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Chapter 18

Goddard’s 85 Years Optimal Ascent Problem
Finally Solved”

Radu D. Rugescu®

Abstract

Robert H. Goddard was the first to observe, by physical rcasoning, that, if
a rational ascent speed policy is followed, a rocket vehicle might reach a given
altitude with a minimal starting mass, meaning with the lcast possible fuel con-
sumption. He published his observations in 1919, suggesting a variational ap-
proach could be used to find the solution, but gave nonc. This is the Goddard
problem of rocket ascent. Only four years later, Hermann Oberth had independ-
ently published a similar discussion on the optimal atmospheric ascent and gave
in 1929 the first, approximate solution of the problem, strikingly resembling the
later, more evolved ones. The well-known professor in mathematics Georg
Hamel formulated, in the meantime, (G. Hamel, “Eine mit dem Rakete zusamen-
hdngende Aufgabe der Variationsrechnung,” ZFW, December 1927) the Goddard
problem in strong variational terms that stated the basis for all eventual develop-
ments on the subject, but still with no explicit solution. Despite a number of ear-
lier trials, H. S. Tsien and R. Evans are the first to find a partial, variational solu-
tion of the Goddard problem in 1951, in a very beautiful work. A flow of devel-
opments in atmospheric ascent optimization then emerged with hundreds of high

" Presented at the Fortieth History Symposium of the International Academy of Astronaut-
ics, 2-6 October 2006, Valencia, Spain. Paper IAC-06-E4.3.05.

t Ph.D., Professor, University “Politehnica” of Bucharest, Romania, E.U.
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quality papers, including the main ones by 1. Gudju, G. Leitmann, A. Miele, and
others. By continuous variational methods the solution is found that consists of
an impulsive start, followed by an accommodated sustainer flight, and the injec-
tion to coast up to the peak altitude. But in all these solutions, the basic disconti-
nuity in the equations of motion at burn-off is fortuitously neglected. Salutary are
the impressive solutions of Bulirsch’s team in Munich, which emphasize the
challenge of discontinuities and give some answers. Despite these considerable
attempts, pure numerical solutions are currently only adopted to optimize, in part,
the vehicles’ ascent, as the classical calculus of variations proves inadequate for
this discontinuous integrand problem. In fact, the entirc amount of variational
work does not respond to the real problem of rocket ascent and we realize that up
to recent time no complete and documented answer to the 85-year-old Goddard
problem seemed found. We try to follow in this paper the history of those tre-
mendous findings, which had only found very recently an unexpected answer.

First Formulation in 1919

In his famous pioneering paper' from 1919, Robert H. Goddard first ob-
served that the atmospheric ascent of rocket vehicles is clearly subjected to the
optimal thrust control. We reproduce this first formulation from the classical
work of Goddard:'

Suppose that, at some altitude on the ascending path of a rocket, the ascent
speed will be very high. Then the force of air drag, proportional to the
squared speed, will also be very high. On the other hand, at very small
climbing speed, during a long time period a thrust is neceded to compensate
for the force of gravity. In both cases, the required propellant reserve will
be very high. It follows that the climbing speed must have a precisely deter-
mined value at each point in space.

Goddard did not solve this problem, due to his “improper mathematical means,” as
Hamel comments later in 1927. The problem Goddard addresses belongs, in fact,
to the calculus of variations and, much more than this, to the yet
unsolved category of discontinuous integrand problems.

The mandatory impulsive start of the vehicle was,
however, revealed. This difficult point remains in flight
optimization and is continuously pursued by the rocket engine
designers who had consequently introduced the famous launch

N . | thrust augmenters. No word yet of a burnout discontinuity,
. e A\ however.
Figure 18-1: Robert H. Goddard.
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Approximate Solution of Oberth

In Romania® in 1929, Hermann Oberth had developed the idea of the opti
mal thrust rule by a local differential scheme. He found his own answer in (he
form of equality between drag and weight during the powered flight. This ap-
proach means that in each individual point of the ascent
trajectory a maximal gain in altitude dh and impulse
d(mv) in respect to the flight speed v are intended, with
the least momentary mass expense dm. This criterion
proves different from that of Goddard'” and in fact is a
mini-max criterion. In order to arrive at simple formulae,
constant values were considered for the air density, the
specific impulse of the engine, and the drag coefficient
while doing differentiation. This is the usual method of
frozen coecfficients.'* All are common, acceptable hypoth-
eses.

f. l.
Figure 18-2: Hermann Oberth.

