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Chapter 2

The Origins of Inertial Navigation in Space'
A. Yu. Ishlinsky2

Modemn inertial navigation is a vivid example of the realization of an idea that at
first looked like pure fantasy, but presently it enjoys wide practical application. From a
modemn technical point of view, the concept of inertial navigation can be summarized as
follows.

In some reference frames £*n*C* can be considered as inertial, in a gravitational
field G(R,t) known for any point R and every instant t. There is a standard mass of an
object moving in this field, and it is possible to measure continuously the components of
an external force, applied to the mass, in projections on axes of coordinate trihedron
XYZ, realized on the object.

Projections of the absolute angular velocity of the trihedron XYZ on its own axes,
measured, for example, by gyroscopic sensors, are known at every moment. If, for the
initial moment, the coordinates of the standard mass and the orientation of the trihedron
XYZ are known, then it is possible to determine current coordinates of the mass, and
hence those of the object in the reference frame £*n*C*, by continuously solving the
kinematic Euler-Poisson equation, which determines the current orientation of the trihe-
dron XYZ, and by integrating dynamic Newton equations for the standard mass. At the
same time, the velocity of the standard mass relative to the frame £*n*C* is also ob-
tained. Thus, the complete navigational problem is solved by autonomous means.

General features of the inertial navigation problem are well understood today.
Many different types of systems exist to provide guidance for rockets, aircraft, ships,
and spacecraft. The routineness with which these inertial navigation systems operate,
however, masks the tortuous path leading to the development of these practical systems.

! Presented at the Sixteenth History Symposium of the International Academy of Astronautics, Paris,
France, 1982.

2The Institute for Problems in Mechanics, U.S.S.R. Academy of Sciences, Moscow, U.S.S.R.
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The pioneers of inertial navigation research—the Americans M. E. Carrie and
F. R. Sweeny, and the Russian B. Alecseev—in the first two decades of the twentieth
century made significant strides in resolving most of the fundamental problems of iner-
tial navigation.3 Their work presented a description of the method for solving naviga-
tional problems autonomously for the motion along the Earth’s surface by means of two
free gyroscopes and a pendulum, but it did not use the concept of double integration of
accelerations with which subsequent development of the idea is closely connected. The
double integration of accelerations for determining the path traversed was apparently
first suggested in R. Wussow’s patent, claimed in 1905, given in 1906.%

In 1911 in Germany, I. M. Boykov recommended measuring an acceleration by a
two-coordinate pendulum and integrating it with the use of a clock mechanism with
subsequent calculation of the path traversed by the usual technique.’ He obtained a
patent for this invention in 1928.

O. Dahlke’s patent (Germany, 1914), concerned itself mainly with the description
of a technique for horizontal leveling of accelerometers, and it mentioned the possibility
of using the vertical accelerometer for calculating vertical velocity and determining the
height of the object by integrating the signal of this accelerometer. He also pointed out
the need for excluding gravity acceleration from this signal. This, apparently, was the
first statement of the possibility, in principle, of inertial navigation in space.

In the 1920s the concept of double integration of the acceleration signal, as a
possible approach to the solution of the inertial navigation problem, attracted the atten-
tion of those involved in astronautics in several locations. For instance, a clear descrip-
tion of such a technique for determining velocity and location of rockets in space can be
found in a book by Hermann Oberth in 1929. In his system, the stabilization of acceler-
ometers, with respect to stars, was provided by free gyrostats. Moreover, the book ex-
plained the need to account for the dependence of Earth’s gravity acceleration (which
had been artificially excluded from accelerometer signals) on the distance from the cen-
ter of the planet.7

A detailed description of the concept of inertial navigation in space was contained
in a book by Robert Esnault-Pelterie published in 1930. He pointed out that gravity
acceleration depended on the location of the spacecraft. The acceleration, measurable by
mechanical devices on a moving vehicle, Esnault-Pelterie called "sensible," stressing the
difference between this acceleration and full acceleration, which included the accelera-

3M. E. Carrie, U.S. Patent No., 1,253,666 (1903); B. Alecseev, Russian Patent No., 28451,
30.1Y.1916 (1911); F. R. Sweeny, Geographic Position Indicator. 1086246, 3.11.1914.

4R. Wussow, Apparat zur Bestimmung von Geschwindigkeiten und Wegelangen (Instrument to De-
termine Velocity and Distance), German Patent no. 179,477 (1905).

51. M. Boykov, "Navigation Mittels Derivators” (Navigation by Means of a Measure of Drift), in
Zeitschrift fiir Flugtechnik und Motorlufischiffahrt, issue no. 11, 1911,

60. Dahlke, Einrichtung zum Messen von Beschleunigungen (Equipment for Measuring Acceleration,
Velocity, and Paths) (Geschwindigkeiten und Wegen).

