 MILLION IN 1965 Extra \$75 million probably will be funded at the years for base construction, by Robert vor. 4/13/59, p. 36.

RD LOOK AT SPACE LOGISTICS; AF-sponconference told it may be 5-10 years before nation be kept alive in space; planners banking metter component reliability, by William O. Mil. M/R Associate Editor, 4/6/59, p. 17.

ATIS BASES TO BE HARDENED; Titan and Atlas villobit be continued, Pentagon tells Congress, put amarc sites are cut sharply, by James Baar, 4/Associate Editor, 3/30/59, p. 15.

MCD RAPIDLY ADDING MORE MISSILE LAISE; United States is negotiating in hopes of soperation in man-in-space plans. Existing and very from relatively small facilities to those wilding thousands of miles. Small nations are arripating at a fast-growing rate, by William D. iller, M/R Associate Editor, 3/9/59, p. 15.

Production Facilities

PI FORGE FORMS STEEL ONE INCH THICK, V/R Staff, 3/23/59, p. 31.

IE ROBOT IS BIG STEP IN NUMERICAL CON-RC; Automatically programmed tool developed t IT translates jargon and guides cutting, by ar; J. Haggerty, Jr., M/R Contributing Editor, /99, p. 33.

HI IRBM PRODUCTION; by Fred S. Hunter, Associate Editor, 2/16/59, p. 15.

UI ER IRBM PRODUCTION; by Alfred J. Zaeh-

Rearch Facilities

IC BIG A MISSILE SUPPORT FILE? AF list il tart with some 2500 data sheets but opinions iff on how much longer it will get, by William ward, M/R Associate Editor, 6/22/59, p. 13.

FCATALOGUING SUPPORT ITEMS: Massive blie due July I should save millions in wasteral development of redundant equipment and tood standardize handling and checking-out by William E. Howard, M/R Associate dir, 6/15/59, p. 21.

cety

FEAM SEEKS SAFER MISSILE FLIGHTS; GM8 to is handicapped by sparse data but hopes velop a central report procedure, by Richard posten, M/R Associate Editor, 4/27/59, p. 28.

HT WILL BE NEEDED IN MSE—WHEN MAN

HT WILL BE NEEDED IN MSE—WHEN MAN NRS THE MISSILE, by Hal Gettings, M/R state Editor, 4/20/59, p. 20.

get Facilities

COMPANIES PRODUCING VERSATILE VES; Bendix, Republic and Marquardt joined ris in designing ground-launched Hilo, produced a bomber-like radar image. Bell worked Bendix in developing Penny, air-launched to the high altitude and supersonic speeds, frank G. McGuire, M/R Associate Editor, 259, p. 21.

Test and Checkout

ATLAS PARTS TEST STAND PRODUCED BY ROCKETDYNE; by M/R Staff, 6/8/59, p. 32.

A MAMMOTH GANTRY FOR SATURN: Structure will cost \$9.5 million with test tower, opening new dimension in missile support equipment, by M/R Staff, 6/8/59, p. 33.

VIBRATION TESTING OF NEW MISSILES SAYES MONEY AND TIME; Trend is toward more accurate reproduction of effects of dynamic forces, using such equipment as Ling's spectral density analyzer system, by Cameron G. Pierce, 4/27/59, p. 17.

VANGUARD TESTING: BACKBONE OF PRESENT BALLISTIC MISSILE ART; Checkout 'primer' developed by Martin gives pattern for industry to follow, by William E. Howard, M/R Associate Editor, 4/6/59, p. 20.

TITAN'S TESTING TIME MAY BE ONE HALF ATLAS'; SAC personnel to join Martin's streamlined test division in September; static firings may be eliminated at Cape, by Donald E. Perry, M/R Managing Editor, 3/16/59, p. 22.

COOK LABS DO MASS COMPONENTS TESTING; Inland testing engineers screen up to 100,000 parts simultaneously without damaging those that are acceptable, by M/R Staff, 2/23/59, p. 24.

BOMARC ENGINES ARE TESTED AT MARQUARDT LAB; Huge facility stores fifty tons of air for supersonic testing at altitudes near 200,000 feet, by Raymond M. Nolan, M/R Associate Editor, 1/12/59, p. 15.

Test Ranges

A CRISIS IN RANGE INSTRUMENTATION; AFMTC commander says more funds and effort must be expended to cure the rapidly widening time bottleneck, by Maj. Gen. Donald N. Yates, 6/29/59, p. 20.

Tracking

NEW AMPLIFIERS EXTEND MISSILE TRACKING RANGE; by M/R staff, 3/23/59, p. 41.

3000-MILE RADAR MAY BE ON TRACKING SHIP; by Peer Fossen, M/R Associate Editor, 2/2/59, p. 32.

Transportation

GOODYEAR'S APPROACH FOR ATLAS MSE; by M/R Staff, 4/20/59, p. 23.

NYC TESTS MISSILE TRANSPORT: by Frank G. McGuire, M/R Associate Editor, 2/2/59, p. 19.

PROPULSION

Controls

THROTTLEABLE ENGINE PROLONGS AIRCRAFT LIFE; Rocketdyne's AR series with up to 6000-lb thrust is ready for use although Navy has cancelled program, by Frank G. McGuire, M/R Associate Editor, 4/27/59, p. 23.

COMPLICATION FOR SOLIDS: THRUST-DIREC-TION CONTROL; Ballistic missiles will require thrust vector control, thrust termination, thrust modulation, by Norman L. Baker, 2/9/59, p. 23.

Cryogenics

PROPULSION ENGINEERING; New plant turns out 'purest hydrogen ever made', by M/R staff, 6/8/59, p. 45.

FLUORINE ENGINES MAY ARRIVE WITHIN FIVE YEARS; Dramatic increase in rocket capability will come when compatible materials are developed. Fuel supply considered more than adequate, by Paul Means, M/R Associate Editor, 5/11/59, p. 42.

VACUUM JACKETING CUTS FUEL LOSSES; CEC reports its jacketed lines reduce boil-off by half, compared to those insulated with other materials, M/R staff correspondent, 4/6/59, p. 22.

Hybrids

PROPULSION ENGINEERING; Advantages of hybrid nuclear-chemical rocket engines, M/R staff, 5/18/59, p. 52.

Liquid

PROPULSION ENGINEERING; Ammonium nitrate as oxidizer, M/R Staff, 4/27/59, p. 49.

BRITISH ASTRONAUTICS: British firm starts manufacture of hightest hydrogen peroxide, by G. Y. E. Thompson and K. W. Gatland, M/R Contributing Editors, 4/6/59, p. 19.

PROPULSION ENGINEERING; 8oron fuels, M/R Staff, 3/16/59, p. 40.

ARMOUR ENTERS EMPIRICAL ROCKET APPLICATIONS, M/R staff, 3/2/59, p. IB.

FUELS VAPORIZATION STUDY CONTRACT AWARDED BY NSF, M/R staff, 2/23/59, p. 56.

PROPULSION ENGINEERING; Pre-packaged liquid propellant announced by Navy, by Alfred J. Zaerhringer, M/R Associate Editor, 2/9/59, p. 106.

I-I.5 MEG ENGINE MAY BE OPERATIONAL IN SIX YEARS, M/R staff, 2/2/59, p. 20.

Nuclear

PROPULSION ENGINEERING; Vary thrust for optimum nuclear rocket performance, M/R Staff, 6/1/59, p. 45.

AEC IS RECOVERING VALUABLE CERIUM 144, M/R staff, 4/13/59, p. 38.

