ЧЕЛОВЕК В КОСМОСЕ

В гондоле стратостата «Осоавиахим-1», поднявшегося на предельную высоту — 22 тыс. метров, экипаж его сидел скорчившись. Встать во весь рост в ней не мог бы даже человек низкого роста. Гондола была сделана такой маленькой потому, что каждый грамм ее веса был на учете. Каждый лишний грамм снижал предельную высоту, на которую мог подняться стратостат, а для достижения большей высоты он требовал дальнейшего увеличения и без того огромного шара с газом.

Еще острее стоит вопрос о весе космических кораблей всех видов, в том числе и искусственных спутников. Здесь каждый лишний грамм требует повышения начального веса топлива. И поэтому, по всей вероятности, кабина первого обитаемого искусственного спутника будет еще теснее, чем была кабина стратостата.

Скорчившись, поджав ноги к коленям, упираясь лбом в приборные доски, дыша на замерзающие пальцы, в которых уже не держится карандаш, будет работать первый ученый, ставший космическим путешественником. Если его пребывание в космосе будет рассчитано не на несколько часов, а на несколько суток, то и спать придется ему так же, в этом же пневматическом кресле, не разгибая ног и спины. Но, чувствуя немоту во всем теле и не имея возможности потянуться, этот человек будет дрожать от счастья, следя за показаниями приборов, наблюдая все новые и новые удивительные явления, подтверждающие или опровергающие начисто его первоначальные теоретические предположения. И свое неудобное тесное сидение он не променяет на самое удобное кресло в мире. А его счастью будут завидовать тысячи людей на всех континентах...

Этот обитаемый космический спутник будет не очень отличаться от описанной нами искусственной луны, населенной автоматами. Он будет, конечно, иметь несколько большую величину, герметически закрываться. В нем будет мягкое пневматическое кресло, которое смягчит большие ускорения при взлете. Кроме приборов для исследовательской работы, гелиоэлектростанций для зарядки аккумуляторов и радиостанций для связи, в нем будут еще размещены баллоны с кислородом для дыхания и устройства с химическими поглотителями углекислого газа. Заслонка от прямого действия солнечной радиации, — видимо, ее роль будет выполнять гелиоэлектростанция, — минимальный запас воды и пищи — вот и все, пожалуй, что будет предназначено для удобства человека в этом спутнике. Возможно, спутник будет состоять из двух частей, соединенных тросом и вращающихся вокруг общего центра. Это будет сделано для того, чтобы создать центробежную силу, заменяющую силу тяжести. В этом случае приборы астронавта будут снабжены гироскопом, обеспечивающим их постоянное положение в пространстве, несмотря на вращение всей системы.

Разрабатываются в настоящее время проекты искусственных спутников и большей величины. Так, уже упоминавшийся ученый Эрике считает возможным создание искусственного спутника с людьми в виде самолета с защитными устройствами от воздействия аэродинамического нагрева. Общий вес такого спутника около 5 тонн. Он рассчитан на один облет вокруг земного шара на высоте 150 километров.

По предположениям, первая искусственная луна, отработав положенный срок на круговых орбитах, сгорит при падении в более плотных слоях атмосферы. Конечно, ее можно было бы спасти, но... овчинка выделки не стоит. Для того чтобы снабдить ее устройствами, которые позволят не слишком быстро погасить скорость движения, а затем спокойно спуститься сквозь атмосферу, пришлось бы пожертвовать частью аппаратуры, чтобы сохранить невысокий общий вес, или, увеличив вес, соответственно увеличить и первоначальный вес ступеней ракеты. Конечно, хотелось бы сохранить для музея первую созданную человеком планету, но раз это очень дорого, пусть она погибнет. Она сделала свое дело.

А как же быть в тех случаях, когда искусственный спутник все-таки необходимо опустить на Землю? Например, обитаемый искусственный спутник с человеком?

Видимо, его придется снабдить выдвижными крыльями, управляя которыми он сможет держаться в верхних, более разреженных слоях атмосферы до тех пор, пока скорость его не снизится в несколько раз. Кроме того, его надо будет еще снабдить парашютом, который позволит ему благополучно приземлиться, затормозив падение в нижних слоях атмосферы. Может быть, придется снабдить его и реактивным двигателем для торможения скорости, а значит, и запасом горючего.

Но этот вопрос отнюдь нельзя в настоящее время считать уже решенным; торможение в атмосфере — дело отнюдь не такое простое, как кажется. Метеоры, вторгшиеся в атмосферу, нередко сгорают в ней без остатка. Очевидцы рассказывают, что «Фау-2» во время падения на Лондон светились слабым красным цветом. По расчетам, и космическая ракета должна накалиться в атмосфере до 700°. Для того чтобы уменьшить эту температуру торможения, надо растянуть его на возможно более продолжительное время. А это тоже очень непросто.

Только дальнейшие исследования теоретического и экспериментального характера в области аэродинамики сверхвысоких скоростей в газах сверхвысокого разрежения позволят дать окончательные рекомендации по этому вопросу. Итак, тормозные крылышки и устройство для помещения парашюта — вот что будет находиться снаружи первых обитаемых искусственных спутников.

КОСМИЧЕСКИЙ ОСТРОВ

Все выше и выше будут забрасываться ракетами искусственные луны, все большей и большей величины они будут, все больше комфорта будут предоставлять своим пассажирам. И наконец, далеко за пределами атмосферы, на расстоянии нескольких тысяч километров от Земли, начнется строительство «вечного» искусственного спутника. Вечного потому, что если только не решат иначе его создатели, он никогда не сойдет со своей орбиты, вечно будет кружиться вокруг Земли.

Один из проектов обитаемого искусственного спутника предложил инженер Б. Ляпунов. Этот искусственный спутник будет собираться в космическом пространстве из остовов ракет, брошенных на эту орбиту с таким расчетом, чтобы они там встретились. Первые строители космического пространства в специальных костюмах, приспособленных для работы в пустоте, будут скреплять между собой эти летящие с огромной скоростью относительно Земли, но медленно плывущие друг относительно друга куски ракет. Бесспорно, этот спутник будет цельносварным, причем сварен он будет совершенно новым, не известным на Земле способом сварки — гелиосваркой. Вогнутые зеркала и легкие линзы, концентрирующие в одной точке потоки солнечных лучей, — вот сварочные аппараты космических сварщиков. А какие чистые, сверкающие неокисленным металлом швы — без малейших включений шлаков, пузырьков газа — будут получаться в космическом пространстве!



Один из проспектов космической гелиоэлектростанции. Зеркало 1 концентрирует солнечные лучи на парообразователе 2. Полученный в нем пар высокого давления поступает в паровую турбину 3, вращающую электрогенератор 4. Отработавший пар поступает в холодильник 5, конденсируется, и конденсат насосом 6 снова подается в парообразователь

По всей вероятности, космические строители будут привязаны к строящемуся искусственному спутнику тонкими, но прочными нейлоновыми канатами. Тяжести этих «оков» они не почувствуют — там нет тяжести,— а помешать зазевавшемуся астронавту улететь навсегда в космическое пространство они смогут. Ведь каждый неудачный толчок, случайное движение могут там вызвать стремительный полет. И через несколько минут человек, если он не будет привязан к массивному корпусу спутника, превратится в крохотную звездочку, стремительно удаляющуюся в мировое пространство. Попробуйте найти в нем вот так случайно «упорхнувшего» человека!

Конечно, космические строители будут снабжены запасом портативных ракет, с помощью которых они смогут передвигаться в пространстве; их костюмы будут иметь приемно-передающие радиостанции, чтобы они могли в случае нужды позвать на помощь и дать пеленг для своего обнаружения. Они наденут ботинки с магнитными подошвами, которые позволят им твердо ступать по стальным деталям космического острова, хотя тяжелой стали там будет и не очень много. Но нейлоновые шнуры все равно не окажутся лишними.

Ракеты, ставшие искусственными спутниками Земли, — вот единственные детали будущего космического острова. Строители сварят их друг с другом так, что образуется огромное кольцо, висящее в космосе. Кольцу придадут вращательное движение, и на космическом острове появится искусственная тяжесть.

Ни один кусочек металла, ни один грамм вещества не пойдет в отходы на этом строительстве. С самого начала оно обзаведется своей энергетической базой — гелиоэлектростанцией. Зеркала ее — это разрезанные вдоль и разогнутые так, чтобы образовать параболоид, металлические корпуса ракет. Внутренние поверхности этих ракет, ставших зеркалами, ещё на Земле будут тщательно отполированы.

В фокусе параболоида космической гелиоэлектростанции находится паровой котел — медная трубка, в которой движется вода. Котел этот прямоточный, — пройдя вдоль всего зеркала вода целиком испаряется. Пар высокого давления поступает в находящуюся в тени зеркала паровую турбину, а из нее — в свернутую спиралью трубку — конденсатор. Сколь угодно глубокое охлаждение можно обеспечить в этом конденсаторе, отдающем тепло теплоизлучением непосредственно космическому пространству, имеющему температуру, близкую к абсолютному нулю. Величина конденсатора рассчитана таким образом, что в нем поддерживаются температура около 4° выше нуля и давление в несколько сотых долей атмосферы.

Сконденсировавшуюся воду насос — обычный центробежный насос высокого давления, приводимый в движение от вала паровой турбины, — подает снова в паровой котел. И цикл начинается сначала. Вода забирает тепло солнечных лучей и отдает его лопаткам турбины, а затем снова возвращается за порцией тепла.

Возможно, что теплоносителем, рабочим телом в космической паротурбинной установке, будет и не вода. Ученые подберут такое рабочее тело, которое сможет лучше использовать громадную разницу температурных перепадов между освещенным концентрированными солнечными лучами «паровым котлом» и затененным конденсатором, по существу погруженным в холод космического пространства. Между тем крайняя нижняя температура, при которой еще можно работать с водой, чрезвычайно высока — 0°!

С валом паровой турбины соединен вал электрогенератора. Вырабатываемый в нем электрический ток поступит в распоряжение строителей искусственного спутника. Гелиоэлектростанция будет довольно устойчиво висеть в пространстве. Устойчивость ей придает наличие быстровращающегося ротора паровой турбины и электрогенератора — своеобразного могучего гироскопа.

В устройстве ротора турбоагрегата для космической гелиоэнергоустановки будет одна интересная деталь. Не весь ротор будет вертеться в одну сторону. Вал ротора будет разделен на две части, обладающие строго одинаковым моментом инерции и вращающиеся навстречу друг другу. Если инженеры не предусмотрят этого, вся гелиоэлектростанция придет во вращательное движение — ведь под ней нет фундамента, которому она сможет передать реактивный момент, как это происходит у «земных» паровых турбин.

