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Chapter 5

FROM CELESTIAL MECHANICS
TO SPACE FLIGHT MECHANICS - HISTORICAL
NOTES ON THE DEVELOPMENT OF ASTRODYNAMICS

Werner Schulzf

Space flight mechanics has developed from three roots by making use of the
methods and results of celestial mechanics, of ballistics, as well as of flight
mechanics, navigation and control of aircraft and missiles. Celestial mechanics is a
necessity of space flight mechanics because the motions of an artificial satellite
around a planet or of a space probe during its free flight outside the atmosphere
are subject to the same laws as the motion of a planet around the Sun. Ballistics is
of importance because the history of rocket technology springs from the develop-
ment of artillery. Thirdly, flight mechanics of aircraft is of value to space flight
mechanics by offering a suitable system of classification of flight performance and
flight characteristics, on the one hand, and methods and results, e.g., on stability
behavior, which can be applied in space flight mechanics, on the other hand.

The aim of this paper is to demonstrate by some examples the application of
findings in celestial mechanics to problems in space flight mechanics. First of all,
classical celestial mechanics is briefly outlined starting with Kepler and Newton,
continuing with Euler, Lagrange, Laplace, Gauss, Hamilton, Jacobi and Le Verrier
and finally touching on Poincaré, Levi-Civita and Birkhoff.

The second part of the paper will give four examples concerning a) optimum
transfer trajectories, b) Laplace’s activity sphere of a planet, ¢) disturbed Kepler
orbits, and d) regularization and linearization of the equations of motion - to
demonstrate the usefulness of classical celestial mechanics, partly in a direct way
and partly in a further developed form for space flight mechanics.

*  Presented at the 12th History Symposium of the International Academy of Astronautics, Dubrovnik, October 1978.

t  Deutsche Gesellschatt fir Luft- und Raumfahrt (DGLR), Federal Republic of Germany. Dr. Schulz died in 1984.
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ON THE DEVELOPMENT OF CLASSICAL CELESTIAL MECHANICS

Kepler an wton

For those concerned with the history of space flight mechanics, it is necessary
to go back to the beginning of the 17th Century, to Kepler and Newton, who
revealed the nature of the planetary system and laid the foundations for celestial
mechanics by the laws they discovered.

Johannes Kepler (1571-1630) was the first to accept the ideas of Nicolaus
Copernicus (1473-1543), to believe in the Copernican heliocentric system, and to
let himself be guided by Copernicus’s views in his astronomical investigations.
When calculating the planetary tables of Tycho Brahe (1546-1601) and particularly
when studying anew the motion of the planet Mars he empirically discovered his
first two laws: that the planets describe ellipses around the Sun as a focus and the
radius vector Sun-planet sweeps over equal areas in equal times.” Further
astronomical investigations led Kepler in 1618 to discover the third law, that the
squares of the periods of revg;lution of any planets are proportional to the cubes of
the ellipses’ semimajor axes.”

In 1621 Kepler considered as origin for the motion of the planets a force
forthcoming from the Sun. Incidentally, the definitions "eccentricity of an ellipse" as
well as "perihelion" and "aphelion" for the points of a planetary orbit nearest,
respectively farthest, from the Sun also go back to Kepler.

The achievement of Isaac Newton (1643-1727) was the discovery of universal
gravitation. Certain perceptions of gravitation existed already before Newton, e.g.,
with Copernicus and Kepler. Robert Hooke (1635-1703) came up with the idea of a
decrease of gravitation with increasing distance from the Earth’s surface. However,
it was Newton who developed the theory of universal gravitation in 1666/67. While
fleeing from Cambridge to Woolsthorpe in order to escape from the plague, he
discovered during an exceedingly productive phase of his life that the gravitational
acceleration of the Earth reaches up to and beyond the Moon and that the same
gravitational acceleration causes a body to fall to the ground and the Moon not to
escape from the Earth on a straight line. From the third Keplerian law he con-
cluded that the force keeping a planet in its orbit must be inversely proportional to
the square of the distance from the Sun to planet. It was, however, not until two
decades after its discovery, that Newton’s law of universal gravitation was published
in sectiop VIII of his famous Mathematical Principles of Natural Philosophy written
in Latin.

The fact that, reversely, the orbit of a body, affected by a central force inverse-
ly proportional to the square of the distance equals a conic, which means that the
Keplerian laws result from Newton’s law of universal gravitation, was proved by
Johann Bernoulli.

*  Editor’s Note: See Werner Schulz, "Johannes Kepler and His Laws of Planetary Motion on the Occasion of the
350th Anniversary of the Day of Kepler's Death®, in this volume.
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At the same time when Newton discovered the law of universal gravitation, he
laid the foundations of mechanics which are of fundamental importance to celestial
mechanics as well as to all branches of classical mechanics. These conceptions
found their expression in the three Newtonian axioms likewise published in the
Principia (1687): the principle of inertia, the force law, and the principle of action
and reaction. Incidentally, in one of Newton’s lectures the remark is to be found
that the third axiom supplies the basis for rocket propulsion in vacuo.