The equation in differentials of the powered, rectilinear motion was ac-
cordingly written in the usual form,

m-dv+c-dm+Q-dt =0, (1)
where ¢ is the specific impulse of the engine and O the opposing forces, viz. the
sum of gravity and drag,

Q=mgsina+R. (2)
Oberth had considered now the variation of the infinitesimal impulse
d(mv) induced by a velocity increment

M:i(mdv)z(), 3)
ov ov
where idm =0 as far as the mass variation goes through a minimum. The

ov
term mdv is extracted from the equation of motion. Then the extremum condi-
tion becomes,
i(mdv) = —i(cdm)—i[g(_j—h} =0.
ov ov v v sina
Again the differential principle says that the variation of altitude gocs
through zero and consequently the variational condition of Oberth gets the rc-
markably simple form
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dv|v
For a simple quadratic drag law with constant ¢, and under the assump-
tions of constant gravity field,

5 [9]=o. @)

Q=-2p-Sch2 +mgsina, %)
E[BSCDV+ mgsina EBSCD _mgsina. _
Svi2 v 2 V2
the intuitive supposition of Oberth for an optimal flight is proved,
Q
R=G=-—. 6)
2

Thus the most favorable speed of motion in the sense of Oberth, is given
simply by the condition (6),
mgsina (7)
%SCD
Oberth further gives his typically instructive improvement, when the equa-
tion (7) is used to determine the derivative of the mass in respect to the speed.
The mass is thus climinated from the equation of motion (1), where the very ac-
ceptable assumption of an exponential atmosphere is used
p(h) = exp(-ah)
and thus a differcntial cquation of the optimal motion results,
g\i=av—29/c. )
dt  1/c+2/v
We may count it like an equivalent of an Euler equation. Two-fold succes-
sive integration renders the equations of optimal atmospheric ascent after Oberth,

V=

o x-2pB X 8
z zA-(1+B)InXA_2 InXA, (8)
V. = x— X-2B 9
Y—YAa=X—Xp +2(1+B)|nxA_2B 9)

The Tsien notation® B =g/(ac?) is used and the nondimensional speed,
altitude, and time are x=v/c, ¥ =aS and z=gt/c. Formula (9) is a good im-
provement of the speed (7) along the accommodated trajectory.

Equations (8) and (9) of Oberth visibly resemble the future solutions of
Tsien, based on definitely strong variational principles. Obviously, this first re-
sponse to the problem of flight optimization is valuable as a first closed, numeri-
cal sct of formulae that can be used in the computations.
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Although they seem based on apparently doubtable mathematical manipu-
lations, the ultimate word comes from the numerical results. The original book
contains minor numerical data only, the author’s main concern remaining the
theoretical solution.

As an intimate of Oberth’s works, the author programmed the above for-
mula into a computational code to compare in detail, for the first time as far as
we know, today’s variational solutions and Oberth’s. The comparative research'
was published in 1989 and sent to Hermann Oberth for his consideration (Figure
18-2). This comparison is presented further and shows an unexpectedly good
agreement between the old one and the quite exact solutions of today.

Formula (7) shows that the optimal velocity never equals zcro, meaning
that the optimal vehicle must, from the beginning, start impulsively to acquire the
condition of best ascent. This confirms the intuitive assessment of Goddard about
the impulsive start, as Oberth himself is observing in the second’ of his books
from 1929.

The question remains why Oberth’s solution is not exact? The optimality
principle itself answers: the simultaneous propellant expense minimization and
altitude maximization were considered, ending in over-conditioning of the cqua-
tions that describe the vehicle behavior. In fact, the Goddard problem is not a
mini-max, but a simple one: either minimal mass for given height or maximal
height for given mass as well.

Still no word of the discontinuity of flight equations at engine’s burnout.

Variational Formulation, Hamel 1927

Well-known especially for his works in theoretical
mechanics,’ the former professor in mathematics at the
German university in Karlsruhe, later in Briin, Aachen,
and finally Berlin, Georg K. W. Hamel (1877-1954) had
been attracted by the “yet unsolved variations problem”
of Goddard.

Figure 18-3: Professor Georg K. W. Hamel.