Конечно, все оборудование гелиоэлектростанции — турбины, электрогенератор, холодильник — будут изготовлять на Земле, а в космосе только монтировать.

Невдалеке будет смонтирован и гигантский телескоп искусственного спутника. Его зеркало диаметром в несколько десятков метров сделают из тончайшего металла. И астрономы не боятся, что оно прогнется или изменит свою форму, как изменяют свою форму, прогибаясь под собственной тяжестью, линзы крупных телескопов на Земле. В космосе тяжести нет. А вот поворачивать это зеркало, действительно, надо будет очень осторожно, иначе его изомнут инерционные усилия. Только из-за этого придется снабдить сверкающий параболоид космического телескопа с выпуклой стороны тонкими ребрами жесткости.

Еще больше по размерам будет космический радиотелескоп. Его сеть из упругой тонкой проволоки займет площадь в несколько десятков тысяч квадратных метров.

Астрономы, физики уже усядутся за выполнение программ своих научных работ, когда строители еще далеко не закончат отделки основных помещений космического острова. Через каждые несколько часов будут прибывать с Земли все новые грузовые ракеты. Из их корпусов сварят второй ряд кольца. Одновременно в середине смонтируют космопорт и оранжерею. В центре кольца встанет большая труба. Прилетающие на космический остров пассажирские ракеты будут влетать в эту центральную трубу, ось которой будет всегда ориентирована строго в одном направлении пространства. В стенках этой трубы устроят гигантские шлюзы, в которые могут быть помещены космические корабли до 100 метров длиной. Это будут как бы стоянки космических кораблей, их ремонтные базы.

Остальную часть пространства внутри кольца космического острова займет оранжерея. Ее «нижнее» дно сделают также из листов обшивок ракет, а переднюю, обращенную к Солнцу сторону закроют пластмассовой прозрачной крышкой диаметром примерно в 250 метров. Расчеты этой крышки на прочность доставят в свое время немало хлопот инженерам. Хотя давление воздуха в оранжерее предполагается поддерживать и значительно ниже атмосферного, общее давление его на огромную площадь этой прозрачной крышки получится огромным. Для прочности рамы передней прозрачной стенки соединят металлическими тягами с дном оранжереи.


Проект искусственного спутника, собираемого из корпусов грузовых ракет, заброшенных с поверхности Земли на его траекторию. Собранные в гигантское кольцо, вращающееся вокруг своей оси, эти цилиндрические корпуса 1 являются складами, цистернами для горючего, жилыми помещениями и лабораториями. Центральная труба 2 служит космопортом для космических кораблей; помещения 3 рядом с ней используются как доки для ремонта и дозаправки космических кораблей. Под чешуйчатой поверхностью 4 из прозрачной пластмассы находится оранжерея. Рядом с искусственным спутником висят в пространстве гелиоэлектростанции 5. Количество вырабатываемой ими электроэнергии регулируется степенью поворота к лучам Солнца их зеркал (также сделанных из развернутых корпусов ракет). Здесь же находится гигантское зеркало 6 телескопа с обсерваторией 7. Для связи с Землей и космическими кораблями служат направленные антенны 8. Для выездов в пространство используются одно— и многоместные «космические велосипеды» 9

Когда работы будут закончены, здесь буйно зазеленеет растительность. Резкое изменение условий жизни, видимо, вызовет и резкое изменение форм растений. Космические садоводы предполагают, что здесь будут выращиваться невиданных на Земле величины, вкуса и питательности плоды...

Но это в далеком будущем. Строителей же первого космического острова больше всего будет беспокоить качество сварных швов. Они должны обеспечивать полную герметичность. Иначе произойдет утечка воздуха, которая может кончиться катастрофой для всего населения космического острова.

И наконец, настанет момент, когда монтаж острова будет закончен. Прилетающие сюда ракеты станут привозить не детали острова, не материалы для монтажа, а горючее. Им заполнят баки космических ракет, органически вошедших в состав острова. Космический остров превратится в огромную летающую в пространстве... нефтебазу.

Привозящие горючее космические корабли уже не станут использовать как строительный материал, а будут возвращать на Землю. Десятки рейсов совершит каждый из них, и только когда совсем износятся его детали, будет он приобщен к общей массе космического острова и превратится в одну из его цистерн.

А в космодроме — центральной трубе космического острова — будут уже собираться аппараты для дальних космических рейсов.

ГРУЗОВЫЕ ПОЕЗДА

Один из создателей известной ракеты «Фау-2», работающий ныне в США, Вернер фон Браун, опубликовал проект трехступенчатой ракеты, которая, по его мнению, могла бы обеспечить грузопассажирские сообщения со строящимся искусственным спутником. Общая высота всех ступеней этой ракеты составляет 80 метров, диаметр самой широкой нижней части — 20 метров, а общий вес будет равен примерно 6400 тоннам. Таким образом, этот космический корабль по своим начальным размерам и весу напоминает небольшой крейсер.

В качестве горючего для двигателей в этой ракете предполагается использовать азотную кислоту и гидразин, подаваемые в камеры сгорания насосами высокой производительности. В настоящее время гидразин и азотная кислота являются самым энергичным известным нам химическим топливом и поэтому наиболее пригодным для космических ракет.

Насосы для подачи гидразина и азотной кислоты в камеры сгорания приводятся в движение турбинами, работающими на перекиси водорода. Значит, кроме основного запаса горючего, для работы реактивных двигателей ракета должна будет захватить и баллоны с перекисью водорода.

Моторная группа первой ступени ракеты, по замыслу Брауна, coстоит из 39 главных моторов и 12 моторов для управления. Общая тяга всех этих двигателей составит 12 800 тонн, то есть в первый же момент вдвое превзойдет вес космического корабля. В течение 84 секунд выгорит 4800 тонн горючего, что составляет 75 процентов веса всей ракеты. Опустошенная первая ступень отцепится от космического корабля и на парашюте спустится на Землю. В работу включится моторная группа второй ступени, состоящая из 22 основных двигателей и 12 двигателей для управления. Когда топливо в ней выгорит, она так же отцепится и спустится на Землю.

Отцепляющиеся ступени ракет не должны пропасть, их предполагается использовать не для одного полета. Поэтому спуск их будет осуществляться на парашютах, а в момент приземления для торможения скорости предполагается зажигать пороховые ракеты.

Третья и последняя ступень ракеты имеет всего пять жидкостных ракетных двигателей. В носовой ее части расположено помещение для команды, грузов, приборов управления и кабина управления. Две пары стреловидных крыльев, снабженных рулями управления и элеронами, предназначаются для планирования и спуска при возвращении на Землю.

Разработаны и другие проекты составных ракет для сообщения с искусственным спутником. Интересный проект большегрузной ракеты такого типа был доложен на 9-м съезде американского ракетного общества.

По этому проекту, ракета для связи с искусственным спутником — ее назвали «космическим паромом» — состоит из трех ступеней. Каждая из ступеней имеет свои треугольные крылья и убирающиеся шасси; каждой управляют собственные команды. Общая высота ракеты в собранном виде достигает 85,5 метра. Общий вес конструкции составляет 9000 тонн, из них на долю горючего приходится 7800 тонн. Вес последней, третьей ступени, которая достигнет орбиты искусственного спутника, отстоящего на 800 километров от поверхности Земли, вместе с людьми и грузами составляет 35 тонн.

Первая, самая крупная ступень обеспечивает подъем всего гигантского «космического парома» на высоту до 40 километров и сообщает ему скорость около 375 километров в час. Отцепившись, она опустится, как обыкновенный планер, примерно в 480 километрах к востоку от места взлета.

Вторая ступень доведет «паром» до высоты в 65 километров, так же отцепится и спланирует в 1600 километрах от места взлета.

Включится двигатель третьей ступени. Он и доведет «паром» до искусственного спутника. Высадив людей и разгрузившись, он вернется на Землю и приземлится на том же самом месте, с какого взлетел.

Предложенная конструкция составной ракеты также рассчитана не на один, а на ряд рейсов. Первая и вторая ступени, опустившиеся на землю далеко от исходного пункта взлета, вернутся к нему по воздуху. К их крыльям будут прицеплены реактивные или поршневые двигатели, часть баков будет заправлена горючим, и они, как обыкновенные самолеты, вернутся, ведомые своими экипажами, к месту старта. Здесь их соберут снова в трехступенчатую составную ракету, заправят горючим, и «паром» будет готов для новой космической переправы.

Третья ступень этой космической ракеты, получившая круговую скорость, может стать и составным звеном, деталью при постройке космического спутника.

Аналогичные проекты есть и в других странах. Все это свидетельствует о том, что при известных затратах идея создания даже крупного искусственного спутника Земли является, с точки зрения современной техники, абсолютно реальной и осуществимой.

ЛАБОРАТОРИЯ В КОСМОСЕ

Космос... Это же «пустота». Ничего там нет... И зачем стремиться в эту пустоту? Разве на Земле так уж плохо?

Так рассуждают некоторые малознающие люди.

Но на вопрос о том, что нам сразу же дает завоевание космоса, ответить следует.

Прежде всего космос — это не пустота. Космическое пространство содержит, хотя и очень разреженные, облака пыли и газа. Кроме того, оно пронизано лучами солнечной и звездной радиации, гравитационными, электрическими и магнитными полями.

Первыми в космос полетят ученые. Их привлекают необыкновенные условия, которые они там смогут создать для своих опытов.

Прежде всего — невесомость. Биологи будут ставить опыты с растениями и животными, металлурги — изучать кристаллические структуры металлов, застывающих без воздействия тяжести, физики — взаимодействие невесомых сред, например газа и жидкости.

Космические лучи. Ученые поднимают многотонные приборы для исследования космических лучей на вершины высочайших гор. Советские ученые А. И. Алиханов и А. И. Алиханян ведут исследование космических лучей на горе Арагац в Армении на высоте 3250 метров над уровнем моря. Приборы для изучения космических частиц поднимают шары-зонды и высотные ракеты. И все-таки ни один ученый в мире не исследовал еще космических лучей в их натуральном, не искаженном атмосферой виде. Разгадка тайн космических лучей значительно двинула бы вперед наши знания о природе микромира элементарных частиц. Только в космическом пространстве ученые получат возможность изучать космические лучи в их первозданном виде.