The Keplerian laws represent only an approximate description of planetary or-
bits. For if one considers the Sun and a planet, it is not only the gravitational force
of the Sun acting on the planet but vice versa, that of the planet exerting an in-
fluence on the Sun. The integration of the equations of motion for both bodies
concerned leads to the Keplerian laws in a modified form: Each of the two bodies
describes an ellipse around the common center of masses; equally, for each of the
two bodies an area theorem is valid; and finally, the proportionality factor between
the square of the period of revolution and the cube of the semimajor axis is not
constant but depends on the masses of the Sun and the planet.

That Kepler was able to derive his idealized laws goes back, on the one hand,
to the fact that the mass of a planet is small compared to the mass of the Sun, and
that, on the other hand, the distances of the other celestial bodies which also exert
gravitational forces on a planet are so large that it is possible to neglect the exist-
ence of the other planets in order to arrive at a good approximation when deter-
mining a planetary orbit, and to rest content with the equations of motion of the
two-body problem. But Newton did already deal with the three-body problem as
well, particularly for the case Sun-Earth-Moon.

Euler, Lagrange, Laplace

The names of the next two great scientists in the field of celestial mechanics
are Leonhard Euler (1707-1783) and Joseph Lagrange (1736-1813).

Euler, whose scientific work covers nearly all branches of pure and applied
mathematics, was the first to make use of analytical methods in the field of
mechanics instead of applying geometrical synthetic procedures used hitherto, and
to rely on Leibniz’s form of calculus i in order to represent the Newtonian dynamics
of the mass point. 10 Byler pubhshed a theory of the planetary and cometary mo-
tions dealing in particular with the problem of the calculation of disturbed orbits.

Space flight mechanics investigations of Euler from the 1760s are of interest,
and deal with simple, special cases of the three-body problem and allow an analyti-
cal solution, namely, the problem of the two fixed centers ™™~ and the rectilinear
motion of three bodies attracting each other according to the Newtonian gravita-
tional law.

When investigating the motion of a body subjected to the attracting forces of
two fixed centers, it is of advantage that no centrifugal and Coriolis forces appear.
In celestial mechanics the posing of this problem is only of academic interest. When
considering, for instance, the motion of the Moon subjected to the influence of the
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Earth and the Sun, it is inadmissible to suppose fixed centers because the Earth
moves on significantly around the Sun during one orbit of the Moon around the
Earth. For the motion of an artificial satellite, however, orbiting around the Earth
within a short period it is quite possible to consider the geocentric position of the
Moon or the Sun for a certain time as fixed, thus resulting in the Euler case of fixed
centers for the three-body problem, Earth-Moon-satellite or Earth-Sun-satellite,
respectively. For treating this problem, Euler introduced elliptic coordinates and a
fictitious time. One is led to elliptic integrals. Following Euler, a number of famous
mathematicians have also dealt with this problem, e.g., Lagrange, Legendre, Jacobi.

One should mention that the two-center problem can be used as a starting
point for treating the planar restricted three-body problem. The case then lies as
follows: Two bodies with finite masses describe circular (or more generally elliptic)
orbits around their common mass center. To be found is the trajectory of a third
body of negligible mass moving in the same plane under the influence of the two
other bodies. By applying a coordinate system rotating with the two bodies of finite
mass one is able to reduce the restricted three-body problem to the problem of the
two fixed centers. In the well-known book by the Swedish astronomer Charlier® a
perturbation theory of the planar restricted three-body problem on this basis is at-
tempted. Samter*" described in detail the procedures for the calculation. A recent
representation of the problem making use of modern mathematical means was
given by Arenstorf and Davidson.* Payne“l developed perturbation theories of the
two-fixed-center problem in three dimensions and in particular carried out numeri-
cal calculations for Earth-Moon trajectories. Finally, there should be taken into
consideration two papers, the first one by Deprit” with a detailed classifiggtion of
solutions of the two-fixed-center problem, the other one by Langebartel”™ where
the author had in mind the application to the Apollo project.

Euler’s* paper on the rectilinear motion of three bodies leads to the problem
of collision of two bodies if the distance becomes zero and the velocity tends to
infinity. Euler dealt in particular with the case in which the distances AB and BC of
the three bodies A, B, C maintain a constant ratio. The transformation of the vari-
ables he used for the solution of this problem represents the first example for a
regularization in more detail in a later paragraph of this paper.

A further major achievement of Euler consisted in developing the calculus of
variations, the foundations of which had been laid by the brothers Jacob Bernoulli
(1654-1705) and Johann Bernoulli (1667-1748); among other things this is of impor-
tance for optimization problems in space flight mechanics. Closely related to
Euler’s name are, moreover, his gyroscope equations which were deduced in this
mechanics'® and which play an important role in flight mechanics.