His paper' from ZAMM in December 1927 is just two pages long, but
nonetheless very dense. From the equation of rectilinear ascending motion in the
atmosphere
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M%+Cd—+W(s u)+ Mg =0 (10)

the famous functional of the initial mass of the rocket vehicle M, is rendered,
M, sEef(u,s,t)dt+F(ue,te)=min. an

resulting in a variational Euler type problem, in which no initial conditions are
required, as they are contained in the functional itself. The end-point {s.,z} (en-
gine burnout) is free, except that it must fulfill the connection or transversality
condition with the free climb subarc. This states that an ordinary variational
problem appears, with an Euler equation and regular extremals associated.
Hamel shows that the functional (11) presents a real minimum because the
following condition is always fulfilled, namely the second order derivative
2
1 5o, (12)
ou?
as long as the drag (Widerstand) is always

2
W20, 6W>0 ow

ou ou?

Hamel also shows, that difficulties begin when the end-point {s.,u,.} is var-
ied along the coasting subarc. This sounds like Georg Hamel could not have ob-
tained closed analytical formulae, first derived by Tsien, only 20 years later. In
the attempt to surpass the obstacle, he shows that for the Jacobian of the second

>0.

order
{2
_\%e de) (13)
a(se !_te )
any variation the discriminant is null,
2 2 2
CMIM_IM | o, (14)
0s,” Ot,~ 0Se oty

so that the admissible sharp domain of M, arrives at {s,,u.}, where M, is smaller
than in {s¢,uo}. Hamel enters also the question of an end-point mass intake by the
engine, but considers it like physically impossible. Ross® admits it as a theoretical
point in 1958.

For the first time Hamel points out the discontinuity of air drag at burnout,
completely out of reach for the classical calculus of variations and visibly dis-
plays, in an extremely lucid manner, the basic hypothesis that the engine exhausts
do NOT influence the drag. Basically, the exhausts affect the drag by 30 percent!
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The totality of later works on the subject ignores this and follows the Hamel as-
sumption of 1927.

Band 7, Reft 6 N
Dezember 1927 Vortrige des Kissinger Versammlung 451

11. Uber eine mit dem Problem der Rakete zusammenhéngende
Aufgabe der Variationsrechnung.
Von G. HAMEL in Berlin.
LaBt man einen starren Kérper von der augenblicklichen Masse M unter der
Wirkung der Schwere, des Luftwiderstandes W und der Reaktionswirkung ausstromender

Materie (also eine Rakete} in die Hohe steigen, so erhalt man aus dem Newtonschen
Grundgesetz der Mechanik und dem Gesetz der Massenerhaltung die Differentialgleichung

du am
ME+CH+W(S,u)+Mg—0 F O ¢ §)

Dabei ist s der Weg, ¢ die Zeit, u=% die Geschwindigkeit, C die relative Ausstrom-

geschwindigkeit der Raketenfillung.

Es sind folgende Vernachlassigungen gemacht: 1. In Anbetracht dessen, daB man
nur Héhen von 100 bis 200 km erreichen will, ist ¢ konstant genommen. 2. In W ist der
EinfluB der ausstromenden Masse fortgelassen. 3. Die Aenderung des Impulses tm Innern
der Rakete durch Fortschreiten der Brennfliche (oder Aehnliches) ist als belanglos weg-
gelassen. 4. Von der Erdrotation ist abgesehen.

M. sei die Endmasse, M. die Anfangsmasse. Gegeben selen: M,, die gesamte
Steighdhe A, ferner die Anfangsgeschwindigkeit w, zur Zeit {,=0, s, = 0, die konstante
Ausstrémgeschwindigkeit C. Gefragt ist nach dem Minimum von M,, der Anfangsmasse.

Diese Aufgabe wurde von Goddard!) gestellt und zu lésen versucht, aber mit
anfechtbaren mathematischen Hilfsmitteln. Sie soll hier mit den Mitteln der Variations-
rechnung gelost werden.