Солнце. Его деятельность слишком много значит для жизни на Земле, чтобы нас не интересовали тайны его излучения. Между тем до нас оно доходит далеко не полным; сквозь атмосферу проникает меньшая половина спектра. Изучить полный спектр Солнца, его изменение, влияние этих изменений на погоду на Земле, на магнитные бури, на движение атмосферы — все это можно будет сделать только с внеземной лаборатории.

Ответить на вопрос, удобно ли вести наблюдения с Земли, могут астрономы. С их точки зрения, на Земле работать совсем не так уж хорошо, как кажется с первого взгляда. Во-первых, астрономов очень не устраивает непрозрачность атмосферы для многих видов излучения. Если бы эти лучи достигали дна воздушного океана, астрономы заставили бы их рассказать еще очень многое о Вселенной. Во-вторых, астрономов не устраивают постоянные волнения в атмосфере: из-за них дрожит и расплывается, теряет четкость диск планеты, видимой в телескоп. И, прильнув к окуляру, астроном проклинает земные условия наблюдения. Он мечтает о космической обсерватории. О, как много нового открыл бы он во Вселенной, если бы смог работать там, вне Земли, вне атмосферы!

Температуры. В лабораториях ученых работают сутками сложные, дорогие, энергоемкие аппараты, создавая в крохотном объеме температуру, близкую к абсолютному нулю. Покрываются толстым слоем льда и инея трубопроводы, 100-градусным морозом пышет от стеклянных и металлических стенок, и, наконец, в пробирках появляются первые капли прозрачной легкой жидкости — сжиженного водорода или гелия. А дальше вниз по шкале температур путь еще тяжелее. И в результате на несколько минут в объеме пробирки создается температура всего на несколько десятых градуса выше абсолютного нуля.

Температура космического пространства — лаборатории неограниченной величины — всего приблизительно на 4° выше абсолютного нуля. Чтобы получить такую температуру, надо только заслониться от лучей Солнца рядом экранов. Сколько новых тайн природы откроет физик, обладая неограниченной возможностью использовать столь низкие температуры!

А рядом, сконцентрировав линзой или вогнутым зеркалом солнечные лучи, он получит температуру в несколько тысяч градусов. Возможность таких контрастов температур — еще один важный путь для исследователя.

— Так что же? Внеземная станция нужна только ученым? Только для того, чтобы было написано еще несколько толстых книг, пересыпанных формулами, не понятными для подавляющего большинства людей?

Да, первыми завоюют космос ученые. Они всегда бывают первыми разведчиками страны неведомого. Это ученые первыми поднялись в небо на воздушном шаре, а теперь мы пользуемся услугами авиации. Это ученые в своих пробирках намешали химических специй, чтобы мы ходили сейчас одетыми в шелковой одежде, доступной так недавно лишь королям и вельможам. Это ученые первыми накрутили проволочек и катушек, чтобы мы могли слышать и видеть у себя в комнате по радио и телевидению весь мир.

Сегодняшнее открытие ученого, зашифрованное в рогатых математических формулах и специальных символах, кажущееся, на первый взгляд, таким отвлеченным и сугубо теоретическим, завтра дает невиданный толчок развитию техники, а послезавтра облегчает наш труд, дает нам новые удобства в жизни, сделает ее ярче, полнее.

Интересов одной только науки достаточно для того, чтобы эту цель — создание внеземной лаборатории на искусственном спутнике — считать не только окупающимся, а прямо-таки чрезвычайно выгодным предприятием.

Но интересы не только завтрашнего, а и сегодняшнего дня заставляют нас стремиться в космическое пространство.

Атмосфера Земли, на дне которой мы живем, простирается на высоту выше 1000 километров. И все же она представляет собой единое взаимосвязное целое. То, что происходит в ее верхних слоях, определяет происходящее в нижних. Как улучшатся прогнозы погоды, когда метеорологи получат возможность узнавать о состоянии верхних слоев атмосферы, наблюдаемой с искусственного спутника! А не понимающих важности точного прогноза для транспорта, для сельского хозяйства, для строительства, наверное, уже не осталось.

В атмосфере Земли движутся в настоящее время не только высотные ракеты, но и самолеты — пассажирские, почтовые, грузовые. С каждым годом растут скорости движения самолетов, а вместе с тем растет и сопротивление воздуха их полету. И наконец, наступает такой момент, когда колоссальное увеличение мощности двигателей, сжигание огромных количеств топлива почти не вызывает повышения скорости самолета. Сопротивление воздуха съедает весь прирост скорости.

— Достигнут звуковой барьер, — говорят ученые...

Где же выход? Как преодолеть звуковой барьер?

На высоте 5 километров плотность воздуха в 1,6 раза ниже, чем у поверхности Земли, а на высоте 20 километров она меньше, чем у Земли, в 15,6 раза! Но и там сопротивление воздуха еще очень велико. Поэтому дальнейшего резкого повышения скоростей самолетов вероятнее всего ожидать с завоеванием больших высот полета, с переносом воздушных трасс в ионосферу. Но это можно будет осуществить, только изучив существующие там условия. А ведь ионосфера — это преддверие космического пространства. И удобнее всего изучать ее будет именно с искусственного спутника.

Космос — это место, из которого одним взглядом можно окинуть целую половину земного шара. А это не так уж неважно не только для метеорологов, наблюдающих за движениями облачных масс. Специалисты по телевидению утверждают, что если бы удалось установить в космосе на искусственном спутнике телерадиопередаточную станцию, они обеспечили бы высококачественный прием телепрограммы на целой половине земного шара. А с помощью трех таких станций они берутся охватить весь земной шар. Это ли не заманчиво!

Космос — это неисчерпаемые запасы энергии, забираемой, так сказать, из первоисточника — прямо от Солнца. И может быть, вслед за учеными первыми с прямыми практическими целями в космос двинутся энергетики — строители гелиоэлектростанций.

Но ведь организация такой внеземной лаборатории — это еще и очередной шаг для завоевания других планет.




„Наука достигла такого состояния, когда реальна посылка стратоплана на Луну...,,

А.Н.Несмеянов





ГЛАВА СЕДЬМАЯ




ПЕРВАЯ РАЗВЕДКА ЛУНЫ

онечно, все бесчисленные искусственные луны не смогут заменить нам нашего ночного светила, к которому давным-давно привыкло человечество. Да существования большинства искусственных лун, небольших и недолговечных, стремительно проносящихся на гигантской высоте, население Земли попросту не заметит. Но кто мог бы не заметить существования Луны!

Вероятно, Луна и будет первым космическим телом, на поверхность которого ступят первые исследователи с Земли.

Однако еще раньше этого знания людей о Луне значительно расширятся с помощью автоматических управляемых с Земли ракет.

Еще трудно сегодня описать конструкцию такой ракеты. Если она будет взлетать с Земли, это будет, по всей вероятности, гигантская многоступенчатая ракета. Если ее удастся отправить с искусственного спутника, она будет совершенно иной. Но уже можно себе представить, как она будет работать, какие задачи удастся решить с ее помощью.

Побудем с вами у пульта управления полетом этого первого отправившегося на разведку Луны космического корабля.

...В большом затемненном зале, вдоль стен которого поблескивают стеклом и никелем какие-то щиты управления, сложные приборы, светятся тусклыми разноцветными огоньками сигнальные лампочки и флоуресцирующие стрелки приборов, у большого экрана телевизора стоят ученые.

Почти черен трепещущий, словно вздрагивающий экран телевизора. Только кое-где дрожат на нем светлые точки. А в самой середине висит какой-то освещенный с одной стороны похожий на сигару предмет.


Незримые радиолучи прочно свяжут космический корабль с земным пультом управления. Именно здесь, в окружении бесчисленных аппаратов, вычислительных машин, будут находиться ученые, инженеры, штурманы, управляющие полетом

На экране этого телевизора мы видим все то, что видно сейчас в телескоп, следящий за полетом первого космического корабля, отправившегося на разведку Луны. Крохотная сигара, видимая нами на середине экрана, — это и есть 70-метровой длины корпус космического корабля, стремительно движущегося в пространстве.

Под экраном телевизора находится небольшой экран осциллографа. На нем постоянно вибрирует зеленоватая полоска, делающая острый зигзаг. Это — сообщение радиолокатора. Радиолуч непрерывно сопровождает корабль в полете; он касается его корпуса и, словно убедившись в его целости, возвращается назад, на Землю. И здесь, превращенный в этот зигзаг на флоуресцирующей поверхности экрана, он докладывает ученым: с кораблем все в порядке. Результаты локации корабля тут же анализируются электронно-вычислительными машинами, и ученые постоянно знают и его курс и скорость движения.

Знают в этом зале и показания всех приборов, находящихся на корабле. На его борту имеется радиошифрующая установка и передатчик, подобный тому, который предлагает установить на своей искусственной луне проф. Зингер.

Ракета уже пролетела большую часть своего пути. Она уже приблизилась к поверхности Луны: на экране телевизора появился узкий серп нашего ночного спутника, находящегося вблизи новолуния.

Ученые сверяют свои вычисления с показаниями приборов, отдают им соответствующие команды. И вдруг у сигары на экране телевизора вырастают как бы усы — это струи выбрасываемых реактивными двигателями газов. Сигара медленно поворачивается и, видимо, ложится на другой курс. Она видна с Земли уже под совершенно другим углом, чем прежде. Дымовые усы исчезают — выключились двигатели корабля. Приборы докладывают ученым: ракета превратилась в спутника Луны. Она движется вокруг нее по круговой орбите. Уже в эту минуту с ракеты можно бы было увидеть часть другой стороны Луны, той, которой не видел еще ни один человек на Земле и о строении которой мы можем только догадываться. Как жаль, что единственными пассажирами ракеты в этом беспримерном космическом перелете являются автоматические и телеуправляемые машины и механизмы!

И вдруг экран преображается. Зыбкая тьма сменяется на нем рельефным цветным изображением лунной поверхности, видимой почти в упор. С изумительной отчетливостью вырисовывается большое овальное пятно — Море Кризисов. С Земли, даже в лучшие телескопы, почти невозможно различить его цвета. А сейчас на экране телевизора отчетливо проступила зеленая окраска его дна. Ученые узнают знакомые кратеры и цирки и называют их: Клеомед, Гемин, Лангрен...

А рядом с этой исследованной с помощью телескопов областью расширяется полоска еще невиданных с Земли частей планеты. Новые кратеры, новые горные цепи, бурые скалы, пятна морей. Ученые, забыв, что все это фиксируется на кинопленке, хватают карандаши, чтобы сделать хотя бы беглые наброски... Волнение достигает предела...

Вы угадали. Это цветная телепередача с космического корабля.