Lagrange’s contributions lie in d%geloping the methods of analytical
mechanics. His book Mécanique analytique™ was written in Berlin where Lagrange
carried out his research work at the Royal Prussian Academy of Sciences from 1766
to 1787 as successor to Euler, who had been director of the mathematics class since
1744 and who had moved to Saint Petersburg in 1766. With Lagrange, the use of
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geometrical figures plays no longer a part. He was able to write down immediately
the equations furnishing the solution of extremum problems. However, he does not
yet supply a mathematically rigorous motivation. Today, the Lagrangian equations
are an indispensable tool for investigating the motion of a system of mass points
under constraint.

It cannot be the task of this paper to deal explicitly with Lagrange’s outstand-
ing contributions to the theory of planetary motions and his fundamental results
with regard to the three-body problem and, more generally, to the n-body problem
which were the starting point for so many famous mathematicians in the 19th Cen-
tury. However, it should be mentioned that Lagrange™ succeeded in demonstrating
that it is possible under certain special conditions to obtain rigorous solutions of the
differential equations of the three-body problem. This is the case when the sides of
the triangle formed by the three celestial bodies maintain constant ratios inde-
pendent of time or, which is equivalent, when the angles of the triangle do not
change in the course of time. Lagrange has shown the existence of solutions and
indicated the initial conditions under which solutions exist. In this connection the
five Lagrangian equilibrium points or libration centers play an important part. If a
body describes an undisturbed conic (ellipse, parabola, hyperbola) around a second
one there are five points in the orbital plane where a third body of negligible mass
may be situated for all times. Three of these points usually called L1, L2, L3 are
situated on a straight line together with the two first bodies, the two other points,
L4 and Ls, form equilateral triangles with the two bodies. At the time of Lagrange
this result seemed to be of no importance to astronomers. Since 1906, however,
planetoids have been discovered, the so-called Trojans, which swing around the
libration centers L4 and Ls, respectively, of the Sun-Jupiter system. Thus the solu-
tions of the three-body problem in the vicinity of the libration centers L4 and Ls
become of interest. For space research the libration centers of the Sun-Earth and
the Earth-Moon systems are of importance. It was proposed to carry out space
flight missions to these centers 21 a5 one may expect to find there cosmic pamcles
the analysis of which should be enlightening.

One of astronomy’s principal tasks consists of determining planetary and com-
etary orbits from observational data. From Newton stems a graphic method to
determine a parabolic cometary orbit from three observations. Euler dealt with the
problem of orbit determination and found starting points for an analytical treat-
ment which, however, turned out not to be very suitable for practical calculations.
The first practicable method of determining parabolic orbits, which - somewhat im-
proved - has been used until today, was applied in 1797 by the phy51c1an and owner
of a private observatory in Bremen, Wilhelm Olbers (1758- 1840) While for a
parabolic orbit five unknown quantities are searched for, the determination of an
elliptic orbit represents a more difficult task with six unknowns. In 1778 it was
Lagrange and in 1780 Pierre Simon Laplace (1749-1827) who indicated a solution
for this more complicated problem. Laplace is the author of five famous volumes
on celestial mechanics™ published in the course of a quarter of a century. A special
study by Laplace concerning the activity sphere of a planet will be treated in a later
paragraph of this paper.
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Gauss

On 1 January 1801 Giuseppe Piazzi (1746-1826) in Palermo discovered a star
of the eighth magnitude, the first of the minor planets orbiting between Mars and
Jupiter. He was able to observe this star for 41 nights covering a distance of ap-
proximately 9 degrees and he named it Ceres. The then-known methods did not
allow determination of the orbit with such few data available, considering that the
orbit were an ellipse and not a circle or a parabola. At that time Carl Friedrich
Gauss (1777-1855), then at age 24, had already occupied himself with problems of
astronomy, in particular with the theory of lunar motion and the general problem of
orbit determination. When Gauss learned about the data from Piazzi’s observations
which were published in the Monatliche Correspondenz zur Beférderung der Erd- und
Himmels-Kunde, the first astronomical journal, edited since 1800 by Franz Xaver
von Zach (1754-1832), he applied himself again to his former studies and defined a
method to determine the elliptic elements from three complete observations (time,
right ascension, declination). In December 1801 he announced the result of his cal-
culations for Ceres in Zach’s Journal, thus enabling Zach on 31 December 1801 at
Gotha and Olbers on 1 January 1802 at Bremen to rediscover Ceres and thereb¥
establishing a worldwide reputation for himself. After further perfection Gauss®
published this method in his work on the theory of the motion of celestial bodies
orbiting the Sun in conics.

The methods of orbit determination of Lagrange and Laplace, on the one
hand, and of Gauss, on the other hand, differ fundamentally. In the first case dif-
ferential equations are the starting point, thus setting up an initial value problem.
In theory this way is very transparent but in practice there are difficulties resulting
from numerical inaccuracies due to uncertainties in the initial values originating
from the observations. Gauss based his procedure on the integrals of the two-body
problem instead of the differential equations. Mathematically this means a bound-
ary value problem dependent on time. The Gaussian method has proved very useful
indeed.