PROPULSION ENGINEERING: Aerojet's head questions nuclear rocket's practicality, M/R staff, 4/6/59, p. 47.

THE NEGLECTED ATOMIC PROPULSION PROGRAM (editorial), 3/2/59, p. 7.

GE SCIENTISTS DESCRIBE NUCLEAR POWER PACKAGE, M/R staff, 1/5/59, p. 30.

Outlook

INDUSTRY TELLS CONGRESS: DO MORE BASIC RESEARCH NOW, by William E. Howard, M/R Associate Editor, 3/30/59, p. 20.

CHEMICAL INDUSTRY EXPANDS FOR ASTRO-NAUTICS, by Alfred J. Zaehringer, M/R Contributing Editor, 2/2/59, p. 28.

Plasma

PLASMA ENGINE DELIVERS NEARLY 2 LBS; M/R staff, 6/8/59, p. 34.

Solids

PROPULSION ENGINEERING; 8asic studies on plastics will give propulsion engineers more solid propellant data, M/R Staff, 6/22/59, p. 45.

COMPLICATION FOR SOLIDS: THRUST-DIRECTION CONTROL; Ballistic missiles will require thrust vector control, thrust termination, thrust modulation, by Norman L. Baker, M/R Associate Editor, 2/9/59, p. 23.

SPACE MEDICINE

Animal Experiments

PIONEERING MONKEYS AND MICE; Two monkeys come back strong from Jupiter flight, though one dies later; Discoverer III tests will be U.S.'s most elaborate effort, by James Baar, 6/8/59, p. 28.

SPECIAL PROBLEMS OF THE MONKEY-IN-SPACE, by Dr. Earl T. Carter, Ohio State University, 5/11/59, p. 30.

Human Engineering

ADAPTING MAN TO HIS LIFE IN SPACE, by James Baar, M/R Associate Editor, 6/29/59, p. 22.

SPACE FEEDING: BIG \$\$ MARKET; Air Force contracting with industries on four lines of space food with bulk of work being handled through Quartermaster Food and Container Institute, by James 8aar, M/R Associate Editor, 6/15/59, p. 28.

SPACE MEDICINE PROBLEMS PROBED BY AMA, by Frank G. McGuire, M/R Associate Editor, 5/11/59, p. 22.

CONVAIR INVESTIGATES ENVIRONMENTAL TOLERANCES, M/R staff, 2/9/59, p. 63.

Space Capsules

AN EXCLUSIVE INTERVIEW WITH THE AF SPACE MEDICINE CHIEF; Dr. Hubertus Strughold looks beyond Project Mercury to time when space flights may last months, 3/30/59, p. 22.

McDONNELL GETS MERCURY AWARD; by Clarke Newlon, M/R Executive Editor, 1/19/59, p. 18.

STRUCTURES

Astrodynamics

DRAG BRAKE PROPOSED FOR M-I-S, M/R Staff, 6/22/59, p. IB.

Components

THE CASE FOR COMPONENTS RESEARCH, by Charles D. LaFond, M/R Associate Editor, 4/6/59, p. 22.

Design

NOTCH SENSITIVITY WALL WILL CRACK, M/R Staff, 6/22/59, p. 15.

DETAILS OF ATLAS CONSTRUCTION DISCLOSED, M/R Staff, 6/1/59, p. 26.

Nose Cones

BIRTH OF A TITAN NOSE CONE, M/R Staff, 5/11/59, p. 32.

SPRAYING TECHNIQUE MAY CUT RADOME COST, by Richard Van Osten, M/R Associate Editor, 3/16/59, p. 37.

THE CASE FOR ABLATION, by Henry G. Lew, Sinclair M. Scala and George W. Sutton, 6/B/59, p. 19.

THE CASE FOR HEAT SINK, by Dr. J. D. Stewart, 6/8/59, p. 16.

Test

WEAPONS TESTING BOOMS AT AF'S ARNOLD CENTER, M/R Staff, 3/9/59, p. 31.

ARGMA'S PLASMA JET TEST FACILITY IN OPERA-TION: Prototype model for aerodynamic heating tests reaches 50,000° fusing argon gas with 13,000 fps flow rate, by M/R Staff, 3/23/59, p. 39.

THE DEATH OF A MISSILE; One of 40,000 parts falls and a 75-foot bird of space (Atlas) blows up—pictures by Cornell Capa, story by Erica Karr, M/R Associate Editor, 5/4/59, p. 17.

VIBRATION TESTING OF NEW MISSILES SAVES MONEY AND TIME; Trend is toward more accurate reproduction of effects of dynamic forces, using such equipment as Ling's spectral density analyzer system, by Cameron G. Pierce, 4/27/59, p. 17.

VANGUARD TESTING: BACKBONE OF PRESENT BALLISTIC MISSILE ART; Checkout 'primer' developed by Martin gives pattern for industry to follow, by William E. Howard, M/R Associate Editor, 4/6/59, p. 20.

TITAN'S TESTING TIME MAY BE ONE HALF ATLAS'; SAC personnel to join Martin's streamlined test division in September; static firings may be eliminated at Cape, by Donald E. Perry, M/R Managing Editor, 3/16/59, p. 22.

COOK LABS DO MASS COMPONENTS TESTING; Inland testing engineers screen up to 100,000 parts simultaneously without damaging those that are acceptable, by M/R Staff, 2/23/59, p. 24.

BOMARC ENGINES ARE TESTED AT MARQUARDT LAB; Huge facility stores fifty tons of air for supersonic testing at altitudes near 200,000 feet, by Raymond M. Nolan, M/R Associate Editor, 1/12/59, p. 15.

missile business . . .

By WILLIAM E. HOWARD

Multi-million dollar savings . . .

are envisioned through proposed electronic data processing of DOD's worldwide logistics operation. High speed equipment would be utilized to keep up-to-the-minute records of the thousands of parts and design changes in missile/aircraft and other weapon systems. AIA reports the plan will be submitted to DOD next month. It was devised by a Military/Industry Logistics Data Development Unit (MILDDU) after a 10-month study determined that a single data exchange system could be designed using a standardized punch card record length as the base for development.

Meantime, just such a "push-button" . . .

delivery system has been developed at Warner Robins Air Materiel Area, Robins AFB, Ga., to support *Mace* installations. **Goodyear Aircraft**, which recently received a \$302,000 *Mace* warehousing order from Warner Robins and has the complete support contract for the **Martin**-built missile as well as its guidance system, says the new electronic logistic system is called MAST (missile automatic supply technique). Designed to eliminate slow-moving paperwork, MAST absorbs data on component usage over a global network in seconds. The data is code-punched at supply depots and transmitted to Warner Robins.

Inventories are instantly computed . . .

at headquarters and orders issued to warehouse points or manufacturers to ship required parts and supplies. The concept amounts to a supply sergeant's dream come true. No forms. Just punch a button and wait for the stuff to arrive on the next plane.

Goodyear says the MAST system has been thoroughly tested and presently is being put into operation to control *Mace* logistics primarily at launching and supply depots of the Tactical Air Command in Europe. Squadrons of the 800-mile range *Mace* are now replacing the shorter range *Matador*.

An automatic production and inventory . . .

control system is helping keep kinks out of operations at the Rocketdyne Division of North American Aviation. The company says the newly-installed Mechanized Production Control (MPC) system gives management a daily report on all rocket engine manufacturing activities. Moreover, it "immediately calls out corrective action for all behind-schedule parts or components."