Но вдруг словно какая-то тень пробегает несколько раз по экрану, стирая изображение. Еще мгновение оно дрожит, уже не такое яркое и отчетливое, но еще видимое. И наконец исчезает совсем.

Авария? Неисправность телепередающей или телеприемной аппаратуры?

Нет, не волнуйтесь, — это довольно обычное в солнечной системе явление: затмение спутника. Наш космический корабль скрылся за Луной; ее мощное тело, как гигантский экран, стало на пути радиоволн передатчика, и они уже не доходят до Земли. Но это первое в истории солнечной системы затмение искусственного спутника. Первый случай за миллиарды лет ее существования!

Пройдет строго определенное время, и корабль покажется из-за противоположного, погруженного в ночную тьму края нашего светила. Затем астрономы в земных обсерваториях будут наблюдать его прохождение перед диском Луны. Может быть, по команде с Земли на Луну будет сброшен вымпел, граната, взрыв которой также будут наблюдать с Земли. Не один, не два, а значительно больше кругов вокруг Луны на расстоянии всего в 30—100 километров от ее поверхности сделает космический корабль, постепенно изменяя направление своего полета так, чтобы обследовать возможно большую площадь поверхности. И опять-таки в строго определенный момент будет дана ему команда лечь на возвратный курс. Искусственный спутник Луны снова превратится в космический корабль.

Наконец, космический скиталец вернется на Землю. Ученые проявят кинопленки, расшифруют показания приборов. Во всех газетах мира появятся карты той невидимой стороны Луны, составленные по данным киносъемки. Будет сделан еще один шаг в завоевании Вселенной.

АВТОМАТИЧЕСКАЯ ТАНКЕТКА

Советский ученый кандидат технических наук Ю. С. Хлебцевич считает, что и на поверхности Луны первую высадку осуществят не люди, а автоматы. В штурме космических пространств на каждом этапе человек, видимо, будет первую разведку поручать своим автоматам. Мы уже знаем, какой большой, неудобной, громоздкой получается ракета, рассчитанная на то, чтобы опуститься на Луне с пассажирами, обеспечить возможность их хотя бы непродолжительной жизни и работы там и возвращения на Землю. Вес такой ракеты в момент посадки на Луну будет составлять несколько десятков тонн. Какую же огромную величину должна будет она иметь при взлете с Земли?!

А автоматическая лаборатория, которая сможет осуществить массу разнообразных исследований, будет весить, по расчетам Хлебцевича, всего несколько сотен килограммов — столько, сколько весит автомобиль «Москвич». Ведь ее незачем возвращать на Землю; она может остаться на Луне навсегда. Кроме того, находящаяся в ней аппаратура не боится больших ускорений и для них не нужна герметическая кабина. Специальные радиопередатчики помещают даже в снарядах зенитных орудий, и они отлично работают после выстрела. Снятие запрещения развивать ускорение выше переносимого человеческим организмом еще облегчит задачу создания ракеты для отправки на Луну космического корабля с подвижной автоматической лабораторией.

Вот как представляет себе Ю. С. Хлебцевич работу такой лаборатории на Луне.

Космическая ракета, управляемая по радио с Земли, приближается к Луне. Вот уже близка покрытая толстым слоем пористой пыли, камней, обломков горных пород поверхность нашего спутника. Автоматы, управляемые по радио, поворачивают ракету соплами к Луне и включают реактивные двигатели. Сжигая последние капли горючего, ракета тормозит свое падение и опускается на поверхность Луны.




Посадкой автоматической ракеты на Луну будут управлять по радио с Земли. Сначала радиосигналы ориентируют корабль соплом двигателя к Луне, а затем на нужном расстоянии от ее поверхности они включат для торможения движения реактивные двигатели

В разные стороны разлетаются осколки камня, поднимается облако пыли, летящей так же далеко, как и камни, но и так же быстро осаждающейся на почву: ведь атмосферы там нет. Корпус ракеты, почти на четверть зарывшийся в рыхлый, пористый грунт, безнадежно искалечен. Топливные баки смяты в гармошку. Только верхняя часть сохранила свою первоначальную форму.

Все это так и было заранее задумано учеными. Корпус ракеты, баки е горючим были сконструированы так, чтобы служить амортизатором при посадке, чтобы они, сминаясь, смягчили удар головной части ракеты.

И вот раскрывается головная часть, и из нее выезжает — да, выезжает! — на гусеницах небольшая танкетка. Она переваливается через борт корабля и медленно падает на поверхность Луны. Медленно по нашим земным понятиям: ведь сила притяжения на Луне меньше, чем на Земле, в 6 раз и ускорение падения так же в 6 раз меньше.

Но, коснувшись почвы, танкетка качнулась и снова встала на свои гусеницы. Форма ее такова, что, как бы она ни упала, она все равно, как ванька-встанька: перевернется опять и встанет в нормальное положение. Правда, нормальных положений у нее два: она будет действовать и «вверх ногами», так как ее ноги, то есть гусеницы, находятся и вверху и внизу.

Из корпуса танкетки выдвигаются ее рабочие органы. На раздвижной стойке выбрасывается антенна направленного приема и передачи. На сложном многошарнирном устройстве поднимаются «органы чувств» танкетки: ее телеглаз — телеприемная камера. Она может поворачиваться во все стороны, «оглядывать» горизонт, «смотреть» прямо себе «под ноги». Все, что попадает в поле зрения этого телеприемника, сразу же передается по радио на Землю. Ученые видят на экране своего телевизора все так же отчетливо, как если бы они сами находились внутри танкетки.

По командам с Земли телеприемник поворачивается в разные стороны, высматривает удобную дорогу, и, наконец, танкетка трогается в путь. Она выбирает место для первой серии наблюдений.

В ее корпусе размещены различные приборы и аппараты для исследования существующих на Луне условий — температуры, состава пород, слагающих поверхность нашего спутника. Мало того, она имеет даже оборудование для взятия проб грунта с глубины в несколько метров. Ведь необходимо выяснить, какую толщину имеет слой пыли, слой раздробленного камня, где начинаются коренные породы, слагающие Луну. Эти данные нужны в первую очередь для посадки корабля с экипажем.

Представьте себе, что вы ведете космический корабль, который должен сделать посадку на Земле, а о физических условиях ее поверхности вам ничего не известно или известно очень мало. Вы, конечно, предполагаете осуществить посадку на сушу. Вот перед вами бескрайние леса нашей Сибири. Вы выискиваете большую круглую поляну — идеальный космодром. И — бах! — проваливаетесь в болото!


Вот оно, внутреннее устройство автоматической танкетки. «Глазами» ее служит телеприемная камера 1 с прожектором 2, выбрасываемая из корпуса на штативе 3. «Органы чувств» танкетки — разнообразная измерительная аппаратура 4 — занимают носовой отсек. Специальное устройство 5 с буром 6 служит для взятия проб грунта. Радио-шлифующие устройства, радиотелепередатчики и радиоприемники 7 помещаются в средней части корпуса. Здесь же находится выдвижная антенна 8, двигатель внутреннего сгорания 9 и электромоторы 10 для привода гусениц 11 танкетки. Дополнительными источниками питания этих моторов и аппаратуры служат аккумуляторы 12, подзаряжаемые от термоэлектрогенераторов 13. Баки 14 наполнены горючим и окислителем для работы двигателя внутреннего сгорания

На земной поверхности в пустынях есть так называемые зыбучие пески, которые также засасывают всякий упавший на них тяжелый предмет. Посадка в таком месте может оказаться гибельной. В задачи танкетки и будет, в частности, входить выбор места для посадки космического корабля с экипажем. Это должно быть ровное место с достаточно прочной поверхностью, без глубоких трещин.

...Оставляя на толстом слое мягкой пыли широкие следы гусениц, танкетка двинется на поиски первого лунного космодрома.

Долго ли сможет проработать на Луне танкетка? Это зависит от того, какого рода двигатели будут приводить в движение ее устройства, питать электрическим током ее аппараты. Если это будут двигатели, работающие на топливе, взятом в запас с Земли, то, даже принимая во внимание легкость передвижения по Луне из-за пониженной силы тяжести, запаса топлива хватит всего на несколько дней, в крайнем случае — недель. Но можно снабдить танкетку дополнительно и двигателями с аккумуляторами, которые можно будет там же, на Луне, подзаряжать, даже не один, а много раз. Делать это будет та же самая неистощимая энергия Солнца, которая будет работать и на гелиоэлектростанциях искусственных спутников. Ведь условия солнечной радиации на Луне ничем не отличаются от радиации в космическом пространстве.

Возможно, что запаса энергии в аккумуляторах и не хватит для работы всех механизмов и аппаратов танкетки в течение длинной лунной ночи, длящейся 14 земных суток, когда возобновление энергии невозможно. Но с рассветом, едва подзарядятся аккумуляторы от автоматически включающихся электрогенераторов танкетки, ее механизмы снова оживут, она снова начнет передавать на Землю результаты своих наблюдений, снова ползать, насколько хватит энергии, по просторам лунных «морей». И так повторится много, много раз, пока не поломаются от случайных причин или не износятся ее механизмы.

Возможно, что эта танкетка будет использована и для дачи пеленгов при посадке космического корабля на лунном космодроме.

С ИСКУССТВЕННОГО СПУТНИКА

Космический корабль, который предстоит соорудить для полета на Луну с космического спутника, будет резко отличаться от рассматриваемых до сих пор ракет, предназначенных для полетов в космическое пространство со станции отправления на Земле.

Лауреат Международной поощрительной премии по астронавтике советский ученый А. А. Штернфельд опубликовал первый эскизный проект такого корабля, собираемого на искусственном спутнике и с него отправляющегося в полет вокруг Луны с последующим возвращением на Землю.

Космическому кораблю, взлетающему с искусственного спутника, не придется преодолевать сопротивление толстой и густой воздушной оболочки, как кораблю, взлетающему с Земли. Значит, ему не обязательно иметь обтекаемую аэродинамическую форму, — требований аэродинамики в космосе вообще не существует. Внешняя форма корабля будет определяться другими соображениями.

Скорость, которую необходимо набрать космическому кораблю, летящему с искусственного спутника, может быть значительно ниже скорости отлета с Земли. Ведь искусственный спутник уже обладает громадной скоростью. К его скорости надо прибавить еще около 3150 метров в секунду, и корабль долетит до орбиты Луны в любой ее точке. Причем эту скорость он может набирать не с большим ускорением, как при отлете с Земли, а с маленьким. То есть для отлета с космического спутника вовсе не обязательно иметь мощный мотор.