Carrying out his calculations of the orbit of Ceres, Gauss made use of the
method of least squares in order to compensate for random observational errors.
He had derived this method already in 1794 when 17 years old, but he only publish-
ed it in his above-mentioned book™ and gave a second complete account on the
theory of smoothing random errors and the method of least squares many years
later! , not because he had not seen its importance but because he assumed it to be
obvious and had no particular interest in any claim of priority.

In this context, one should mention as second major field of application of
calculations according to the least-square method the surveying of the Kingdom' of
Hanover done by Gauss. In order to overcome the difficulties in signaling the tar-
gets he invented the heliotrope, a tool consisting of a combination of a telescope
and two vertically superposed plane mirrors, thereby allowing to turn the sunlight in
any direction. Gauss took great pains constructing this tg)ol and was considerably
proud of his achievement. In a letter addressed to Olbers® he wrote:
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"With a hundred mirrors, each of 16 square foot surface, and all used together, one would

be able to send a fine heliotrope light to the Moon. What a pity that we are not in a

position to send such an apparatus with a detachment of a hundred people and a few

astronomers there that they might give us signs for effecting longitudinal determinations.”

As with Lagrange and Laplace, it is also with Gauss impossible to comment in
this paper on further achievements in the field of celestial mechanics which are of
interest to space flight mechanics as well. In conclusion a quotation by the mathe-
matician from Goéttingen’s Felix Klein (1849-1925) who says, in his lecture notes on
the development of the mathematics in the 19th Century, that Gauss’s oeuvre is
characterized by the equilibrium between mathematical ingenuity, rigorosity of
derivations, and a sense for practical application comprising careful observation and
measurement as well as highly polished style.

Hamilt n i

The methods of perturbation calculations in celestial mechanics had been
developed by Euler, Lagrange, Laplace and Gauss to an effect where they would
suffice for all practical purposes, so that it seemed that, on the whole, this field was
closed. One has to differentiate between the theory of general perturbations and
that of special perturbations. In the case of general perturbations analytical results
are obtained, e.g., according to Lagrange’s method of the variation of constants,
which allow statements on the character of the perturbations, i.e., secular, long-pe-
riodic, short-periodic. The case of special perturbations concerns investigations of
concrete cases by means of numerical integration of the equations of motion. In-
cidentally, the term "special perturbation calculations" stems from Gauss.

However, in the 1830s and 1840s considerable progress was obtained in the
development of methods for perturbation calculations in celestial mechanics due to
results gained by William Rowan Hamilton (1805-1865) and Carl Gustav Jacola
Jacobi (1804-1851) in their studies on general dynamic problems. Hamilton®1
developed a theory introducing into dynamics the "force function" which was
generally made known by Gauss under the name ‘"potential'. Hamilton
demonstrated that the integration of differential equations in mechanics can be
reduced to the solution of two simultaneous partial differential ezguations. This did
not seem to have much bearing in practice. It was only Jacobi® who recognized
that the solution to be found had to satisfy only one of the two partial differential
equations. Thereby the Hamilton-Jacobi theory supplied a mathematical way to for-
mulate mechanical equations of motion, which essentially facilitates their integra-
tion. The system of differential equations is transformed into a so-called canonical
form which is characterized by certain symmetrical qualities. Using the canonical
variables, the "position coordinates" pi and the "conjugate momentum coordinates”
qi, the canonical equations read:

dt =9qi’ dt ='api i-=1 2, ..., n),
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H according to Jacobi meaning the Hamiltonian. In the case of conservative forces
H represents the total energy of the system. Whereas Hamilton let himself be
guided in his considerations by quite concrete concepts derived mainly from optics,
Jacobi tended in his treatment of dynamical systems™ to a strongly abstract-mathe-
matical direction. Therefore, beginners have usually some difficulties in getting into
the Hamilton-Jacobi theory. Being well acquainted with it is, however, frequently of
use for space flight mechanics research.

Among the contributions of Jacobi there are also important findings regarding
the three-body problem. The general three-body problem, i.e., with three finite
masses and arbitrary initial conditions for the three bodies, is described by a system
of differential equations of the eighteenth order. Lagrange had already known that
one could indicate ten integrals of this system of equations: six from the theorem
on the uniform motion of the center of gravity on a straight line, three from the
theorem on conservation of angular momentum, and one from the theorem on con-
servation of energy, thus permitting the order of the system to be reduced to eight.
The question is whether further integrals can be indicated. This has only been pos-

: . 22 . . .
sible for special cases. Jacobi™ indicated a further integral for the planar restricted
three-body problem, i.e., with two finite masses on circular orbits and a negligible
third mass, all moving in the same plane. Using a system of fixed coordinates this
integral consists of terms of the forms of a kinetic energy, potential energies and an
angular momentum. The sum of these terms is constant. This constant is called the
Jacobian constant, the integral the Jacobian integral.