AufgefaBt als lineare Differentialgleichung in M, last sich Gl. (1) Integrieren und
nach Einsetzen der Endwerte nach M, auflésen:

e £ u gt & 4 gl

M =e_7f% Wis,u).e€ Cat+ Me C 1 C
0
Figure 18—4: Facsimile of Hamel’s paper.*

The expertise of Professor Hamel in the calculus of variations proved es-
sential. In fact however, he did not solve the problem of Goddard completely. He
gives no detail about the formulae that render the extremal and the limit condi-
tions of flight, although the realistic value of 1000+1100 m/s for the speed of ac-
commodation u, is advanced. More developments were further required to arrive
at design formulae. The conclusion up to here is that Hamel, like all those who
followed, explicitly avoids the burnout discontinuity, which subsisted as the ma-
jor “hindernis” against a complete variational solution.
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An Important Step: Tsien 1951

Attracted by the same rocket ascent problem,
the young doctor and recognized scientist in rock-
etry of Caltech Hsue-shen Tsien, born in 1909 in
China, answered more exactly the variational for-
mulation of Hamel. In 1951 H. S. Tsien published
an important paper,® containing all missing formulae
that render the injection point for coasting, the flight
altitude, time, acceleration, and the mass variation
along the extremal arc of Hamel’s problem, all in
closed, analytical form.

Figure 18-5: H. S. Tsien (born 1909).

To arrive at a practical result, Tsien followed step-by-step the entire inner
cuisine of variational calculus for Euler-type cases with a free final end point, in
connection to a given curve, in this case to the unpowered coast arc. This article
is remarkably clear and shows a lot of genuine mathematical findings, related to
the physical interpretation of the Lagrange’s deviameter.

It is shown for instance that the role of the variational parameter ¢ of La-
grange in its quasi-cxtremal s(z,¢),

S(t,e)=o(t)+e-n(t) (15)
is the extension of the burning time of the engine 75, besides its basic one of vary-
ing the deviated extremal s(z,¢) off the extremal o(¢) as a deviator (Figure 18-6).

extremal oft)

Alta=0) B'(ts+e)
impulsive quasi-extremal
launch s(t, €)=a(t)+en(t)

y

(0]
Figure 18-6: The effect of the Lagrange deviator ¢.

Although apparently an ordinary fact, the emphasis on the role and mean-
ing of Lagrange deviators opens the avenue toward developments in basically
discontinuous problems, beyond the limits of the calculus of variations. It was
perhaps too early in 1951 for such a breakthrough, but this extension did not ap-
pear even to the end of the 20th century.
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Ample numerical results are detailed by Tsien. The continuity of deriva-
tives at cut-off is unconditionally accepted and the burnout locus meets this as-
sumption. It is clear that any discontinuity would have induced disastrous effects.
The Hamel hypothesis was not questioned. This work had solved the Goddard
problem without a full answer yet.

Optimization Efficiency: Leitman 1957

Continuing the series of analytical solutions of the rocket ascent problem,
the mathematician George Leitman developed a stream of works on the subject,
with similar conclusions as Tsien, and two major improvements. Leitman uses
the Bliss first integral of Euler equations in the Hamel
problem to derive the accommodation equation, already®
deduced by direct means. He shows in this manner that the
known but controversial impulsive start in the optimal
rocket ascent is intrinsically required. The condition at cut-
off in the form given by Leitman proves to play a central
role in optimization problems,

Figure 18-7: George Leitman.

63[(6,?) +R—B]—RB—HBQ=0- (16)
B C

06
Here the apparent acceleration of drag, or rather retardation, is denoted by R and
usually the mass ratio at the very cut-offis pg =1.

The most important contribution of Leitman is the comparison between the
extremal flight and the best constant flow-rate ascent.” The small gain in altitude
that resulted from the variational thrust law, published as 11 percent only (6 per-
cent actually), was discouraging. Responsible for the small value is the high
penetrability of the rocket used in the example (3-10° m), which drastically re-
duces the optimization effects. Nothing was also shown regarding the effect of a
variable specific impulse ¢(#) of the engine with altitude (altitude characteristic)
and regarding the sharp dependence of the drag coefficient of speed, which was
still considered as constant. And still nothing about the discontinuity at cut-off.
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Developments of Miele

Based on the solid support of the methods of Bliss in the calculus of varia-
tions, Angelo Miele develops in a lifelong series of works of different approaches
to flight optimization problems. His original, non-varia- g, e
tional method'® of optimization for linear differential & [‘
equations of motion, based on Green integrals, is ele- "
gant, as are all of his works on the subject. For example, i (’ - v
in the whole variational method after Lagrange, Micle W At
shows that all the variables, derivatives, and functions
involved in the integrand, as defined by the functional,
must actually fit a raised degree of continuity along the
entire range. Specifically, all variables and the integrand
itself of the functional,

Figure 18-8: Angelo Miele.