Сидя в своей лаборатории на Земле, ученые получают все данные исследований, проведенных автоматической аппаратурой танкетки, видят на экране телевизора пейзаж Луны, управляют всей деятельностью своего механического разведчика

Конструктивные элементы, из которых должен состоять космический корабль, зависят от его назначения. Корабль, предназначенный для полета вокруг Луны и возвращения на Землю, будет отличаться от корабля для полета на Луну с посадкой на ней. Ракета для полета на Марс будет совершенно непохожа на «лунные» ракеты, — к ней уже будут предъявлены требования аэродинамики: на Марсе есть атмосфера.

Попробуем разобраться, как должен быть устроен корабль для облета Луны и возвращения на Землю. Сначала определим его отдельные части, а потом посмотрим, как их всего рациональнее собрать.

Итак, нам надо покинуть искусственный спутник и развить дополнительную скорость свыше 3 километров в секунду. Для этой цели нам нужно довольно значительное количество топлива. Записываем под номером первым: две большие цистерны топлива — одна для горючего, другая для окислителя. Кроме горючего, необходимо иметь реактивный двигатель. Записываем под номером два: небольшой жидкостной реактивный двигатель.

Долетев до Луны, ракета должна будет несколько затормозить скорость своего движения.

Торможение это может быть не очень велико — всего на несколько сотен метров в секунду. Но для этого также потребуется затратить топливо. Записываем номер три: два небольших бака с топливом для превращения корабля в искусственный спутник Луны.

Сделав несколько облетов вокруг Луны, корабль должен будет лечь на обратный рейс, чтобы вернуться на Землю. Для этого надо будет затратить примерно столько же топлива, сколько сожгли для превращения его в искусственный спутник Луны. Под номером четыре: еще два небольших бака.

Торможение на Земле будем осуществлять о земную атмосферу. Затрат топлива это не потребует, но совершенно очевидно, что в состав космического корабля должен будет войти планер специальной конструкции с выдвижными крыльями, герметической кабиной обтекаемой формы, какие обычно применяются в таких целях. Таким образом, пятая составная часть ракеты — это планер для посадки на Землю.

Кабина такого планера очень невелика. Работать в ней в течение длительного времени очень трудно. Поэтому для постоянного помещения астронавтов она не годится. Может быть, прицепить к ракете еще одну пустую цистерну для размещения лабораторий и экипажа?

Можно, конечно, сделать и так, но есть более простой выход. Почему бы не использовать под жилые помещения большие цистерны с горючим, которые опустеют через несколько десятков минут после отлета с искусственного спутника?! А первые минуты — отлет — экипаж проведет в тесной кабине планера.


Покинув измятый при посадке корпус ракеты, автоматическая танкетка потревожила своими гусеницами вековечную пыль Луны


Раз большие цистерны из-под топлива будут использованы для жилья экипажа на весь период полета, значит, они наряду с планером должны составить центральное ядро космического корабля. Их надо поставить рядом, притом лучше всего таким образом, чтобы из кабины планера можно легко перейти в эти цистерны.

Малые баки из-под горючего, которое будет сожжено при превращении космического корабля в искусственный спутник Луны, нам после этого момента уже больше не понадобятся. Вряд ли стоит везти их назад, на Землю; лучше отцепить и оставить вечно обращаться вокруг Луны. Можно установить на них небольшие автоматически действующие приборы с крохотной гелиоэлектростанцией, и они «вечно» будут сообщать нам свои показания. Видимо, таких космических «метеостанций», сообщающих «погоду космоса», будет немало в будущем разбросано по Вселенной. Раз мы решили «бросить» эти баки по пути, надо их прицепить где-нибудь с краю ракеты. Другой паре малых баков все равно суждено возвращаться на Землю: ведь они опустеют только тогда, когда обратный курс будет взят. Отцеплять их не имеет смысла.

Теперь попробуем разложить все по порядку. Итак, в центре большие цистерны с горючим и непосредственно примыкающая к ним кабина планера. К хвосту планера прицепим две малые цистерны, которые мы собираемся отцепить по дороге. С другой стороны к большим цистернам прицепим малые цистерны, которые возвратятся на Землю. А за ними — реактивный двигатель.

 Проект космического корабля, предназначенного для полета по маршруту: искусственный спутник Земли — искусственный спутник Луны — Земля. При полете с искусственного спутника Земли экипаж помещается в герметической кабине планера 1, а отделения цистерны 2 и 3 заполнены горючим и окислителем, затрачиваемыми при отлете на работу реактивного двигателя 4. Как только эти отделения освобождаются, экипаж превращает их в свои основные помещения. Для того, чтобы лечь на круговую орбиту вокруг Луны используется горючее и окислитель из баков 5 и 6, которые после этого отцепляются. Для того чтобы лечь на возвратный курс, сжигается топливо из баков 7 и 8. При входе в атмосферу Земли экипаж снова переходит в кабину планера, который отцепляется от остальных частей корабля и с помощью выдвижных крыльев производит планирующий спуск и посадку

Такое линейное размещение мы приняли тоже не без оснований. Ось направления действия реактивной силы работающего двигателя должна проходить через центр тяжести корабля, иначе он будет крутиться в космосе на месте, как крутится на воде корабль, если у него работает только один из двух рядом поставленных винтов. А обеспечить такое совпадение направления действия реактивной силы и положение центра тяжести легче всего, разметив все наши очень симметричные элементы корабля на одной оси симметрии. Какую форму должны иметь цистерны?

По возможности ту, которая обеспечивает максимальный объем при минимальной поверхности: то есть форма шара. Такими, по всей вероятности, и будут малые цистерны. Большие цистерны лучше всего использовать от космических кораблей, прилетевших на искусственный спутник с Земли. Они, по всей вероятности, будут цилиндрическими : ведь они должны вписываться в аэродинамическую форму «земных» ракет.

Соединение частей нашего космического корабля между собой не требует особой прочности. Оно только должно выдержать инерционные нагрузки, которые возникнут главным образом в момент отлета. Там, где соединения предусмотрены нами неразъемными, их можно осуществить простой сваркой с помощью нескольких прутков — накладок. Разъемные соединения можно сделать из трубок, наполненных взрывчаткой. При необходимости освободиться от части ракеты, следует взорвать электрическим током эту взрывчатку. Выходить из корабля для этой цели не надо.

Конечно, в действительности конструирование такого корабля будет проходить не так легко и просто, как в нашем рассказе. Каждый вариант конструкторы прежде чем принять решение подвергнут строгому математическому анализу, взвесят со всех сторон. Мы рассказали только о том общем логическом пути создания такого корабля так, как это нам сейчас представляется.

Итак, космический корабль для намеченной нами цели готов. Теперь надо оснастить его всем необходимым для жизни и для научной работы экипажа. Надо не забыть аппаратуру для регенерации воздуха, запаса пищи и питья, гелиоэлектростанцию для отопления и освещения, аппаратуру связи, запас ракет и костюмов для выхода в космическое пространство, приборы для научной работы, киносъемочную аппаратуру и т. д., и т. п. Дело это тоже не простое.

Но вот сборы окончены. Ровно гудит реактивный двигатель. Пассажиры ракеты сидят в тесной кабине планера. Корабль набирает скорость.

Прошло несколько десятков минут, и двигатель умолк. Корабль движется по широкой дуге эллипса, выходящего за орбиту Луны. Капитан корабля включает устройство, которое должно провентилировать опустевшие цистерны, удалить из них последние остатки топлива, сделать их приятными для жизни. Эта операция занимает свыше часа. Наконец, капитан открывает переднюю дверь кабины планера и входит в бывшую цистерну с топливом, превращенную в жилые помещения и лаборатории.

Стремительно распаковываются приборы, которые могло попортить топливо, все устанавливается на свои места. Экипаж приступает к намеченному циклу работ...

Но вот близка уже Луна. С помощью небольших боковых ракет капитан поворачивает корабль соплом вперед — снова гудение моторов, — и у Луны появился обитаемый искусственный спутник. Уже можно отцепить передние, ненужные, опустевшие баки. Делается это «мирным путем» — выключением державшего их электромагнита. Но баки все равно не желают отставать от ракеты, плывут совсем рядом с ней. Чтобы отделаться от них, кто-то из экипажа во время очередной прогулки выстрелил в них сигнальной ракетой. После этого толчка они начали медленно удаляться от корабля и наконец исчезли в космическом пространстве.

Выполнив всю программу исследований Луны, корабль снова включает реактивный двигатель и ложится на обратный курс... Всего несколько дней — и вот уже близка Земля. Экипаж вместе со всеми наиболее ценными приборами, с результатами исследований снова перебирается в кабину планера. Легкий толчок, и отделившаяся часть — вся остальная часть ракеты, кроме планера, — уплывает в темноту. Ей, не управляемой разумной волей человека и не приспособленной для полета сквозь атмосферу, суждено сгореть в воздухе. Только небольшие остатки, оплавленные обломки, может быть, достигнут поверхности Земли.



Самолеты-носители поднимают космический корабль в верхние слои атмосферы и сообщают ему часть требующейся скорости

Капитан корабля уверенно ведет планер в атмосферу. Регулируя вылет крыльев и глубину погружения, то словно ныряя в более плотные слои воздуха, то выскакивая в космическое пространство, медленно тормозит он движение планера. Обшивка планера нагревается при погружении в плотные слои атмосферы и охлаждается за счет теплоизлучения, когда планер снова попадает в космическое пространство. Хорошая теплоизоляция кабины предохраняет экипаж от таких резких скачков температур, но все-таки воздух нагревается так, что становится трудно дышать. Это длится в течение нескольких часов. И наконец, планер входит в плотные слои воздуха и идет на посадку на своем космодроме...

СОСЕДНИЙ МИР

Многие, наверное, читали роман знаменитого английского писателя Герберта Уэллса «Первые люди на Луне». Герои этой книги, попавшие на Луну, переживали там целый ряд приключений среди селенитов — жителей Луны, удивительно похожих на больших разумных муравьев, которые и самое Луну, по рассказу Уэллса, превратили в огромный муравейник, наделав в ней массу пещер, ходов, переходов, туннелей.

Этот роман написан около 50 лет назад. Умный и высокообразованный писатель не располагал в то время многими нашими сегодняшними сведениями о физической природе спутника Земли, и это дало ему в какой-то мере право считать Луну обитаемой.

Ну, а как же с сегодняшней точки зрения? Что найдут первые астронавты на Луне? Обитаема ли Луна?