Rocketdyne Factory Manager Ross Clark . . .

says with MPC company business is administered at considerably less cost and with greater accuracy. Here's the way it works: employing automatic tabulating machines, MPC established schedules on all production activities, starting with engineering drawings. Then, automatically, engineers are notified when to release the drawings, the purchase department is notified when to buy parts or material, and production departments are informed when they will receive the parts and given a completion date. All activities leading to engine fabrication are pre-scheduled and all components and parts are detailed on a master list.

"Move cards" keep track of progress on parts and components as they move through production departments. Information from these cards is fed into electronic accounting machines, which then compile reports listing the production status of all parts.

Benefits of the system, says Clark . . .

include reduction of production lead time, reduction of work that is behind schedule and the maintaining of accurate up-to-the-minute inventories. He says MPC is, indeed, one of the company's "most important new programs." ppointment of Samuel W. Stewart

as director of engineering and te-search at the Gabriel Electronics Division nounced. Stewart was formerly head of the Microwave Engineering Department at the Sperry Gyroscope Co., where he was in

hase of research-through-production of niowave components, antennas and anent systems.

verett B. Boise, former supervisor of pications engineering, production types, asseen elevated to manager of applicao engineering, receiving tubes, for Hytron. Boise is a graduate of Renselr Polytechnic Institute and has served s n engineer with the RCA patent deament license division, and as chief ornercial engineer for National Union lao Corp.

asker Instruments Corp. recently and David J. Green, vice president for dinced Systems Development to direct xpratory programs into advanced R&D orepts and systems design. Green comes asker from the System Development o., formerly a division of the Rand co., where he was head of Corporate dince Planning and served as a meme of the management committee.

Dr. David M. Heinz has been named hior scientist at Hoffman Electronics lo.'s new Science Center in Santa Ba ara, Calif. He will concentrate on erconductor materials and in the field f general chemistry. Dr. Heinz was or erly a physicist in the materials and presses unit of General Electric's Intraent Department, and a research asocte in the GE Research Department's Geral Physics Research Laboratory.

appointed to the

newly created post of assistant general

seach and develop-

ment at Motorola's

Western Military

Motorola since 1950, Dr. Samuelson has

for

Center

With

manager

Electronics

in Phoenix.

)r. Robert E. Samuelson has been

MUELSON

been successively enr project leader, chief engineer and nneering manager of the Military Elitronics Center in Phoenix.

Dynatronics, Inc., Orlando, Fla., has prejoted former vice president and chief en neer George F. Anderson to vice president and general manager. The firm is engaged in R&D and production of space communication, data handling and specialized test equipment.

Epsco, Inc.'s new subsidiary, Monitor Systems Inc., will be headed by Harry H. Rosen. Rosen is former manager of Data Processing and Computation in G.E.'s Missile and Space Vehicle Department. MSI expects eventually to employ several hundred engineering, production, and management personnel from the Philadelphia area.

William R. White, acting general manager, takes over as president of U.S. Semiconductor Products, a division of Topp Industries, Inc. Dr. Friedrich Schwarz, who has headed the company since its beginning two years ago, has been elected chairman of the board of directors. In addition to his new assignment, Schwarz will be active in the research and development programs of other Topp divisions-U.S. Science and Micro-

Other officers in the company will include Robert Rutherford, vice president and director of engineering, and Gayle Hodges, secretary-treasurer. Reorganization of the U.S. Semcor management team came one week after finalization of its acquisition by Topp.

PHILLIPS

Alvin B. Phillips has been appointed chief engineer of Motorola's Mesa transistor product line. Phillips is a marketing former product planner with General Electric's Semiconductor Products Department.

Carl E. Calohan was appointed advertising and sales promotion manager of Giannini Controls Corp., succeeding Richard L. Lawrence, who resigned to accept a similar position with Hughes Semiconductor Products.

Glen P. Bieging has been named manager of marketing for General Electric Co.'s Missile and Space Vehicle Department. He was manager of market research and product planning for the G.E. Heavy Military Electronic Department in Syra-

Allan F. Donovan, vice president and director of Advanced Systems Planning at Space Technology Laboratories, Inc., has been named a delegate to a panel of technical experts which will advise the U.S. Committee on Nuclear Testing. He will counsel the Committee on the possibilities of using space vehicles to carry out undetected nuclear tests in outer space. Donovan joins the eight other members of the panel headed by Dr. Wolfgang K. H. Panofsky, of Stanford University, in Geneva to begin discussions with similar groups of British and Russian experts.

Hal V. Miller was named liaison engineer at Packard Bell Electronics Corp.'s Technical Products Div.

New manager of the Space Technology Laboratories Field Office at Warren AFB, Cheyenne, Wyo., is W. H. Edwards. He has been with STL since September, 1955, and played a prominent part in the firm's Atlas ICBM work.

ANALYTICAL **ENGINEERS**

career opportunities with an expanding facility in New England . . .

Requirements: BS in Mechanical Engineering or AE degree, 2-5 years ex-perience in one or more of the following: 1) small turbo-machinery (compressor, turbines, fans) 2) lightweight heat exchangers 3) thermo-dynamic cycle analysis 4) air conditioning. air and vapor cycle refrigeration.

Duties: Work includes both applied theoretical and experimental analysis starting with initial design and con-tinuing through prototype. Involves performance computation defining configurations of components and complete systems to meet specifica-tions. Opportunity to utilize IBM 704 and 705 for complex methods of analysis.

Join a technical group whose facilities and background knowledge are unrivalled in the industry. Your talents will be employed in the development of advanced concepts, and also in internal consulting work on prob-lems encountered by the Design and Development Engineering Groups.

Very pleasant urban or suburban living conditions . . . opportunity for tuition-paid post graduate study . . . generous relocation allowance.

This Division of United Aircraft is now actively engaged in product di-versification and development of jet aircraft equipment, ground support equipment and missile components.

Reply to Mr. A. J. Fehlber Technicol Employment Supervisor

HAMILTON STANDARD

Div. of

UNITED AIRCRAFT CORPORATION

431 Bradley Field Rd. Windsor Locks, Conn.

Panels Reportedly Solve Radar Van Heat Problems

FULLERTON, CALIF.—Ground systems engineers at Hughes Aircraft Company report that they have devised a low-velocity air diffusion panel to solve the ticklish heat problem in close quarters of new mobile radar vans designed to detect enemy missiles.

In designing and producing "3-D" radar mobile control vans, Hughes was faced with the problem of cooling both the myriad electronic equipment and the seven operators in the compact vehicles, it was reported by Wayne Stauch, Hughes mechanical engineer.

In addition to the fact that the van ceiling is only three inches above the head of the average operator, the problem was compounded by the limitation of diffusion space to a narrow central "corridor," Stauch said.

Finding that standard high velocity air diffusion was unsatisfactory from both a draft and noise standpoint, project engineers found a solution after testing the comparatively new concept of low-velocity diffusion.

The air diffusers used consist of panels with a perforated distribution plate which, by means of a pressure displacement valve, slows down the speed of the cool air and diffuses it evenly throughout the air conditioned area. The air is brought to the panels from the cooling source through the plenum above the van ceiling.

Stauch points out that depending

upon the size of the van, up to three pairs of valves are used. The air flow can be regulated by a valve adjustment.

The special ventilation product used to solve the problem, Stauch reports, was the Multi-Vent panel, produced by the Pyle-National Company, Chicago, developers of the low velocity diffusion method.

Originally designed by Pyle-National to solve similar problems in railroad passenger cars, the technique has in recent years been used for air conditioning office buildings, computer rooms, and general commercial and institutional applications.