The restricted three-body problem is of importance for space flight mechanics.
It may be used, for example, with a good approximation as starting point for flight
trajectories from the Earth to the Moon provided that one takes approximately the
Moon’s orbit as trajectory plane for the spacecraft. The eccentricity of the Moon’s
orbit around the Earth is 0.055, so that this orbit may be considered as a circular
one. The mass of the spacecraft is infinitesimal compared to those of the Earth and
the Moon. Finally, one is justified in neglecting the influence of the Sun with regard
to flights of only a few days’ duration. The deviations from the assumptions of the
restricted three-body problem can later on be worked out by perturbation calcula-
tions. For numerical calculations under the assumptions of the restricted three-body
problem the Jacobian constant calculated for each step presents a valuable means
of controlling the accuracy of the calculation.

In the case of the general three-body problem it is not possible to find an
integral corresponding to the Jacobian one. A reduction of the order of the system
of differential equations is, however, possible by eliminating a variable by means of
a suitable transformation. Jacobi”” indicated a way to do this which he defined as
"elimination of the nodes".

Progress in Celestial Mechani ince the Middle of the 19th Centur

In the second half of the 19th Century the theory of general perturbations of
the motion of the planets, as it was initiated by Euler, Lagrange and Laplace, was
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accomplished in the way in which it is--apart from some smaller amendments and
adaptations to modern developments in mathematics and computing techniques--
valid until now by the director of the Paris observatory, Urbain Jean Joseph Le
Verrier (Leverrier) (1811-1877), who published the results of general perturbations
of his research in the memoirs of the Paris observatory.

Before being appointed director of the Paris observatory, Le Verrier, inciden-
tally, concluded in 1846 from perturbations observed with the planet Uranus that a
planet not yet discovered must exist. When he indicated to the Berlin astronomer
Johann Gottfried Galle (1812-1910) where presumably this unknown planet was
located according to the perturbation calculations, Galle discovered, the very night
when he received these data, the planet Neptune, almost exactly at the calculated
position. This demonstrates the efficiency of the mathematical analysis of disturbed
orbits.

Within this paper it is impossible to refer to the various and most interesting
studies on the perturbations of the major and minor planets as well as on the mo-
tion of the Moon which date from the second half of the 19th and 20th Centuries.

The problems in celestial mechanics on which interest focused at the end of
the 19th and the beginning of the 20th Century may be listed under the following
keywords: nonexistence of integrals of a certain kind for the n-body problem, ex-
pansions into series of the solutions valid for arbitrary times, periodic solutions,
asymptotic solutions for t»« and t-»-, stability behavior, elimination of sin-
gularities in the equations of motion by a suitable transformation of the variables,
i.e., research in celestial mechanics turned preferably toward the qualitative be-
havior of the solutions. In order to deal with such problems, auxiliary means of
higher mathematics were required, above all theorems and methods of the theory
of analytical functions and of differential geometry, which meant that progress in
this wide field of research could be expected only from outstanding mathematicians.
When the King of Sweden and Norway established a prize for the solution of the
problem to find expansions into convergent series, valid for all times, for the coor-
dinates of n bodies attracting each other according to Newton’s law, this prize was
awarded in 1889 to the French mathematician Henri Poincaré (1854-1912) who had
entered the competition with a comprehensive treatise on the three-body problem
and the differential equations of the dynamics of mass points. Though Poincaré
(1890) did not solve the actual problem, his paper contained so many new ideas
which proved to be very fruitful afterwards that the award was certainly justified.
Later on Poincaré published two major studies in three volumes each which is still
a source for new ideas: the first outlinei the new methods;42 the second contains
Poincaré lectures on celestial mechanics.*>

The difficulties to find expansions into series for the solutions of the n-body
problem valid for all times were, among others, due to the fact that one was unable
to indicate restrictions for the initial conditions which would have led to the con-
clusion of the impossibility of collisions of two bodies. For the three-body problem
the Finnish astronomer Karl Frithiof Sundman (1873-1949) succeeded in 1913 in
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obtaining formal solutions by convergent expansions into series and their analytic
continuation by choosing, instead of time, another independent variable so that the
functions remain regular also in the case of a collision of two bodies.*’ For practical
applications, however, this solution is of no use, as the convergence is only very
weak.