В любом учебнике астрономии, в любой популярной астрономической книге вы неизбежно найдете подробную карту лунной поверхности, снимки отдельных участков ее, описание своеобразного ее рельефа. На карте Луны нанесены десятки тысяч деталей; ее видимая поверхность исследована куда лучше, чем некоторые области Земли. Измерена температура на ее поверхности, даже обнаружены остатки атмосферы, плотность которой не превышает 1/2000 плотности атмосферы Земли. Обнаружить газ, имеющий такое разрежение, не легко и в земных условиях.

Луна — мертвый мир, гласят все описания. Сутки там длятся 29,53 земных суток. Почти полмесяца тянется один лунный день. Не ослабляемые и не смягчаемые чрезвычайно разреженной атмосферой, лучи Солнца раскаляют ее поверхность до температуры в 100—120°. В тонкой пыли, покрывающей поверхность Луны, можно бы было не только печь яйца, но и варить супы, жарить бифштексы...

Ночью, не защищаемая шубой атмосферы, поверхность Луны стремительно охлаждается почти до 160° ниже нуля. Это такой трескучий мороз, какого нигде никто на Земле в естественных условиях не наблюдал.



Притормозив скорость работой реактивного двигателя и истратив на это последние остатки горючего, астронавты отцепляют планер и начинают планирующий спуск сквозь атмосферу

Столь низкие температуры на Земле можно получить только искусственно, с помощью дорогих и сложных холодильных машин. При этих температурах основные газы, составляющие атмосферу нашей планеты, — азот и кислород — могут находиться в жидком виде. 280 градусов — таков температурный перепад между днем и ночью на Луне.

Ничего подобного на Земле нет. Область с резко континентальным климатом — пустыня Сахара — может явиться лишь слабым подобием Луны. В атмосфере над гигантской территорией Сахары почти нет водяного пара, оказывающего экранирующее, смягчающее действие, нет там и водоемов, аккумулирующих тепло, а песчаная почва Сахары быстро нагревается и быстро остывает. Поэтому суточные колебания температуры здесь также очень велики — они достигают 50°. Днем путешественники изнывают от 50-градусной жары, а ночью не могут напиться: вода замерзает в их фляжках. Но это колебание температуры нельзя и сравнить с тем, что на Луне.

Впрочем, страшная жара на лунной поверхности днем — весьма условная вещь. В замечательной научно-фантастической повести К. Э. Циолковского «На Луне» случайно оказавшиеся на ее поверхности путешественники спасаются от жары в глубокой трещине. В этом, пожалуй, не было большой необходимости. Любой клочок тени от скалы является там естественным холодильником. Если когда-нибудь космические путешественники положат на поверхности Луны две фляжки с водой на расстоянии полуметра друг от друга, но одну на Солнце, а другую в тени, первую разорвут пары закипевшей воды, тогда как в другой вода замерзнет.

Высокая температура, наблюдаемая на поверхности Луны, не захватывает нижних слоев планеты; по всей вероятности, уже на глубине всего в несколько сантиметров колебания температуры не превышают десятка градусов. А на глубине около метра она всегда остается постоянной.

Шубой, защищающей наш спутник от действия как сверхвысоких, так и сверхнизких температур, является толстый слой пыли, мелко раздробленной, пористой, частицы которой почти не соприкасаются друг с другом и передача тепла между которыми осуществляется также только излучением.

Отсутствие воздуха, воды, крайне неблагоприятные температурные условия — все это и заставляет утверждать, что жизни на Луне нет.

Однако Луна совсем не мертвый, неизменный и неподвижный мир, как это кажется. И далеко не все знаем мы об этом самом близком к нам мире. Не мало еще загадочного на его поверхности, не мало вопросов поставил он нашим астрономам и астрофизикам.

Когда-то, когда впервые в телескоп обнаружили горы на Луне, пятна полярных снегов на Марсе, густые слои облаков на Венере, наблюдателей поражало сходство между планетами в нашей солнечной системе.

Сейчас больше поражает различие между ними. Действительно, очень мало похожего на наши земные образования находим мы на поверхностях исследованных с помощью телескопа планет, в том числе и на нашей Луне.

Для ее поверхности характерны гигантские цирки и кратеры, словно по циркулю проведенные кольца гор. Что это? Следы от падений огромных метеоритов или поднявшиеся из глубины планеты и лопнувшие на ее поверхности газовые пузыри? Ничего похожего на эти образования не знаем мы ни на Земле, ни на поверхности других планет.

Светлые лучи. В южном полушарии Луны расположен один из самых известных и красивых лунных кратеров — Тихо. От него во все стороны расходятся светлые линии, словно меридианы от полюса. Сотни и тысячи километров — длина этих линий. Окружены ими и некоторые другие кратеры. О происхождении и строении этих линий мы также ничего сказать не можем. Они — монопольная особенность нашего ночного спутника.

На скалистом южном берегу Моря Дождей находится сравнительно небольшой кратер Эратосфен. Едва первые лучи Солнца озаряют его дно, там начинаются удивительные изменения. В центре его возникает темное пятно, которое непрерывно расширяется. К середине лунного дня оно достигает максимальной величины, а затем начинает уменьшаться. Впечатление такое, словно огромные тучи каких-то насекомых выползают из глубины планеты и движутся вслед за солнечными лучами.

Советские астрономы твердо установили, что эти пятна не могут быть образованы тенями от каких-либо незаметных объектов. Действительный член Академии наук УССР Н. П. Барабашов объясняет это явление осаждением и испарением инея, закрывающего и открывающего более темную поверхность планеты. Возможно и еще одно объяснение: дно кратера Эратосфена состоит из пород, претерпевающих какие-то физические изменения под влиянием температуры. Окончательно тайну изменяющих свою величину и форму «темных пятен», наблюдающихся не только в кратере Эратосфене, а и в других местах Луны, смогут раскрыть только космические путешественники.



По наблюдениям Луны в телескоп мы можем представить себе, как выглядит ее поверхность. Как не похож этот ближайший к нам мир на нашу Землю!

Не мало и других, «довольно странных и загадочных», по выражению Н. П. Барабашова, изменений открыто на Луне астрономами. И объяснения их, которое дадут космические путешественники, могут оказаться весьма и весьма неожиданными...



Художник Н. М. Кольчицкий

Такова Луна — такой, казалось бы, на первый взгляд, известный нам и такой таинственный соседний мир, первый, на который ступит нога посланцев Земли, разведчиков космического пространства.

ЛУНА-ГОРОД

Космический корабль весьма странной формы — мы уже знаем, как получается такая, на первый взгляд, предельно несообразная форма корабля, «собираемого» из отдельных кусков, — яростно ударяя в каменную почву Луны струей раскаленных газов, тяжело сел на широко раздвинувшуюся треногу. На мгновение он качнулся — одна из опор попала в неглубокую трещину, — но тут же выровнялся: автоматы удлинили эту опору, пока она твердо не оперлась о дно трещины. Стремительно опала поднятая выхлопными газами пыль, и снова все стало неподвижным в этом мертвом мире, покой которого был на несколько мгновений нарушен спуском корабля. Кажется, что и его муравьиноподобное тело с узкими перешейками между круглыми цистернами станет отныне неподвижной частью пейзажа.

Но, нет, не таковы нежданные гости из космоса, посадившие здесь свой корабль. Это беспокойные гости — люди с Земли. И с того самого дня, когда нога первого человека оставит свой след в вековечной лунной пыли, никогда уже не обретет ночной спутник своего былого спокойствия.

В одной из секций космического корабля беззвучно открылась дверца (звуки здесь, на Луне, передаваться могут только через почву, а она, пористая и раздробленная, плохой проводник звука), и легкая капроновая лестница падает из нее наружу. По ней спускается человек в костюме, похожем на водолазный. Скафандр этого костюма из прозрачной пластмассы. Сквозь него виднеется молодое лицо с внимательными живыми глазами, в которых трепещет восторг.

Еще бы, этому человеку, спускающемуся по капроновой лестнице, выпала честь первым ступить на почву другой планеты. От нетерпения он прыгает вниз с высоты 6—7 метров и медленно «приземляется», нет, — «прилуняется». А за ним уже спускаются второй пассажир корабля, третий...


На мертвые камни Луны ступили первые астронавты. Развернуты надувные дома, соединенные надувными же коридорами из прозрачной пластмассы. Гелиоэлектростанция дает первый ток, установлена прочная радиосвязь с Землей. Наш вечный спутник стал обитаемым


Они становятся в круг, и легкий алюминиевый шест поднимается на почве Луны. А на нем — не колеблемое ветром, неподвижно висящее, но до слез волнующее окружающих — алеет полотно советского флага...

Первые шаги первых людей на Луне.

Первым пристанищем космических путешественников может служить сам корабль. По его обжитые каюты тесны, неудобны. В них нельзя разместить даже все то научное оборудование, которое лежит в грузовых отсеках. А ведь новая аппаратура будет поступать с автоматическими ракетами. Луна должна быть обжита по-настоящему.

Захватив геологический молоток, делая с шестом громадные, 20-метровой длины прыжки, один из членов экипажа отправляется к ближайшей группе скал. Что может предложить Луна ее первым обитателям? Неужели только покрытый пылью камень, раскаленный днем и промороженный ночью?

Нет, мир Луны оказался гостеприимнее. В ближайших же отрогах гор, всего в нескольких километрах, обнаружены пещеры самых разнообразных величин и форм. Их разветвляющиеся ходы то расширяются в гигантские залы, то сужаются до размеров щели. Что ж? Это уже первое пристанище.

Астронавты забирают с собой огромные тюки вещей — на Земле каждый такой тюк не поднять и пятерым — и направляются к облюбованным пещерам. В одной из них, наиболее приглянувшейся им, устраивается первый лунный дом.

Этот дом астронавты принесли на себе. Вот уже разложено на выровненном дне пещеры круглое пластмассовое полотнище. Один из астронавтов присоединяет к нему нечто вроде металлического шкафа, у которого вместо задней стенки почему-то тоже сделана дверь. Это и будет дверью в жилище астронавтов, двойной дверью, которая будет служить шлюзом для входа и выхода в дом. Двери эти можно будет открывать только поочередно: вторую после того, как будет закрыта первая. Если открыть две двери сразу, воздух из дома уйдет, смешается с редкой атмосферой Луны.

Другой астронавт между тем подсоединяет к вентилям развернутого полотнища трубопровод от баллонов со сжатым воздухом. «Дом» начинает раздуваться, как детский шар. И вот он уже стоит в пещере, освещаемый резкими лучами электрических ламп астронавтов.