The product is also beginning to receive attention, he said, for mobile homes, office trailers, submarines, ocean going passenger vessels, and other uses where space limitation is a problem.

Solids Seen as Good Source for AP

SAN DIEGO—Solid propellants can be a versatile efficient source of power for many space flight purposes besides rocket propulsion.

Two Washington, D.C., scientists told the recent American Rocket Society meeting here that gas turbines fueled by solid propellants can drive electrical generators, mechanical and exhaust systems and perform several other functions.

Melvin Cohen, of the Hicks Corp.,

and Lt. Com. Edward J. Sheeh of the Navy Ordnance Bureau, said of power can be used in a missile of electronic and guidance systems, of dynamic and flight control systems and separation and termination de as

Missile designers have many so of power available. Four of the common are batteries, bottled pressed gas, liquid-propellant gas grators and solid-propellant gas grators. Cohen and Sheehy outlined advantages and disadvantages:

Batteries—Use limited by except weight and size as against power at put.

Bottled gas—Heavy inert ponents necessitated by high gas sures; excessive space requirement cause of low density.

Liquid-propellant generators ter than batteries or bottled gas of many purposes but more come, bulkier and less reliable than solid of pellant generators.


The solid-propellant generator as one major limitation. It is inher by a "one-shot" operation. It is not je tical to turn a solid propellant off on again, although some work is by done in smothering the fire before a charge is completely burned up.

• In an emergency—Cohen in the solid-propellant turbine protein never would compete with solar teries for such long-term low-power uses as light, heat and caneds aboard a manned space (But he said such a turbine would valuable for emergency use while ing repairs on regular power sous the compared this to the auxiliary power supply in a hospital basen for use in case the city supply in terrupted.

In the laboratory, experimunits have supplied gas-turbine propertions of time on the order of to 20 minutes, Cohen reported, noted that this is nearly the maximular duration of an ICBM flight. The bing is prolonged on essentially same principle as in a cigarette-packing the propellant in a long, row cylinder. It may be curled, bever, for convenience.

Several missiles already use studies fuel gas turbines, Cohen declared, their use is growing rapidly. One hissile has a turbine of this type can run an electrical generating tem from 60 to 90 seconds, more enough time to last the one-mi flight. A second turbine runs hydra equipment for about the same peof time. Cohen declined to identify missile beyond saying it is in the class (Talos, Terrier and Tartar), added that such devices are also in in one British missile and in a hispeed Navy torpedo.

Launching from Railroad-

SOLID-FUEL missile being fired directly out of protective capsule on a launcher car, preliminary designs for which have been made jointly by Bethlehem Steel Co. and Paul Hardeman, Inc. Flame at the bottom is deflected by outstretched shields in this artist's conception. Hydraulic jacks, carried under car, push steel beams down over ties to stabilize the car. (See M/R, June 1, page 19).

contract awards-

MISCELLANEOUS

nell Aeronautical Laboratory, Inc., for le creation and preliminary design anyes of general support missile systems. ward by The Allison Div. of General otors Corp. GM and CAL will collaborate 1 the project (amount not disclosed).

ARMY

Annca Manufacturing Corp., Middletown, hio, has received a "very substantial" nount for the production of base shel-rs for the Jupiter missile program mount not disclosed).

000,000—Raytheon Co., Andover, Mass., r continued production of the Hawk r defense missile. Sixty-one million for issiles, elghty-four million for ground suipment and sixteen million for ennumering services. 1754/785—Chrysler Corp., for work on the edstone 200-mile range missile.

nd development work on the Sergeant

320,690—Sperry Rand Corp., for ground and test equipment for the Sergeant retem

32,408-Blaw-Knox Company, Pittsburgh a., for construction of Atlas ICBM unching stands and operations buildigs at Fairchild AFB, near Spokane,

97,788—California Institute of Tech-ology, Pasadena, for research and devel-bment work to be performed at the Jet ropulsion Laboratory. 33.000—Bowen-McLaughlin - Yark,

ork, Pa., for vehicle engineering services or the T88 series, medium recovery velice, including three pilot models. (20.—Western Electric Co., Inc., N.Y., or Nice spare parts and components (ten

ontracts).

or Nike spare parts and components welve contracts).

sylide—Rheem Manufacturing Co., Dow-ey, Calif., for missile warhead design and development.

nd development.

\$3,297—Douglas Aircraft Co., Inc., Santa tonica, Calif., for Nike repair parts and sunching area items. \$7,632—Consolidated Electrodynamics Corp.,

asadena, for recording oscillographs. \$5,000—North American Aviation, Inc., ocketdyne Div., Canoga Park, Calif., for

sa,712—Ordnance \$3,712-Ordnance Specialties, Inc., El lonte, Calif., for a powder actuated sefing line cutter. \$000-Thompson Ramo Wooldridge, Inc., os Angeles, for telemetering system de-

elopment.

Philadelphia, \$ 166-Tele-Dynamics Inc., or services consisting of the manufacture telemetry transmitting systems, com-onents, assemblies and sub-assemblies, and the modification and testing thereof. 167—Kin-Tel, Div. of COHU Electronics, an Diego, for amplifiers.

an Diego, for ampliners.

3.72—Hallamore Electronics Co., Anaeim, Calif., for cameras and accessories.

8.333—Helge Olsen Inc., East Orange, N.J., or pyrotechnic area, facilities and utilies, additional altitude test chamber at leatinny Arsen, Dover, N.J.

\$ 935-RIAS, Div. of Martin Co., Baltiore, for research and development on he effects of surface films on the me-hanical properties of metals.

\$,065—Resdel Engineering Corp., Pasadena, alif., for receivers and oscillators.

NAVY

100,000—Autonetics Div. of North Amerian Aviation, Inc., for electronic armanent control systems for the Republic of Vest Germany (subcontract from Lockeed Aircraft Corp.).

\$2,000,000—Convair Div. of General Dynamics Corp., San Diego, for design and manu-facture of a radar for navigation-bomb-

ling, system (subcontract from Autonetics Div. of North American Aviation, Inc.), \$1,500,000-Melpar, Inc., for production of target detecting devices for the Talos surface-to-air missile.

\$1,241,057—Federal Pacific Electric Co., New-ark, N.J., for misslle and Asroc fire

control switchboards.

control switchboards.

\$880,000 - Summers Gyroscope
Monica, Calif., for high performance
gyros to be used in the Terrier and
Tartar missiles (subcontract from Convair
Div. of General Dynamics).

Div. of General Dynamics.
\$760,000-Westinghouse Electric Corp., Baltimore, for production of electric propulsion motors to be used in the antisubmarine torpedo, the Mark 37.
\$182,500—Telemeter Magnetics, Inc., Los

Angeles, for research and development of magnetic core memory. 8166,347—General Electric Co.,

N.Y., for research on defense against ballistic missiles.

sistic missies. Systems, Inc., Glendale, Calif., for research on defense against ballistic missiles.

\$128,079—Convair Div. of General Dynamics Corp., San Diego, for research on ballistic missile defense.

\$121,061-Allied Research Associates, Boston, for research on defense against ballistic missiles.

\$117,783-Hnghes Aircraft Co., Culver City, Calif., for research on defense against ballistic missiles.

solution of Chicago, for research on defense against ballistic missiles. \$25,041—Winzen Research, Inc., Minneapolis, for research on defense against ballistic

Research Foundation of \$25.000—Armour Illinois Institute of Technology, Chicago, for research on high powered transducers.