XF o,
(C)= [f(x,y,y)dx — min (17)
u(x)
X0
must possess continuous derivatives up to the fourth order on the entire range,’
fecy(xy.y) (18)

The upper point on a variable denotes differentiation in respect to x and the
value /(C) is computed along

C; ={y;(x)| i=1n}, (19)
called admissible arc if it complies itself to the requirement of continuity,
C; ecy(x). (20)

For this problem a scries of questions regarding the staging processes, the
aerodynamic properties and cut-off/start-up of the rocket engines, all related to
discontinuities, are omitted. The valuable solutions of Miele for some rocket and
aircraft optimal problems are still based on full continuity properties of inte-
grand.

German Advances at Munich

The chair of mathematics at Technische Universitit Miinchen (TUM) in
Munich developed, more recently, a long series of numerical computations for
optimal flight control, with respect to the optimization of the atmospheric ascent
of projected dual-stage Singer space system. Bulirsch,'' Oberle,'” Pesch,"
Chudej,'" and others extensively dealt with staging discontinuities problem.
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They showed that this class of variational problems
involve inequality constraints in the control variables'
rather than in the whole functional itself,

S(x(t))<0, S:R" >R’ 21

These complex difficulties were solved without
changes in the mathematical background of the calculus of
variations. Still the most unavoidable discontinuity of the
blunt decrease in drag at power cut-off and increase at
restart of upper stages remains unsolved.

Figure 18-9: Roland Bulirsche.

The Severe Discontinuity

The exact location of the severe discontinuity is the end-point of the pow-
ered flight arc at 73 and we call this the “thrust induced drag.” It simply manifests
like a pressure force that acts from behalf of the surrounding air on the exit area
of the rocket motors, toward the direction of motion.

The exit area is usually of the same order of magnitude with the main cross
area of the vehicle and the result is a non negligible counter-pressure force that
quickly reduces the drag at engine cut-off by 5+20 percent. It is a known but hard
to manage fact. The drag cut-off reduction'* precisely equals the thrust induced
drag,'®

AR = Ln-z'dgz Lpndg, (22)

with the static pressure p or stress tensor 7 of the perturbed air in the wake. From
a variational point of view, this jump of values is disastrous. The unpowered
(coast) drag proves significantly different from the powered drag of the same
rocket vehicle and this occurrence ends in a discontinuity of order zero-one in
motion equations. The coast motion

m%Y _mg-R, =0 (23)
dt
is not deducible from the powered flight by simply putting dm/dt =0,
dv _dm
m—-¢c—-mg-R, =0, (24)
at Cdt 9P
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by up to 20 percent or more. An unavoidable interruption in the variational calcu-
lus is produced because the transversality condition, marvelously used by Tsien
to render the injection conditions to the coast flight, cannot be actually fulfilled,

Rb(GBvGB)"’('@E) Gp+g#
0c )g 25)
RC(GB,¢C)+(-‘91) o +9.

006 )¢
If the position of the powered arc tip B on the coast trajectory is secured,
the transversality condition (25) is never satisfied because the two drags, burn
and coast, can never be equal (Figure 18-10).

sl B(s)
tip of extremal

B'(tz+¢)
\

neighboring extremal

—5>
0 () (ta*e) S
Figure 18-10: Essential of cut-off discontinuity.

If the two drag values are set equal and the condition (25) satisfied, the
neighboring extremal arc could never end on the coasting trajectory and the in-
jection connection is impossible. This is a consequence of the fact that the inte-
grand in (17) does not possess continuous derivatives at the right, cut-off end.
Such discontinuities arc not allowed, and completely new theories are required.