Он — полукруглый, похожий на снежный чум, который строят себе жители Гренландии. Диаметр этого полушара — около восьми метров, высота — чуть больше трех. Открыв двери ключом и соблюдая все предосторожности, чтобы не выпустить воздух, астронавты с необходимыми вещами входят внутрь его. Первое лунное новоселье!

Впрочем, тут все «первое», и удивляться этому не следует. Войдя внутрь, астронавты не спешат снять с себя костюмы. Надо жилище сначала прогреть. В этой пещере царит адский холод — минус 100°! Ведь сюда никогда не проникают прямые лучи Солнца. И астронавты, включив электропечи, следят, как медленно поднимаются в трубках струйки не замерзающих при сверхнизких температурах жидкостей. 15° ниже нуля, и температура продолжает подниматься. Ну, пора раздеваться.

Помогая друг другу, астронавты снимают прозрачные шлемы и надоевшие костюмы, которые в значительной степени затрудняют движения. Наконец-то можно протянуть руку и пожать протянутую тебе навстречу дружескую ладонь, не отделенную двойным слоем резины!

Небогата первая обстановка первого лунного дома. Прежде всего здесь аппараты для регенерации воздуха. Давление его здесь довольно значительно, лишь процентов на 30 ниже, чем на Земле, на уровне моря. Но парциальное давление кислорода в этом воздухе даже несколько больше, чем на Земле, и поэтому никаких неудобств обитатели не испытывают. Да и в течение всего перелета на корабле они дышали такой разреженной, но обогащенной кислородом смесью. Пользование такой смесью позволяет несколько уменьшить общее количество забираемого с собой в космический полет воздуха.

Во-вторых, — электропечи для обогрева и аккумуляторы для их питания и освещения на первое время...

Да, тепло здесь надо беречь. Аккумуляторов хватит не надолго. И хотя двойная пластмассовая стенка дома обладает не очень большой теплопроводностью, ее надо еще уменьшить.

Теплоизоляционных материалов на Луне — хоть отбавляй. Она вся покрыта ими. Это та пыль, которой покрыта Луна.

И после непродолжительного отдыха, снова надев свои костюмы и выйдя на поврехность Луны, астронавты обсыпают свой дом со всех сторон пылью, которую собирают с поверхности планеты. Работается здесь легко. Очень помогает уменьшение силы тяжести. И теплоизоляционный слой пыли — целый холм, под которым укрылся пластмассовый дом астронавтов, удалось насыпать за какие-то полчаса.

Ну, жилье в основном готово. Здесь, под покровом пещеры, астронавты могут не бояться удара какого-нибудь шального метеорита. А потом, исследовав воздухопроницаемость ее сводов, может быть, приняв какие-нибудь искусственные меры вроде специальной обмазки или покраски, плотно замуровав все щели и выходы, кроме одного, удастся превратить в жилище всю пещеру... Это было бы очень кстати. Многие исследования, можно будет проводить в этой обогретой и освещенной пещере, наполненной воздухом, привезенным с Земли...

И, наконец, первый сон на Луне.

Нет, совсем не так уж плохо, как может показаться на первый взгляд, оборудован лунный домик. Оказывается, у него внутри есть и пластмассовые же мягкие и удобные стулья, и гамаки, и даже несколько столиков для работы. Все это органически входит в его устройство и само встало на свои места, когда в него пустили воздух.

Правда, в нем нет окон. Но они и не нужны... И уставшие астронавты поудобнее устраиваются в гамаках.

Счет времени астронавты ведут не по лунным, а по земным дням, ибо здесь все еще продолжается раннее утро. Солнце за 20 с лишним часов с момента прибытия ракеты чуть-чуть поднялось по небу. Следующий день также был весь занят трудом. Прибыла первая автоматическая ракета с грузом. Она опустилась всего в 2 километрах от ракеты, привезшей астронавтов, и по счастливой случайности даже ближе к жилищу астронавтов, чем первая. Разгрузив ракету, обнаружили дополнительные запасы кислорода, небольшой автомобиль-вездеход — на гусеничном ходу, с герметической кабиной и прозрачным пластмассовым кузовом, — горючее для автомобиля. Автоматические ракеты с грузами теперь будут поступать беспрерывно. Земля не оставит своих посланцев без поддержки.

На следующей ракете прибывает гелиоэлектростанция. Это и необходимо. Аккумуляторы были в значительной степени разряжены еще в полете, сейчас не малое количество энергии уходит на отопление и освещение, на питание приборов и радиосвязь.

Астронавты на открытом месте, освещаемом лучами Солнца, начинают собирать из отдельных частей свою гелиоэлектростанцию. Она ничем по существу не отличается от гелиоэлектростанций, используемых на космическом корабле. Специальное часовое устройство поворачивает ее узкое и длинное изогнутое зеркало вслед за Солнцем. И под сводами пещеры вспыхивают ожерелья электрических лампочек. Сколько веков не знали эти своды ни одного луча света — и вот они озарены потоками лучей. А навстречу этим зажженным человеком огням вспыхивают другие — на стенах, на полу, на сводах пещеры. Это отблески огней, дробящихся в гранях кристаллов, среди которых, наверное, не мало драгоценных...

Гелиоэлектростанция работает непрерывно, на полную мощность. Ведь за оставшееся время лунного дня надо зарядить аккумуляторы на всю лунную ночь. Астронавты разбирают свой корабль, на котором они еще должны будут вернуться на Землю, и с помощью специального лунного автомобиля по частям свозят его в свою пещеру. Это делается тоже в виде предосторожности от метеоритов. На незащищенной поверхности Луны остаются только гелиоэлектростанция, антенны радиосвязи и радиотелескопа да временное помещение обсерватории, под которую переоборудован один из пустых баков из-под горючего.

Второй пустой бак находится в пещере; он служит складом горючего. В случае нужды его можно будет использовать и для жилья...

Примерно так представляем мы себе сегодня первое поселение человека на Луне. Наверное, не все мы здесь предусмотрели, не все угадали, не все правильно предвидели. Действительность очень скоро внесет свои коррективы. Но абсолютно ясно одно: этот полет на Луну с целью обосноваться на ней обязательно состоится. Земля пришлёт своим посланцам все для жизни, научной работы. И с каждым днем все дальше от первого лагеря будут уводить отпечатанные, в пыли следы гусениц, вездехода. Все более широкие районы включатся в круг исследований.



Первое жилище на Луне — клочок уюта на поверхности этого негостеприимного мира. Внутренняя обстановка его должна удовлетворить основным требованиям: быть легкой, компактной и удобной

Разрастется и лунный город. Новые и новые люди будут прилетать сюда на смену и в добавление к проработавшим здесь положенное время. Новые пещеры приспособят они для жилья, для складов, для работы. И не только с Земли будет поступать сюда все для поддержания жизни первых лунных поселенцев. Свои собственные ресурсы откроет Луна людям. Может быть, будут найдены залежи ископаемого льда, а это даст не только воду для питья, но и кислород для дыхания. Ведь воду можно разложить на кислород и водород с помощью электрического тока. Будут сооружены лунные оранжереи и парники, и почва Луны станет плодоносить. Может быть, будут найдены залежи самородных металлов, серы и других ископаемых, которые легко смогут использовать первые поселенцы.

Настанет время, и на том месте, где стояла пластмассовая палатка, вырастет на Луне целый промышленный город — космопорт, научный центр и пересадочная станция космических кораблей, отправляющихся в дальние маршруты.

Это, конечно, будет не скоро. Гораздо позже того, как первый пластмассовый домик, развернутый на Луне, привезут обратно на Землю и выставят в музее — рядом с грозоотметчиком Александра Попова и паровозом Стефенсона.

КОГДА ЭТО ПРОИЗОЙДЕТ?

Однако «открытие Луны» — первое посещение ее человеком — произойдет еще не сегодня и не завтра. Это только в научно-фантастических романах гениальный изобретатель строит космический корабль и отправляется на нем сразу на Луну или на Марс, а то и сразу на несколько планет проездом. В действительности проблема космических путешествий столь грандиозна, что решение ее не под силу не только одному, а целой дюжине гениев. Лишь напряженный труд многих и многих ученых разных специальностей позволит решить эту задачу. Кроме согласованных дружных усилий, труда десятков тысяч людей, решение этой проблемы потребует и времени. Ведь оно может быть осуществлено только последовательно, этап за этапом.

Доктор физико-математических наук проф. В. В. Добронравов, проанализировав темпы развития современной науки и техники, учитывая актуальность и важность проблемы космических сообщений, наметил такие предположительные сроки решения отдельных этапов великой задачи — космического полета. По мнению проф. В. В. Добронравова, решение проблемы космического полета можно разделить на три этапа.

Первый этап — создание автоматических ракет, способных подниматься на высоту в 300—400 километров. Эта задача в настоящее время в основном решена. Первый этап завершается созданием автоматического искусственного спутника Земли, подобного тому, конструкцию которого, предложенную проф. Зингером, мы уже описывали.

Проф. Добронравов считает самой крайней датой создания такого спутника 1965 год.

Мы уже знаем, что создание автоматического искусственного спутника Земли, который будет двигаться по круговой орбите в верхних слоях атмосферы на высоте в 320—350 километров, является задачей сложной, но разрешимой, с точки зрения нашей современной техники. И сообщение о практическом осуществлении этой задачи может появиться в любой день — завтра, через неделю, через полгода. В ряде стран уже запланированы на 1957 год первые запуски искусственных спутников.

Следующий этап — проникновение человека в космос. Сначала — первые полеты в специально оборудованных ракетах, затем первый «обитаемый» искусственный спутник, а затем и создание космического острова — передового бастиона человечества на пути к звездам. Этот этап, видимо, завершится полетом ракеты с экипажем вокруг Луны. 1980 год — такова ориентировочная дата этого полета.

Наконец, третий этап — посещение Луны и ближайших планет нашей солнечной системы с высадкой на их поверхности. Ориентировочная дата первого такого полета — на Луну — с возвращением на Землю — около 2000 года. Сроки, предположительно намеченные проф. В. В. Добронравовым, надо считать скорее пессимистическими, чем обнадеживающими. Несмотря на гигантскую сложность всей проблемы в целом, сроки на решение отдельных ее этапов, по нашему мнению, следует сократить минимум вдвое по сравнению с названными В. В. Добронравовым.


Уста премудрых нам гласят:
Там разных множество светов,
Несчетны солнца там горят,
Народы там и круг веков.