AIR FORCE

\$722,413—General Petroleum Corp., Los Angeles, for 6,453,000 gallons of rocket fuel. \$623,201—Litton Industries, Electron Tube Div., San Carlos, Calif., for miscellaneous electron tubes.

S500,000—United Electrodynamics, Pasadena, Calif., for an FM/AM telemetry system used in research and development flight tests of the Minuteman missile (subcontract from Boeing Aircraft Corp.). 95,404—Tidewater Oil Co., Los Angeles, for

s395,404 2,524,000 gallons of rocket fuel.

\$315.557—Bell Oil and Gas Co., Tulsa, for 1,757,000 gallons of rocket fuel.

\$175,393—Photo-Sonic, Inc., Burbank, Calif., for 18 35-mm high-speed motion picture

cameras.

cameras. Si31,313—Tung-Sol Electric Inc., Newark, N.J., for miscellaneous electron tubes. Si36,710—Etel-McCullough, Inc., San Bruno, Calif., for miscellaneous electron tubes. \$70,304—Allen B. Dumont Labs, Inc., Clifton, N.J., for miscellaneous electron tubes. \$48,000—Waste King Corp., Los Angeles, for research and development of a prototype quantity of pilot static tubes capable of quantity of pilot static tubes capable of withstanding exposure to temperatures up to 1400°C for 15 mlnutes to be used on aircraft and missiles flying at speeds

on aircraft and missies hying at specus up to Mach 5. 844,929—Olin Mathieson Chemical Corp., Chemicals Div., Baltimore, for 7125 lbs. of monomethyl hydrazine for testing and evaluation in support of weapons

system 138a. 535.543—Curtiss Wright Corp., Electronics Div., Calstadt, N.J., for drone control and radar tracting systems simulator used in conjunction with a modified M-4 tracting

radar. \$27,486—Ampex Corp., Newton, Mass., for recorder, reproducer, magnetic tape, seven

\$27,441—Kenick Manufacturing Co., L.I., N.Y., for rocket assembly used on F84 and F84F1 alreraft.

NASA

\$500,000—The Siegler Corp., Hallamore Elec-tronics Co. Div., for airborne computers and associated test equipment for the Vega outer space rocket (subcontract from Jet Propulsion Laboratory).

The civillan space agency awarded the following contracts during the month of May, in addition to those which appeared last week.

\$110,000—National Science Foundation, for support of the Space Science Board of the National Academy of Sciences.

\$60,000—University of Florida, for study of general Instability of cylindrical shells, aimed at aiding both rocket and space

aimed at aiding both rocket and space vehicle designers.
\$60,000—University of Wisconsin, for design studies of an ultraviolet telescope system to go into a future orbiting space observatory. The telescope would examine the radiation emitted by stars.
\$50,000—Army Ordnance, for part of 20 Nike-Asp sounding rockets to be fired from Fort Churchill, Canada, and Wallops Space Flight Station in ionospheric sampling experiments. sampling experiments.

-reviews----

CTR-371 COMPUTERS, 1937-58, Available from OTS, U.S. Department of Commerce, Washington 25, D.C.

A catalog of technical reports, listing all reports in the field of computers, has been published by the Office of Technical Services, U.S. Department of Com-

It identifies reports on digital, analog, photographic, mathematical, navigational computers and others. Many of the reports resulted from research conducted for the Army, Navy, Air Force, Atomic Energy Commission, and other agencies of the U.S. Government. Others are German documents captured during World War II.

METAL-CERAMIC LAMINATES, R. Francis, R. Brown, E. P. McNamara and J. R. Tinklepaugh, Alfred University for WADC. 78 pp. available from OST, U.S. Department of Commerce, Washington 25, D.C.

Using brazing and hot-pressing techniques, metal-ceramic laminates can be fabricated when the thermal expansion of the ceramic is equal to or slightly less than that of the metal. Fosterite-stainless steel 430, molybdenum-alumina, and Kovar-alumina liminates were fabricated by brazing techniques; laminates of molyb-denum and a 40% alumina-60% mullite ceramic were hot pressed.

Thermal expansion and thermal conductivity studies demonstrated that mixtures of mullite and alumina can be used to provide a varying range of thermal expansion. Measured conductivities of the stainless steel laminates were much higher than calculated results. A comparative apparatus for measuring thermal conductivity was constructed and found accurate to plus or minus two per cent in the temperature range 100 to 1000°C.

YOU'RE ON THE INSIDE...

You make your point before the conference begins when you advertise in Armed Forces Management. It's the *only* magazine offering across the board coverage of *all* the military services in the \$45 Billion Market. Armed Forces Management reaches 17,000 military and civilian executives in administrative, executive, procurement and evaluation positions. And you reach the *right* man in the *right* spot. AFM is addressed to job titles, not names, (majors through 5-star generals/admirals and civilian executives with Civil Service rating of GS-13 or above). This enables you to sell military purchasing influences month after month regardless of personnel rotation. For a complimentary copy of the detailed Armed Services Marketing Manual, write Marketing Director, Armed Forces Management.

AMERICAN AVIATION PUBLICATIONS, INC.

propulsion engineering

You must be a defense contractor . . .

to use the new rubber and asbestos insulation that **Astrodyn**e has developed for solid propellant motors. The company developed the insulation primarily for Navy use. It greatly extends the motor life and, in effect, adds to burning time. It's cheaper and lighter than reinforced plastics now in wide use. Typical test result: Insulation held exterior of motor case to 200°F for 3.5 min., under propellant flame of 5500°F.

Tantalum producers are skeptical . . .

about the drastic price cut made by Union Carbide Metals, according to the magazine Chemical Week. Carbide cut the tantalum price from \$60/lb. down to \$35/lb. early this month. There was a lot of talk about a new future for the metal—wider experimentation and development would now be possible. However, Chemical Week says Carbide's competitors are commenting that "Carbide has been selling close to the \$35/lb. level for some time." Carbide replies, according to the magazine, that the higher price always was considered a "list price" subject to negotiation on large orders, frequently whittled down to near \$35, where small orders have gone at near the \$60 price.

Nuclear propulsion is a step closer . . .

to reality for aircraft, manned satellites and space ships, thanks to **Goodyear's** castable nuclear shielding material announced at midmonth. The synthetic rubber-powdered boron material shields crew members from neutrons. It features a new rubber molecule high in hydrogen content, as well as mixed-in boron. The hydrogen slows down the neutrons, the boron captures them.

Until now, polyethylene slabs have been used for lightweight shielding. However, the slabs are difficult to work with since they are too rigid to conform to many shapes. The Goodyear product is fully castable—pour it into any shape, it fills the entire volume and sets at about room temperature. Goodyear scientists believe the shield is the lightest and most effective neutron shielding material yet developed.

In spite of its high hydrogen content, the material can withstand temperatures from -60°F to 200°F. It absorbs radiation without damage. Goodyear says it's "reasonably priced."

Note: The material is not the full answer to missile and aircraft nuclear shielding problems. Lead still must be used to shield against gamma radiation. The Goodyear material, however, replaces the concrete and water neutron shields used in earth-bound installations.

Forced draft air heater . . .

for testing missile components at Wyle Laboratories, Norco, Calif., delivers 20 million BTU/hr. at 1500°F. The unit, built by Hirt Combustion Engineers, can deliver extremely high flows of gaseous oxygen or nitrogen, 35 lbs/sec at 200 psi. Purpose: Test missile components at actual operating temperatures and flows. This is one of the largest units of its type ever built, according to the builders, who say there is no practical limit to the size of future units.