Solution after 85 Years

The solution is called the multiple deviators method and represents a sharp
extension of the calculus of variations of Lagrange. The derivatives of the inte-
grand function f'do not exist at the end-point because of the jump in the values of

JSfat x,, when the controls are blocked or stopped, u(x) = 0| X2x,,
f(k) [-x./ =y (x, =),y (x,-)]#

# f(k)[xf+,z(xf+),z"(xf+)]
We deal with the fact that the splitting point x , is moving at the tail of the

(26)

trajectory, where derivatives simply do not exist and the integrand f ceases to
exist after point x .
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To fix the ideas we remain within the one-dimensional case (#  1). When
for k=0 the discontinuity has also the special form
f[xf ">)’(x_/ _)a)-)(xf _)] >
SIxp+z(x,4),2(x,+)) ’
And it was shown®' that the extremal must be shortened to a convenient point I3
(Figure 18-11). Means must be provided to find the optimal position of 13. The
solution for rocket vehicles is typical and best serves the answer. This way i new,
completely independent variation of a local kind is produced along the extremal
arch o (x).

(27)

.
"""

= Shortening of
extremal

0 Altitude g H

Figure 18-11: Impulsive extremal.

The aspect and scale of the extremal arc are yet to be determined. Under
the action of the local deviator &, put into action (Figure 18-12) a non-conven-
tional, doubly deviated quasi-extremal s(x) is obtained. The effects of its varia-
tion on the extremal are to be subjected to equally nonconventional optimality
conditions.

C"

B"

A s(y=o()+en(r)

Figure 18-12: The action of two deviator solvers.
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The first Lagrange type deviator € applies to the whole extremal arc £(x),
s(x)=o(x)+¢&-n(x), (28)
while the new, specific deviator &, is used to modify the length only of the ex-
tremal. It manifests a decidedly local effect and thus a very nonconventional,
combined variational problem appears, of global-local type. While it contradicts
in some way the global character of the variational method of Lagrange, it offers
yet a very new and unexpected extension of this calculus to the problems with
discontinuous integrands.

At the same time the deviator function n(x) is still considered as arbitrary,
except for the fact that it fulfills an identical continuity restriction as the extremal
itself. The variable ¢ is the one-dimensional correspondent of y and the set
{¢, €,} contains the multiplc-deviators that solve the discontinuous variational
problem. The twin deviators offer a sharp extension of Lagrange’s method to
problems completely inaccessible yet to the classical theory.

Single-Staged Vehicle

The demo application of the new technique is to the optimal control of at-
mospheric ascent of reactive vehicles. As a first example, the single stage rocket
transporter is analyzed and the extremal that minimizes the total lift-off mass of
the vehicle that climbs into the atmosphere on a rectilinear path, searched. The
equation of motion for the powered flight can be written, for example, in the
Hamel form

d (uF)
+——>==0, 29
f e (29
where are denoted the functions
) y + gxsin @ . R,(»,y) .
Fny)=exp? 800, f(ny, )=~ F@y).  (0)

Here x is the time from lift-off, 4 the variable mass ratio of the vehicle, ¢
the constant climbing angle, g the gravity constant and R, the retardation for
powered flight. The total lift-off mass is given by the following functional, with
two deviators, specific to the problem where the free point is the right-end node
E (Figure 18-11).

xg +E€+ &g

J(&,65) = ({f[x,y+k(€)77(X),y'+ (31)

+k(£)77(x)1dx + g F(xg + £5, yp)-

350



The shortened control subarc AB ends in the node B which, in accordance
with the dual variation {7, &, ¢z}, manifests the following variations for its posi-
tion sz and speed vg,

sg =s(xg+e+eg) =0(xg)+k'(0)en(xy) +

+c's(xB)(a+sB)+w(s+gg)2 +... (32)
Vg =v(xg +e+¢€g) =6(xg) +k'(0)en(xg) +
+6(xB.)(8+£B)+c(xB')(8+eB)2 _ &)

Note that the variation of the node C, where the controlled motion ends af-
ter the impulsive subarc BC is consumed, is closely related to the variation of
motion on the controlled subarc AB. The Hamel form of this equation can be de-
veloped in the more explicit form as

dlnmg

d
s, g +r=0, (34)
dxy dxy
with mp the local mass, K its vacuum specific thrust and # the resultant of the re-

tarding counter-forces per unit mass. Along the impulsive subarc BC no rctarda-
tion is felt and the following equation holds (Figure 18-12.)

d(ve —vy) K dinmg
dsy dsg
From the relations (34) and (35) the following remarkable equation rcsults,
which links the speed at C to the motion parameters along E