7 Hermann Oberth, Wege zur Raumschiffahrt (Road to Spaceflight) (Berlin, 1929).

8



tion due to gravity. He considered different approaches to integrating sensible accelera-
tions by using a heavy mass in viscous liquid, a gyroscopic pendulum or a pendulum
clock, with speed depending on the acceleration along the mean orientation of the pen-
dulum 8

For the case of a vehicle moving along a line passing through the Earth’s center,
with fixed orientation in the inertial space, Esnault-Pelterie developed the equation:

where r is the distance from the Earth’s center, I' is acceleration provided by propulsion
system, I'1/M is acceleratlon due to environment resistance, and G is gravity accelera-
tion, which is G = g R 22,

It is interesting that Robert Esnault-Pelterie, apparently in view of a possible time
lag in computing devices, formulated a problem of determining gravity acceleration on
points of the trajectory with certain time prediction, and illustrated the possibility of
obtaining the solution to this problem. After denoting measured "apparent" acceleration
inside the vehicle by:

Robert Esnault-Pelterie had written an equation for r as:

(_rJ e ng(L 2.dr ]
vrear— 2
de e Ar 2 PAadt

It is now clear that progress in computers made this foresight by Esnault-Pelterie
unnecessary. It can be shown by a simple analysis that the inertial navigation system,
considered by Esnault-Pelterie, is unstable. An error G of determined distance r is gov-
emned by the equation

d%6/dt? - grZ2 2r+ o) o /2 (r+6)2=0

where r = r (t) is a true current distance between the vehicle and Earth’s center. For the
case r = R = const it is possible to write the solution:

o(t) = 6o ch (vt V2) + (6o/v V2) sh (vt \2)

where v=Vg/R is the Schuler frequency and o, o, errors of initial position and velocity,
respectively, are used as input data in the integrating unit.

8 Robert Esnault-Pelterie., L ‘astronautique (Astronautics) (Paris, 1930).
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In 1934 the concept of inertial navigation in space was realized in practice at the
Central Aero- and Hydrodynamical Institute by V. S. Vedrov and his colleagues, who
developed a technique for the analysis of aircraft motion during a non-stationary spin.
Test aircraft were equipped with three accelerometers (g-sensors) and three single-axis
gyroscopic angular velocity sensors. The measured g’s and angular velocities were re-
corded by XY plotters.

Graphs of three angular velocity vector components, and of three g-vector compo-
nents recorded during the flight, were used for calculating time-dependent coefficients in
Euler-Poisson equations, for time evolution of the aircraft orientation, and for calculat-
ing right-hand-sides of Newton equations, which govern space motion of the point
where sensors are installed. Numerical solution to the full system of equations restruc-
tured the whole pattern of aircraft motion—its trajectory as well as fuselage orientation
and velocities in every point of the trajectory. Thus the full problem of inertial naviga-
tion in space was solved. According to modern terminology, it was a typical inertial
navigation system without a gimbal, with only one special feature: flight data were proc-
essed not by computer but by a group of analysts.

The paper by V. S. Vedrov and his colleagues in 1935 contained equations of an
ideally operating system for inertial navigation in space for the case of arbitrary rotation
of the frame, connected with sensitivity axes newtonometers (accelerometers); the form
of these equations was quite similar to those used presently. They had picked out this
group of Euler-Poisson equations:

do/dt=qsin 8 + rcos 8
d8/dt=p-(qcos 8 —rsin 8)tg @
dy/dt =(qcos 3 —rsin §)/cos ¢

where ¢, 8, y were attitude angles of aircraft, p, g, r - angular velocities, recorded by
XY -plotter.

Expressions were written down for the apparent newtonometers (g,s) measures by
newtonometers along axes &, 1, &, connected with aircraft;

ng-(ge—je)g  mn-(en-in)g  ng-(ec-io)e
gt —gsing gn—gcospcosY gr—+gcos@sinY

Here g is gravity acceleration and jg, jn, j¢ - projections of the full acceleration vector.
The set of Newton equations is written in this form:

dw/dt =ru — qw — g (ng + sin @)
dv/dt = pw = ru — g (ny + cos ¢ cos 9)
dw/dt = qu — pv — g (ng — cos ¢ sin 9)

where u, v, w are the projections of the full velocity vector on the axes connected with
an aircraft.

It is stated in the paper that the coordinates of an aircraft in space are obtained by
direct integration of the velocity vector after reprojecting it on the immovable frame
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axes. As an illustration, a typical trajectory of aircraft going out of spin (in three projec-
tions) is presented; this trajectory was calculated by the above described technique. V. S.
Vedrov’s paper seems to contain the most complete of the earliest accounts of the theory
of inertial navigation in space.
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