High temperature reactions . . .

are studied by a new technique developed at Bell Telephone Laboratories. In describing the general technique in Chemical & Engineering News, Bell Telephone's Lloyd Nelson says it "may be helpful in attacking such problems as . . . prolonging the life of a missile nose cone, or developing protective clothing against nuclear blasts." Here's a capsule description: Fine particles or filaments of absorbing materials are suspended in a transparent medium and exposed to a high-perature and then cool again almost instantaneously. Chief advantage: The speed of the reaction does not allow time for side reactions—researchers can follow the main reaction without interference.

research. design... development

TELEMETRY

Boeing's expanding work on Minuteman, the Air Force's solidpropellant 1CBM and other extremely advanced weapon system programs, has created exceptionally rewarding, long-range openings in the field of telemetry techniques, systems, sub-systems and equipment.

These are challenging opportunities for years-ahead work in the design, testing and evaluation of telemetry systems and components, as well as the development of new applications and techniques in areas such as:

- Test Equipment
- Specialized Transistors and Signal Conditioners
- Pulse Code Modulation, Pulse Duration Modulation and FM/FM
- Missile Telemetry
 Flight Test Data
- Special Circuitry and Equipment

Assignments are available at virtually all experience levels, and with educational backgrounds ranging from B.S. to post-Ph.D. At Boeing you'll be with an industry leader in the development of advanced weapon systems.

Drop a note today, to:

Mr. Stanley M. Little P. O. Box 3822 - MRA Boeing Airplane Company Seattle 24, Washington

Work on

TOTAL SOLUTIONS

to Major Defense Problems

> at General Electric's Defense Systems Department

You'll find greater opportunities in Systems Engineering in an organization whose charter has a breadth and scope seldom met in industry:

...to find total solutions to specific large scale defense problems requiring the integration of diverse fields of knowledge and equipments. These problems will be of sufficient magnitude and duration to justify the allocation by General Electric of considerable numbers of highly qualified scientists and engineers to contribute systems program management and systems engineering support—on programs such as:

ATLAS • DYNA-SOAR • SENTRY ... and other highly classified systems which cannot be listed here.

Immediate Opportunities for:

Systems Program Engineers
Systems Management Engineers
Guidance Equation Engineers
Data Processing Engineers
Electronic Systems Management Engrs.
Operation Analysts
Systems Logistics Engineers
Engineering Psychologists

Forward your confidential resume at an early date. Whereas growth potential here is evident—both for DSD and the engineers who join us—the positions filled during these early months will carry significant "ground-floor" benefits.

DEFENSE SYSTEMS DEPARTMENT
A Department of the Defense Electronics Division

GENERAL 8 ELECTRIC

300 South Geddes Street Syracuse, New York

soviet affairs . . .

By DR. ALBERT PARRY

An alloy of iridium and aluminum . . .

as a tremendous boon to rocketry is discussed in the Moscow Yunyi Tekhnik. For a long time, despite all the experiments which were attempted, such an alloy could not be achieved, the Soviet magazine says. The reason for continued failure was plain: Aluminum melts at 660°C, while the melting point of iridium 2400°C.

But a new method . . .

accomplishing the needed alloy was at last found. The Russian journal calls the discovery "the meteorite-metallurgical technique." This consists of "shooting" at melted aluminum a charge of extraordinarily tiny particles of iridium emerging at a tremendous speed from a special electrical instrument.

"Not being in a molten state," the description in Yunyi Tekhnik continues, "iridium nonetheless fuses with the molten aluminum into an alloy. This alloy possesses the light weight of aluminum and the high mechanical and heat-resisting solidity of iridium, thanks to which it becomes an ideal material for the making of most important parts of airplanes and rockets." But to what extent this method and the resulting alloy are now being used in the Soviet Union, the Russian item does not say.

On broader implications . . .

of this subject, "Heat-Resisting Alloys" is the title of a special lengthy article in *Sovetskaya Aviatsia* by Professor N. Skliarov. He discusses the arrangements now being made by the Soviet government to expand and improve Russia's production of heat-resisting alloys in the Seven-Year Plan just begun (1959-65). Rather dismissing aluminum, magnesium, and other low heat-resisters, Professor Skliarov suggests that Soviet experimenters are now paying close attention to such "more infusible metals" as chrome, niobium, tantalum—and "the highest-melting metal—wolfram."

Yet Professor Skliarov also speaks of "extraordinary difficulties" hampering "the utilization of these metals." The Sovetskaya Aviatsia writer, who holds the degree of doctor of the technical sciences, says that these metals can be cast only in a vacuum, "in special arc furnaces from which air is barred." He reveals that the Seven-Year Plan is emphasizing the introduction and improvement of the arc-furnace method of casting various metals needed in aviation and rocketry.

Powder metallurgy is another field . . .

looming large in the Seven-Year Plan, according to Doctor Skliarov. "High heat-resisting materials," he writes, "can be obtained not alone as cast metal alloys but also by pressing and baking ready-made parts from mixtures of powdered metals with highly infusible compounds which melt at 3000°C and at yet higher temperatures."

The value of powder metallurgy, he continues, is in the fact that methods of this metallurgy help in the manufacture of such synthetic materials as "combinations of metals with their infusible oxides." He gives this example: The oxide of aluminum melts at 2500°C, and this oxide permits experimenters to create a material twice as heat-resisting as can be had from ordinary aluminum alloys.

Powdered or pulverulent metals . . .

can aid in the making of porous materials. The latter, as Doctor Skliarov points out, "combine solidity with their heat-resistance thanks to their cooling by a liquid flowing through the pores." The result is that experimenters obtain "most divergent combinations of materials with good heat-insulating qualities, a high thermal capacity, and the ability to absorb a great quantity of heat coming from outside."

ability to absorb a great quantity of heat coming from outside."

That is why the Seven-Year Plan devotes so much attention to this part of Soviet technology and industry. Playing a significant role in today's technology, the heat-resisting materials "will have a yet greater importance in the technology of the future," the Soviet scientist concludes.

-when and where-

JULY

Annual Basic Statistical Quality Insute, University of Connecticut, Syrrs, July 12-24.

di Technical Commission for Aeroratics and Los Angeles Section of t Institute of Radio Engineers, Third Innial Joint Meeting, Ambassador Itel, Los Angeles, July 16-17.

e American Rocket Society, Propel-Its and Combustion Committee, 'ropellants, Thermodynamics and Indling Conference," Ohio Union, (io State University, Columbus, Jy 20-21.

rol Annual Institute on Missile Techrogy, Chief of Research and Develoment, U.S. Army, University of (nnecticut, Storrs, July 26-Aug. 7.

e Denver Research Institute of the liversity of Denver, 6th Annual Supposium on Computers and Data Locessing, Stanley Hotel, Estes Park, (lo., July 30-31.

AUGUST

tition of Investigation of Biological Sences, Sponsor: Air Force Office of Sentific Research, Aeromedical Div.,

Fire & Rubber Co. 10

Advertisers' Index

Aincy-D'Arcy Adv. Co.	
org Airplane Co	7
Fre Valve & Regulator Co : Ancy—L. C. Cole Co.	2
Cefott Co., Inc	I
oneed Aircraft Corp., Missile System Div	6
di eapolis-Honeywell Regulator Co., Honeywell Div	4
Noh American Aviation, Inc., Au- tonetics Div	7
Nchrop Corp	с.
A.). Smith Corp., Aeronautical Div.	3

CLASSIFIED

Jned Aircraft Corp., Hamilton

LOYMENT SECTION

coapproved storage and transportation igh explosives and propellants in Angeles area contact:

W. A. Murphy, Inc. 436 North Arden Drive El Monte, California CUmberland 3-8048 World Health Organization, Montevideo, Uruguay, Aug. 2-7.