The studies dealing with the problems of celestial mechanics indicated by the
above-mentioned keywords are in particular of interest to mathematicians. For en-
gineers involved in practical astrodynamics they are of minor concern, excepting the
problem of eliminating the existing singularities in the equations of motion by
means of regularization. As already mentioned, the beginnings of dealing with this
problem date back to Euler, 1314 2nd Sundman®’ too has to be mentioned in this
respect. Prxor to Sundman, already toward the end of the 19th Century, Burrau®
and Thiele® developed regularization procedures. A major progress was then
achieved by the Italian Tonio Levi-Civita (1873-1941) who started about 1903 to
study the problem of collision and the regularization maintaining the canonical
form of the system of differential equations and who published over a period of two
decades a number g)f valuable papers out of which only the first ones shall be men-
tioned here.> In a lecture presented in 1923 in Barcelona, Levi-Civita
described in detall the transformation applied by him for the coordinates and the
time for the treatment of the planar restricted three-body problem, and he also
explained h 33 wasted efforts with respect to a regularization of the three-dimen-
sional case.

A slightly different transformation from that of Levi-Civita was applied by the
American George David Birkhoff (1884-1944) for the regularization of the
restricted three-body problem. With Birkhoff's> transformation the origin of the
system of coordinates is not in the center of gravity of the two bodies of finite mass
but in the geometric center.

APPLICATIONS OF RESULTS AND METHODS OF CELESTIAL
MECHANICS TO SPACE FLIGHT MECHANICS

Four examples shall now serve to indicate briefly how findings in celestial
mechanics were applied to problems of space flight mechanics. For a comprehen-
sive survey with a list of references one should refer to a paper by the author:
"Bemerkungen zur Entwicklung der Raumflugmechanik; von der Him-
melsmechanik zur Raumflugmechanik." DGLR Mitteilung 78/01 Koéln 1978,
pp-206/1-44. (Ed).

timum T fer Trajectori

Kepler’s laws were first applied to space flight missions in connection with
theoretical studies of the German engineer Walter Hohmann (1880-1945). During
World War I Hohmann investigated how to reach other planets, in particular
Venus, by means of rocket vehicles. The well-known result today was that, after
overcoming the Earth’s attraction, the appropriate trajectory is the Keplerian semi-
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ellipse flown without thrust which leaves the supposedly circular orbit of the Earth
around the Sun tangentially and enters into the coplanar circular orbit of Venus
around the Sun tangentially. The transfer from the initial circular orbit into the
ellipse and the transfer from the ellipse into the second circular orbit are effected
by instantaneous thrust impulses. This king of transfer trajectories is now called the
Hohmann transfer.

Hohmann also indicated how Earth and Venus must be related to each other
so that the spacecraft when entering the Venus’ orbit then reaches the planet, and
how often Venus would have to be orbited before starting on the return flight in
order to reach the Earth on a second semi-ellipse. According to the third Keplerian
law, the time for the flight from Earth to Venus on the semi-ellipse amounts to 146
days; the length of time for which the spacecraft was to stay on orbits around Venus
was determined by Hohmann as 464 days, thus resulting in a total flight time of 756
days, 146 days for the return flight to the Earth included.

It is interesting that Hohmann had in mind a second possibility, to fly from the
Earth to Venus and back for which he stipulated a flight time of 1.5 years = 547.5
days. This trajectory consists of three semi-ellipses. As in the aforementioned case,
the first semi-ellipse allows for the transfer from the Earth’s orbit to the Venus’
orbit. When arriving there the spacecraft gets a second thrust impulse causing it to
enter into an ellipse reaching beyond the Earth’s orbit. In the aphelion of this
trajectory a further thrust impulse is given which ensures that the third semi-ellipse
enters the Earth’s orbit tangentially. The distance of the aphelion of the second
ellipse is chosen to the effect that the time for passing through all of the three
semi-ellipses equals the time for one and a h%f orbits of the Earth around the Sun.
Thus, the spacecraft really reaches the Earth.

Generalizations of the Hohmann transfer have been undertaken in various
respects. The most evident ones concern two-impulse transfers between any
coplanar conics. The next step leads to transfers between non-coplanar initial and
final orbits. One has to differentiate between two categories of problems depending
on whether the transfer time is open or fixed. Finally, boundary conditions for the
start and the end of the transfer trajectory may be given which concern the position
vector, the velocity vector or the flight path angle. Usually a transfer trajectory with
a minimum demand in change of velocity (= fuel consumption) is required.

Another complex of questions concerns the optimal number of impulses for
the transfer. There exist, for example, three-impulse transfers between two coplanar
circular orbits, so-called bi-elliptic transfers, which are more economical than the
Hohmann transfer.

Thus, a number of questions are raised which are not only of interest for the
theorist but also for the space flight engineer. The number of investigations which
have been carried out in this field since the beginning of the fifties is correspond-
ingly large. A very comprehensxve survey of the papers published until 1968 on
impulsive transfer was given by Gobetz and Doll” who listed 316 references. Since
then many more papers have been published and there are still questions on this
subject which are pending.
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In the simplest cases a mathematical treatment with calculus is possible. In
more complicated cases for analytical investigations, not only the calculus of varia-
tions in its classical form is used but also theories with fewer restrictive conditions,
such as Pontryagin’s maximum principle. Because not in every case solutions in
closed form exist, there are numerous numerical investigations where, for instance,
methods of steepest descent or nonlinear programming have proved to be suitable.