=0. (35)

dv. r
—_€C_._'B (36)
dsy Ve
Hence the variation in position and in speed at insertion point C writcs
So =Sg, 37
Vo =ve (xg+E+6R)=0( (xg)+ (38)

+k'(0)en(xp)+0 (xp.)e—rpép.
The end of powered motion in C must fit the specific zero-control trajec-
tory (§) that, on its turn, provides the desired ceiling. Considering (32) and (33),
the first variation of position in node C becomes

Se—0(xc) = k'(0)en(xy) +6(xg)(E+ ), (39)
while the corresponding variation in speed is
Vo =6 (xg)=k'(0)en(xg)+6(xg.)E—rgEp- (40)
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Meanwhile, there also exists an allowed variation of the insertion point
along S,

Ve =6¢ (xB)+(Z—V/) (s¢=0¢)+O0(sc _0'(7)2 (4D
o

C
These variations must coincide. Substituting equations (39) and (40) in
(41), rounded to the first order approximation, one obtains the rough form of the
variational condition for insertion on the coast subarc S
k'(0)en(xg)+0(xg)e—rpeg =
(42)
oo

This insertion condition must be satisfied for any arbitrary and independent
values of the two deviators ¢ and g5. This can only happen when the coefficients
of both deviators vanish simultaneously. Two equations appear

=(6_“’J {[K'(O)n(xp) +6(xp)]e+6(xg) £}
.

(_aV’J & (g )+ rg =0, (43)
do ¢

(—‘”’) (K (O (xy)+6 (xg)] -

90 J DO (44)

—k'(0) 0 (xp) -6 (xp.)=0.
The first is eventually exploited, but note now that, at the same time, an-
other condition for the linear coefficient k'(0) appears when the first variation of
the functional (31) in respect to the global deviator ¢ is set to zero

w| e To dfor
O¢ £=£3=0 - ({ n(x)[ay dx[a)'/ J:| ar
of .
+k'(0)71(x3)(_.] ++f(xg, Vg, Vp)+ (45)
0y )y

+(—. [6(xp)+k (O)n(xB)]+(—J =0.
ay C ax C
Besides the Euler equation (square brackets factor in the integrand) that

remains identical with the continuous form, the transversality condition gets a
very specific aspect
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k'(@{n(xa)(%’yf-] +ﬁ(xg)(%y’?) }L
B C

+f(xB)+£%) ‘&(XB-)-’-{QE]C =0.

c Ox

The unknown constant k'(0) is eliminated from equations (44) and (46),

resulting in
.. 0 )
o] )
"'f](xs)[a—[.:] + (6_;1/) n(xg)—N(xg) (47)
oy ¢ oy c
[f(xg) +[%]C5'(x3_) +(g—];}c] =0.

This condition must be satisfied for arbitrary function n(x), only possible
when the coefficients of n(x) and f)(x) are vanishing simultaneously. This ends

in two equations
& (x )(%)B +(f<x3)+&(xa. )[%—)C +

(46)

(48)
o5 () 5
ox ). »)s \Oy )
. (ow) (eF) (oF )
O'(XB)(gjc(ch +[a]c +f(xB)—-0. (49)

It may be noticed that the condition (49) is identical to the onc alrcady de-
duced by another route in (43) and can be further developed. The dcrivative of
speed is directly connected to the position on the coast trajectory,

v . @J __Tc; 50
[5J’]c (ayc e © ¢

and thus the remarkably simple and specific transversality condition holds for the
extreme points of the discontinuous functional

YBrfCc =YCIB - (€2))
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or in its extended form

RB+g
D
vc VB

This equation gives the amplitude of the final impulse of the extremal and
the very moment when this subarc intervenes, supplying the complete solution of
the discontinuous integrand problem.

Conclusion

The problem initially formulated by Goddard could not have been solved
for almost 85 years with the means of the classical calculus of variations. The
reason resides in the fact that the classical theory in the calculus of variations can
only cover the continuous problems, while that of the atmospheric rocket ascent
is specifically discontinuous. All former solutions of optimal flight control were
consequently partial only, being structured by ignoring the cut-off jump in de-
rivatives for the flight of rocket vehicles. It was supposed that the errors intro-
duced this way are small enough that the partial solutions are acceptable.

After 85 years, the means were found, at last, to extend the variational cal-
culus by the so-called multiple deviators method, up to the point where the God-
dard problem is correctly and completely solved.
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