Association of the U.S. Army, Annual Meeting, Sheraton-Park Hotel, Washington, D.C., Aug. 3-5.

American Astronautical Society, Second Annual Western Regional Meeting, Ambassador Hotel, Los Angeles, Aug. 4-5.

Institute of Radio Engineers' Professional Group on Ultrasonics Engineering, First National Ultrasonics Symposium, Stanford University, Stanford, Calif., Aug. 17.

Institute of Radio Engineers, Western Electronic Show & Convention, Cow Palace, San Francisco, Aug. 18-21.

American Rocket Society, Gas Dynamics Symposium, Northwestern University, Evanston, Ill., Aug. 24-26.

Institute of the Aeronautical Sciences'
National Specialists Meeting, A Symposium on Anti-Submarine Warfare,
(classified), San Diego, Calif., Aug.
24-26.

International Astronautical Federation, 10th Annual Congress, Church House, Westminster, London, Aug. 31-Sept. 5.

SEPTEMBER

Air Force Office of Scientific Research and General Electric Company's Missile and Space Vehicle Department, Conference on Physical Chemistry in Aerodynamics and Space Flight, University of Pennsylvania, Philadelphia, Sept. 1-2.

University of California, 1959 Cryogenic Engineering Conference, Berkeley, Calif., Sept. 2-4.

Air Force Association and Panorama: Send Reservations to AFA Housing Bureau, P. O. Box 1511, Miami Beach, Sept. 3-6.

Standards Engineering Society, Boston Section, Eighth Annual Meeting, Hotel Somerset, Boston, Sept. 21-22.

Instrument Society of America, Conference and Exhibit, Chicago, Sept. 21-25.

Industrial Nuclear Technology Conference, Sponsored by Armour Research Foundation of Illinois Institute of Technology and Nucleonics Magazine and Atomic Energy Commission, Morrison Hotel, Chicago, Sept. 22-24.

American Rocket Society, Solid Propellants Conference, Princeton University, Princeton, N.J., Sept. 24-25.

Institute of Radio Engineers, 1959 National Symposium on Telemetering, Civil Auditorium, San Francisco, Sept. 28-30.

OCTOBER

Society of Automotive Engineers, National Aeronautics Meeting, Aircraft Manufacturers Forum and Aircraft, Engineering Display, The Ambassador Hotel, Los Angeles, Oct. 5-10.

Electronics Industries Association Conference, University of Pennsylvania, University Park, Oct. 6-7.

Stanford Research Institute, First High Temperature Symposium, Asilomar Conference Grounds, Monterey Peninsula, Calif., Oct. 6-9.

National Electronics Conference, Sponsored by American Institute of Electrical Engineers, Illinois Institute of Technology, Institute of Radio Engineers, Northwestern University and University of Illinois, Hotel Sherman, Chicago, Oct. 12-14.

Armour Research Foundation, 15th Annual National Conference, Hotel Sherman, Chicago, Oct. 26-30.

Institute of Radio Engineers, Professional Group on Electron Devices, Shoreham Hotel, Washington, D.C., Oct. 29-30.

NOVEMBER

41st National Metal Exposition and Congress, International Amphitheatre, Chicago, Ill., Nov. 2-6.

Mid-America Electronics Conference, 11th Annual Meeting, Kansas City Municipal Auditorium and Hotel Muehlebach, Kansas City, Nov. 3-5.

Fifth International Automation Exposition and Congress, New York City, Nov. 16-20.

The Institute of Radio Engineers, 1959 Northeast Electronics Research and Engineering Meeting, Boston Commonwealth Armory, Boston, Nov. 17-19.

1960

JANUARY

Institute of the Aeronautical Sciences, 28th Annual Meeting, Hotel Astor, New York, Jan. 25-28.

APRIL

American Society for Metals, 2nd Southwestern Metal Exposition and Congress, State Fair Park, Automobile Building, Dallas, Apr. 25-29.

SEPTEMBER

International Council of the Aeronautical Sciences, Second Congress, Zurich, Switzerland, Sept. 12-16.

Memo from the Assistant Publisher

This is the first in a series of memos to you, the reader, keeping you informed about what we're doing and planning here at Missiles and Rockets.

Just as a starter, let's take a look at M/R's title, "The Magazine of World Astronautics." There are variations . . . such as "Technical/News Weekly of the Missile/Space Industry" . . . more comprehensive, but somewhat awkward. We believe our present definition, concise and to the point, is adequate.

Then consider the market. There are many industries combining to make up this Missile/Space field we talk about. Which are these industries, and who is the man . . . the engineer . . . whose efforts produce new developments in this area?

In short . . . for whom, and for what reason, is Missiles and Rockets being edited and published?

Astronautics Engineering (or missile engineering, space technology . . . call it what you will) has been defined as the applied science whereby simultaneous extensions of the state of the art in aeronautical, electronics, chemical, metallurgical and astrophysical engineering combine to produce new developments in the field of missiles and space vehicles. Each of these industries plays an integral part in the fulfillment of man's greatest venture to date: the perfection of the art of missilery and the subsequent conquest of space.

The astronautics or missile engineer may be basically an aeronautical engineer; he may be an electronics or chemical engineer, a physicist or metallurgist (if he's young enough, he may even bear the *title* of missile engineer). But to his basic knowledge in one or more of the above sciences he's had to add capabilities in magnetohydrodynamics. space communications, digital computer logic design, celestial mechanics, reentry simulation . . . there are scores of others.

To serve this man, the astronautics engineer, his proper diet of news and technical editorial coverage of all of these sciences as they apply to missile/space projects... coverage of Astronautics Engineering... is the editorial purpose of Missiles and Rockets and M/R's "reason for being."

Working toward more complete fulfillment of this editorial mission, M/R has made a number of changes and improvements in its editorial product over the past several months, not the least of which has been a decided increase in the amount and caliber of technical coverage. This week there are several more changes:

Missile Electronics, a familiar M/R department since the section was first instituted in October, 1957, now becomes Astrionics, a column heading we've used from time to time for several years. As the science of Astronautics Engineering broadens, so does M/R, and the term Missile Electronics is no longer broad enough in scope to cover electronics in both missiles and space systems. Hence a new title: Astrionics.

M/R's weekly Contract Awards feature, which you tell us is an invaluable information guide, has been expanded and relocated, enabling M/R editors

to include the latest available award informatic each week.

In keeping with our definition of Astronauti Engineering, we invite your attention to the editor masthead on page four, revamped this week. Nat the primary fields of Astronautics Engineering: strutures, electronics, propulsion, materials, astrophysic support equipment, and you'll find an M/R edit (sometimes two) covering each.

To get more late news into M/R each wee the editorial by Executive Editor Clarke Newlowill be moved back to this page beginning ne week; you'll find it here from then on.

So far this year, M/R has published 955 pag of editorial material devoted to the Missile/Sparmarket . . . more than any other magazine of at type. Beginning on page 37 of this issue, you'll fir an editorial index for the period January through June 1959.

In addition to thorough weekly news coverage Astronautics happenings in Washington and arout the world, we've inaugurated a program to give reade a minimum of four "round-up" or "state-of-the-ar articles each week, letting you know where we've bee "where we're at," and where we're going in technic areas vital to Astronautics progresses.

areas vital to Astronautics progresses.