Here it may suffice to mention only a few papers originating from ONERA in
Paris’ and from the Department of Aerospace Engineering Sciences of th
P P g g $ ot the
University of Colorado in Boulder, Colorado>® where new ideas were developed.
Busemann presented his conce?t at the 9th Ludwig Prandtl Memorial Lecture or-
ganized in DGLR and GAMM' in Vienna. It concerns the use of a phase space for
the investigation of transfers between coplanar ellipses. Each ellipse is represented
by a point of the phase space. The impulse divided by the mass of the spacecraft
defines the "distance" between neighboring points. Having then determined the dis-
placement vector which corresponds to the unit impulse for each point toward
every direction, one has to seek the "shortest" connections, the "geodesics" between
any two points. It results that the tensor of all displacement vectors can be concave,
which implies that one has to form its hull in order to obtain the metric tensor. This
seemingly rather abstract construction can be well visualized geometrically and is
suitable for finding optimum transfer orbits.

Laplace’s Activi her

In volume 1V (pp.216-228) of his Traité de mécanique céleste>! Laplace divided
the orbit of a comet swingingby the planet Jupiter into two parts. In the vicinity of
Jupiter the gravitational force of this planet predominates over that of the Sun; the
orbit of the comet there may be taken as a conic (hyperbola) having Jupiter as
central body disturbed by the Sun, i.e., as a conic in a jovicentric coordinate system.
Farther away from Jupiter the orbit must be considered as a conic in a heliocentric
coordinate system. In order to define the geometrical locus where it is most ex-
pedient to effect the change from the one coordinate system to the other, one
determines for the points of the space the quotients from the acceleration by the
disturbing body to the acceleration by the central body. If for a point the quotient
with Jupiter as central body is smaller than the quotient with the Sun as central
body, this point lies within the activity domain of Jupiter with respect to the Sun. If
both quotients are equal, the point lies on the boundary of the activity domain. The
activity domain is approximately a sphere called the activity sphere of the planet.
The concept of the activity sphere simplifies the integration of the equations of
motion by allowing reduction of the three-body problem to two-body problems.

Of the same nature as the three-body problem Sun-Jupiter-comet are the
three-body problems: Sun-planet-spacecraft and Earth-Moon-spacecraft. In all of
these cases the mass of the third body is negligible compared to those of the two

*  Editor's Note: Sth Ludwig Prandtl Lecture, 23 April 1965, Vienna. In: Zeitschrift fiir Flugwissenschaften (ZFW),
Volume 13, No. 11, 1965, pp.401-411,

t Editor’s Note: GAMM: Gesellschaft fiir Angewandte Mathematik und Mechanik.

90



others. Thus in the case of interplanetary space flights it is possible to change the
rate and direction of the velocity vector of a spacecraft without thrust by utilizing
the gravitational fields of planets and planetary moons and to apply the concept of
the activity sphere for feasibility studies. Noteworthy examples in this respect are
the flights of Pioneer 10 and 11 as well as those of Voyager 1 and 2 with swingbys
past Jupiter in order to continue the flight to Saturn on extra-ecliptical trajectories
and possibly with swingbys past Saturn permitting the space probes to escape from
the Sun’s system.

Distur Keplerian Orbit

The general perturbation theories of first order as well as of higher orders
which have been developed since the 18th Century for closer studies of the
planetary motions are quite applicable to motions of artificial Earth’s satellites and
space probes enabling one to derive laws concerning the influence of disturbing
forces. Moreover, there exist modifications and further development of these
theories with regard to the needs of space flight mechanics. As disturbing forces
there exist not only the gravitational forces effected by the Sun, the Moon and the
planets, but more important than those in certain fields are the effects of the at-
mospheric drag and the deviations of the Earth’s shape from a sphere with
homogeneous mass distribution. Under certain circumstances the solar radiation
pressure can exert a noticeable influence, in particular in case of satellites with
large surface and small mass.

In case of low-altitude orbits the drag presents the most important perturba-
tion of the Keplerian orbit. What makes it difficult to predict the trajectory exactly
is the fact that the drag varies considerably with time and locus. Based on a stand-
ard atmosphere with average amounts for air density, however, general statements
concerning the effects of the drag on the elements of the Keplerian ellipse are
possible. It is equally possible to take into consideration the oblateness of the Earth
at the poles by applying the relevant potential of gravitation in the equations of
motion. The drag being no conservative force the energy law does not apply any
more. The gravitational force is no longer, as in the case of a spheric Earth, a
central force and thus the area law for the orbital plane does not apply any more.

A differentiation between the effects of drag and of the Earth’s oblateness is
not easily done, but can be achieved to a certain point because both these perturba-
tions differ in character. By applying the general perturbation theories one comes
to the conclusion that the drag causes secular changes of the semi-major axis and
the eccentricity of the satellite orbit, whereas these two elements change peri-
odically under the influence of the Earth’s oblateness. On the other hand, the
Earth’s oblateness causes secular changes of the right ascension of the node and the
argument of perigee, whereas these elements change periodically under the drag
influence. The Sun and the Moon cause only minor periodical changes for all orbi-
tal elements.