Take, for example, the "Fuzing and Arming" sto on page 30. Here Astrionics Editor Hal Gettings e plores a technology of extremely high reliability parare eters, and identifies industrial and government leade in the field.

Beginning this week on page 13 is the first in three-part series by Associate Editor William E. Howa on the Missile Industry in New England . . . an ar which garners over \$1 billion each year in missile co tracts and employs more than 150,000 people. Ne week Bill will get more specific and survey the Bostc area; on July 27th: a Connecticut close-up. Surveys other U.S. missile manufacturing areas will follow.

What's the outlook for aluminum? Cryogenics? A sociate Editors Paul Means and Frank McGuire te these stories on pages 18 and 21 . . . stories compile after hundreds of miles of travel on both East and We Coasts, and hundreds of man hours of editorial research. More of this type of editorial treatment we follow next week when M/R editors discuss printe circuitry, monopropellants and the vehicle requiremen for Missile Support.

On July 20 you'll see M/R's Third Annual Engineeing Progress Issue, featuring the famous Guided Missi Encyclopedia, expanded this year to include the late available information on British, French, Swiss ar Italian missiles in addition to those of the United Statuand Russia. Watch for this issue: It will be M/R's bigest weekly effort to date.

Keep us posted on how we're doing: keep you criticisms and suggestions coming. M/R is being edite for you . . . the Reader.

E. D. Muhlfeld Assistant Publisher

PRECISION GYROS

A Proven Kearfott Capability. The increasing use of Kearfott gyros and gyro platforms in today's missile programs, underscores the company's leadership in gyro design and production. Such missile projects as the Atlas, Bomarc, Polaris, Snark, Subroc and Talos rely on Kearfott gyros or gyro platforms, as do the majority of manned aircraft now in service.

FLOATED RATE INTEGRATING GYROS. High accuracy miniature gyros specifically designed for missile use. The performance characteristics of these gyros are superior to any comparably-sized units available to-day. Hermetically sealed within a thermal jacket and ruggedly designed for adaptability to production methods. These gyros operate efficiently at unlimited altitudes. More precise performance characteristics can be provided in the same dimensions.

VERTICAL GYROS. Provide accurate vertical reference in the form of two 400 cps synchro signals proportional to the sine of gimbals' dis-placement about pitch and roll axes. Gravity-sensitive vertical reference device provides electrical signals directly to torque motors which maintain gyro spin axis perpendicular to earth's surface. Hermetically sealed, they are unaffected by sand, dust, sun, rain, salt spray, humidity or fungus conditions as specified in MIL-E-5272A.

FREE GYROS. Provide extremely accurate reference in the form of electrical output signals proportional to displacements about outer axes. With 360° of freedom about outer axes (inner axis freedom depends on the unit involved), these gyros may be mounted to give output signals of either pitch, roll or yaw. Shock and vibration resistant, they are equipped with quick-starting motors for applications in high performance missiles and aircraft.

SPRING RESTRAINED RATE GYROS. Almost universally applicable in missile and aircraft designs demanding precise angular rate measurements in environments of extreme shock and vibration. Fluid filling provides added immunity to shock and vibration, reduces bearing friction in AC types and potentiometer wiper friction in DC types. Kearfott design advances permit 30 second warm-up, overcome fluid viscosity variations resulting from ambient temperature change. These gyros are single-degreeof-freedom, viscous damped, spring restrained, with gimbals supported by precision bearings. Compensatory damping mechanisms eliminate need for accessory heaters.

Engineers: Kearfott offers challenging opportunities in advanced component and system development

3 Gyro-4 Gimbal yro Reference

TYPICAL CHARACTERISTICS

Mass Unbalance: Along Input Axis: 1.0°/hr maximum untrimmed Maximum untrimmed
Standard Deviation (short term):
Azimuth Position: 0.05°/hr
Vertical Position: 0.03°/hr
Drift Rate Due to
Anisoelasticity: Steady
Acceleration: .015°/hr./g²

maximum Vibratory Acceleration: .008°/hr./g² maximum

Damping: Ratio of input angle to output angle is 0.2

Weight: 0.7 lbs.

Warm-up Time: 10 minutes from-60°F

1000 hours minimum

TYPICAL CHARACTERISTICS

Repeatability to Established Vertical: To within a cone of half angle equal to 15 minutes of arc (± 8 minutes

Free Drift Rate in 5 minutes Time: 2.5° maximum at room temperature. 3.75° at -54°C and + 71°C.

room temperature. 3.75° at -54°C and Erection Rate: 2.5°/Min. Initial Erection: The gyro will erect to within ± 1° of established vertical in 60 seconds time after application of power at room temperature. Vibration and Shock: The gyro will meet above characteristics after vibration of 0.060° total excursion cycling between 10 CPS and 55 CPS for 4.5 hours. Shock test in accordance with MIL-E-5272A Procedure 2.

TYPICAL CHARACTERISTICS

Free Drift Rate: Within 0.5° in one minute time. Shock: The gyro operates satisfactorily without damage after 60g shock of .015 seconds duration. Hermetically Sealed: These instruments are hermetically sealed and are not affected by sand, dust, sunshine, rain,

scaled and are not affected by sand, dust, sunshine, rain, humidity or fungus conditions.

Operating Temperature Range: Gyros operate in ambient temperatures below -20°C to + 100°C. A maximum of 3 minutes of operation at 400°F will not damage these gyros nor impair their accuracy.

Weight: 5.5 lbs. approximately.

25 Pound Inertial

TYPICAL CHARACTERISTICS

Maximum Rate (°/sec.): 45-1000 Natural Undamped Frequency (cps) (± 10%), 16 Damping Ratio (of critical) over Temperature Range: .35 Operating Temperature Range (°F): -65 to +185 Vibration: 12 g's @ 20-2,000 cps Shock (Motor Running): 60 g's for 6.5 milliseconds 30

Warmup Time (Sec.):
Weight (lbs.) (max):
Gyro Time Constant (Sec.):

GENERAL PRECISION COMPANY

KEARFOTT COMPANY, INC., LITTLE FALLS, N. J. A subsidiary of General Precision Equipment Corporation

Sales and Engineering Offices: 1500 Main Ave., Clifton, N. J Midwest Office: 23 W. Calendar Ave., La Gronge, III. South Central Office: 6211 Denton Drive, Dallas, Texas West Coast Office: 253 N. Vineda Avenue, Posadena, Calif.

NORTRONICS REVEALS LINS... COMPLETE PRECISION INERTIAL NAVIGATION SYSTEM!

A recent demonstration at Nortronics' Guidance Symposium revealed the most advanced precision inertial guidance system ever assembled. LINS—Lightweight Inertial Navigation System—includes platform, platform electronics, environmental control and computer. Total system weight: slightly in excess of 100 pounds. Equipment volume: less than three cubic feet.

Actual working hardware, LINS is a complete, precision system for automatic navigation applications to advanced aircraft, drones,

missiles, and space vehicles. It is ready now

the latest result of Nortronics' more than
twelve years of creative research and production in the field of automatic guidance
and navigation systems.

If you have the need to know more—contact Nortronics today, regarding LINS for your own system requirement. Nortronics' experience offers unique and proven capabilities in tailoring the design, development and production of complete and integrated guidance systems to your requirements.

NORTRONIC

HAWTHORNE, CALIFORNIA
A Division of Northrop Corporation