It may suffice to mention a few noteworthy results of the effects of drag and
the Earth’s oblateness on satellite orbits: The semimajor axis and the eccentricity
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become increasingly smaller under the influence of drag, the orbit becomes increas-
ingly circular. The period of the orbit decreases. With elliptic orbits the drag is
mostly considerably greater in the vicinity of the perigee than elsewhere. The dis-
tance of the apogee is then reduced about twice as much as the semimajor axis
while the distance of the perigee changes only slightly. The velocity at perigee be-
comes smaller, that at apogee larger. In case of orbits with small eccentricity the
increase of the velocity at apogee amounts to three times as much as the decrease
of the velocity at perigee. The Earth’s oblateness affects the ascending node and
the perigee as follows: If the satellite crosses the equator with an ascending node
with a component directed toward the east (west) the ascending node moves
towards the west (east). For inclinations i < 63.4° there results a turning of the
orbital ellipse (i.e. the semimajor axis) in the same sense as the satellite moves.
Each point of the orbit becomes perigee in course of time. For i > 63.4° the ellipse
turns in the opposite sense. For i = 63.4° the perigee stays continuously over the
same parallel of latitude. The atmosphere rotates together with the Earth. This
rotation causes a small secular change of inclination. In addition small periodical
changes of inclination are caused by the oblateness of the Earth. The Moon and the
Sun cause only slight periodical changes for all orbital elements.

In case of satellites with great eccentricities and periods of several days the
perturbations caused by the Sun and the Moon must be taken into account careful-
ly. The changes of the orbital elements depend on the positions of these celestial
bodies in relation to the satellite changing according to time. Whereas the life time
of satellites with low altitude orbits depends solely on the drag, it depends in case
of high-eccentricity orbits on the right ascension of the node at the beginning and
may vary considerably.

Regqularization and Linearization of the Equations of Motion

As mentioned, ways and means had been found at an early date to abolish the
singularity in the differential equations of the two- and the planar three-body prob-
lem which exists if the distance r between two bodies becomes zero, i.e., in case of
collision. For this one introduces instead of the time t a pseudotime s according to r
ds = dt and effects a transformation of the coordinates. Levi-Civita chose a confor-
mal mapping of the orbital plane z = x + iy on a parametric plane w = u + iv by
the transformation z = w*, i.e.

x] _fu -vifu
y] l_ v ul|v]’
Levi-Civita’s attempts to generalize this procedure to three-dimensional space

remained unsuccessful. It was only in 1964 that the Finnish astronomer Kustaan-
heimo achieved this by applying spinors. In 1965 he published jointly with the Swiss
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mathematician Stiefel a very elegant solution which indicated at the same time the
reason for the former failures, because in order to solve the three-dimensional
problem one has to approach it via a four-dimensional space. The transformation of
the spatial coordinates x, y, z on a four-dimensional parametric space u, v, w, q,
which leads to the regularization, is:

x u -v -w QqQJfu
Yt-{v u -q -w v
z w q u v w
0 q -w v -u q

If one puts w = 0, q = 0 one obtains the transformation of Levi-Civita. Ac-
cording to a theorem by Hurwitz of the year 1898 on the composition of quadratic
forms of n variables matrices as used here in the cases n = 2 and n = 4 exist too
for n = 8 but in no other cases, in particular not forn = 3.

If one effects the transformation, the differential equations for the Keplerian
motion become linear differential equations with constant coefficients which are
regular for r = 0. For the planar Keplerian motion of the two-body problem the
transformed equations are the equations of a harmonic oscillation.

The application of the Levi-Civita transformation and the so-called (after its
authors) KS-transformation for the regularization and linearization of the equations
of motion is not only of importance for collision orbits but also if a spacecraft
comes very close to a celestial body. The exactness of numerical integrations of
Keplerian orbits, including disturbed ones, can be greatly improved by applying
regularized equations. Significant studies in this field have been carried out in par-
ticular in the Institute of Applied Mathematics of the ETH Ziirich (Prof. Stiefel).
Detailed representations of the theory of regularization can be found in the books
of Szebehe}g Theory of Orbits® and Stiefel/Scheifele Linear and Regular Celestial
Mechanics.

CONCLUSION

This paper attempted to outline how solutions to problems of celestial
mechanics arrived at over the last few centuries have proved useful for space flight
mechanics, and that the same also holds true with regard to mathematical methods
the applicability of which was originally by no means obvious. This last point, how-
ever, is a fact that has been established for a very long time. When the Greek
geometer Appolonius compiled around 200 B.C. a systematic representation of con-
ics in his eight-volume opus Conica, it was nobody’s guess that Kepler would draw
on these findings with regard to the orbits of the planets.
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