М. В. Ломоносов




ГЛАВА ВОСЬМАЯ



К ЖИВЫМ —ЖИВЫЕ

сли не будет изобретен и применен атомный реактивный двигатель, полеты на Луну, Марс, Венеру с высадкой на их поверхностях будут чрезвычайно дорогими и сложными предприятиями. Они будут возможны только с искусственного спутника — космического острова. Для осуществления их придется в сложных условиях космического пространства собирать чрезвычайно громоздкие, тяжелые космические корабли, может быть, состоящие из нескольких ступеней. Однако это под силу современной технике. Мало того, уже имеются хорошо разработанные проекты экспедиций для посещения ближайших планет солнечной системы.

Один из таких проектов предполагает, что сборка космической армады осуществляется на искусственном спутнике. Трехступенчатые корабли-паромы — по расчету их потребуется несколько десятков штук — в течение нескольких месяцев доставляют на круговую орбиту требующееся количество горючего, оборудования, приборов, части кораблей, которые отправятся в дальний полет. Целая армада — десять гигантских космических кораблей, начальный вес каждого из которых равен 3720 тоннам, — будет снаряжена для полета к концу подготовительного периода.

Это будут гигантские корабли, совершенно непохожие внешне на те ракеты, которые доставили их части и все оборудование с Земли на искусственный спутник. Они будут составлены из отдельных баков с горючим, часть из которых, видимо, будет шарообразной. Эти баки — космические цистерны — будут представлять собой по существу каучуковые или резиновые мешки. Крепость их стенок может быть не очень большой, так как им надо будет выдержать только инерционные ускорения, не очень большие по величине.

В соответствующий момент включатся двигатели кораблей, армада покинет круговую траекторию и ляжет на гиперболическую, которая затем перейдет в эллиптическую, касательную к орбите Марса. Несколько более часа продлится работа моторов каждого корабля, так как развиваемая ими тяга не велика — всего около 200 тонн. Но за этот час затрачивается большая часть всего горючего, которое запасено на кораблях. Вес каждого корабля в тот момент, когда двигатели будут выключены, составит всего 906 тонн.

Двести шестьдесят дней продлится полет в космическом пространстве, и к концу этого срока армада приблизится к красноватому шару Марса. Снова включаются двигатели кораблей, и армада ложится на круговую орбиту вокруг Марса. Еще меньше становится вес кораблей. Каждый из них весит уже всего 410 тонн.

Теперь необходимо совершить высадку на поверхность планеты. Для этого используются три посадочные лодки. Они снабжены широкими крыльями для планирования и торможения в разреженной атмосфере Марса. Общий полезный груз, который опустят на поверхность планеты эти лодки, составит около 150 тонн. Этого достаточно, чтобы привезти сюда средства передвижения по поверхности планеты, надувные домики, исследовательскую аппаратуру — все необходимое для большой комплексной экспедиции ученых в составе 50 человек на срок свыше 400 дней.

Сначала в районе полюса планеты осуществляет посадку только одна посадочная лодка. По всей вероятности, будет целесообразно посадку ее произвести на лыжи. Она останется навсегда на Марсе, поэтому вместо горючего, необходимого для взлета, она будет загружена оборудованием, автомобилями-вездеходами и т. д. Около 125 тонн полезного груза привезет она на Марс. Ее экипаж сразу же начнет разведку поверхности Марса, подыскивая в экваториальной области удобные площадки для приземления двух других посадочных лодок, имеющих в своих баллонах горючее для обратного взлета на круговую орбиту и несущих по 12 тонн полезного груза. Посадка этих лодок будет осуществлена на колесные шасси.

Марс меньше Земли, сила тяжести на нем меньше, и окружная скорость, при которой тело становится спутником этой планеты, лишь немногим больше 3,5 километра в секунду. Поэтому для взлета с поверхности Марса на его круговую орбиту достаточно одной ступени ракетного корабля.

Оставив на Марсе лишнее оборудование, отцепив крылья и шасси, которые были нужны при посадке, но уже не понадобятся при взлете, уложив в кабины собранные коллекции, записи, образцы, весь состав экспедиции соберется в пассажирских каютах двух посадочных лодок, опустившихся у экватора. Снова загремят реактивные моторы, развивая у каждой лодки тягу в 200 тонн.

Свыше 110 тонн топлива потребуется сжечь каждой лодке для того,, чтобы лечь на круговую траекторию, да еще по нескольку тонн для того, чтобы согласовать свое движение с оставленными на круговой траектории семью космическими кораблями. Три корабля, доставившие сюда посадочные лодки, остаются на орбите искусственного спутника Марса.

Достигнув орбиты этих кораблей, весь экипаж экспедиции равномерно разместится в их каютах. Вес каждого из них составляет около 408 тонн, включая 222 тонны горючего, необходимого для того, чтобы лечь на обратный курс, достигнуть Земли и стать ее искусственным спутником.

Этот проект организации космической экспедиции на Марс выдвинул В. Браун. Проект довольно тщательно разработан с инженерной точки зрения; он осуществим средствами современной техники. Основным препятствием для его осуществления, по мнению Брауна, является высокая стоимость организации этой экспедиции. Причем основные затраты связаны с необходимостью сосредоточить на орбите искусственного спутника Земли исходный груз экспедиции — те 37 200 тонн, которые составляют вес десяти ее космических кораблей вместе с горючим.

Ведь для того чтобы забросить туда этот груз, надо совершить около тысячи рейсов с Земли трехступенчатых ракет, причем на каждый рейс необходимо затратить 5580 тонн горючего. Общие же затраты его достигнут 5 млн. 580 тыс. тонн. Стоимость этого горючего и составляет основную часть всех затрат на снаряжение экспедиции. Затраты на всю остальную часть полета — с орбиты искусственного спутника на Марс и обратно — составят едва ли больше процента от стоимости этого горючего.

Вот какой громоздкой, неудобной получается космическая армада для полета на Марс с использованием жидкостного двигателя. Примерно такой же будет и экспедиция на Венеру или на Меркурий.

Положение резко изменится, когда будут созданы реактивные двигатели, работающие на энергии расщепленного ядра атома. В отсеках для горючего одной ракеты можно будет разместить столько расщепляющихся материалов, что их хватит и на взлет с Земли, и на посадку на соседней планете, и на возвращение на Землю. Да еще в пути не придется волноваться о том, что горючего не хватит...

Армада ли многоступенчатых жидкостных космических кораблей, стремительная ли космическая ракета с двигателями, работающими на атомном горючем, — это сейчас сказать трудно, но экспедиция с Земли сравнительно скоро отправится на соседние нам планеты. И видимо, первой, которую посетят наши астронавты, будет Марс.

Таинственный Марс. Таинственный соседний с нами мир в солнечной системе, так похожий на нашу Землю. Яркокрасная, как сверкающий рубин, звезда, о которой еще в глубокой древности начали складывать легенды.



Загадочный сосед Земли — Марс. По всей вероятности, он будет первым после Луны небесным телом, на которое ступит нога астронавта с Земли

Марс значительно меньше нашей Земли — его диаметр составляет всего 6780 километров, а масса всего 0,1 массы Земли. Он движется по орбите со скоростью 24,1 км/сек на среднем расстоянии от Солнца, в 1,5 раза большем земного. Этот путь он проходит за 686,98 земных суток. Он вращается вокруг своей оси за 24 часа 37 минут 23,6 секунды. Эта ось вращения наклонена к плоскости орбиты почти так же, как земная ось, и поэтому на Марсе происходит смена времен года почти так же, как на Земле. За это сходство Марс иногда называют двойником Земли.

Марс окружен атмосферой, значительно более разреженной, чем Земля, и отличающейся от нее по химическому составу и строению. Во всяком случае в ней во много раз меньше и кислорода и воды, чем в земной. В этой атмосфере плавают облака, из которых выпадают твердые осадки — иней; в ней клубятся вечерние и утренние туманы.

Полюса Марса покрыты белыми шапками, величина которых изменяется в зависимости от времени года. Зимой белые шапки увеличиваются, летом уменьшаются. Наверное, так же выглядит из космического пространства изменение величины снежных покровов на Земле. Весной граница снегов отступает далеко к полюсу, осенью и зимой приближается к экватору. Путем специальных исследований удалось установить, что белые шапки Марса действительно образованы ледяным покровом.

Но на этом и кончается сходство между планетами-близнецами. Поверхность Марса нигде не покрыта сколь-либо значительным водным пространством. От полюса до полюса это ровная, гладкая поверхность суши. На ней нет сколько-нибудь значительных горных цепей, скал, холмов. Весь рельеф Марса состоит разве только из дюн, барханов, ветровой песчаной ряби, мелких трещин.

Климат на Марсе суровый, значительно более суровый, чем на Земле. Зимой поверхность Марса даже днем имеет очень низкую температуру: от минус 50 до минус 80°. В экваториальной зоне в полдень температура поднимается до плюс 25°, однако ночью она также падает значительно ниже нуля. В полярных областях в течение непрерывного летнего дня температура долгое время держится в пределах от 0 до плюс 15°.

Совершенно гладкая красноватая поверхность Марса, однако, имеет целый ряд резко различимых темных пятен. Эти пятна по привычке называют «морями», хотя, по всей вероятности, это просто более увлажненные участки почвы Марса, частично покрытые растительностью.

Окраска марсианских «морей» изменяется в зависимости от времен года. Те моря, которые находятся в экваториальной части планеты, большую часть года имеют голубую, серо-голубую и серо-зеленую окраску. Между весной и осенью некоторые из них приобретают зеленый оттенок.

«Моря» и «заливы», находящиеся в умеренном поясе планеты, имеют голубую и зеленую окраску только в летний период. Причем, чем ближе располагается темное пятно к полюсу, тем короче у него период зеленого и голубого цвета. Осенью эти пятна приобретают коричневый оттенок.

Все это удивительно похоже на изменения цвета наших земных растительных покровов. Но как все-таки доказать, что на Марсе есть жизнь, хотя бы растительная? Как окончательно убедиться в том, что не везде посланцы Земли во время своих космических полетов будут встречать только мертвый хаос скал, застывших гранитных глыб, ядовитые метановые вихри?

Ответил на эти вопросы советский ученый член-корреспондент Академии наук СССР Гавриил Адрианович Тихов.

Тихов решил твердо доказать, что темные, изменяющие свой цвет пятна на Марсе — области растительности. Для этого он обратился к исследованию свойств земной растительности.

Фотографам хорошо известно, что, если в яркий солнечный день снять сосну или ель сквозь светофильтр, пропускающий только невидимые глазом инфракрасные лучи, дерево на снимке получится белым, словно усыпанным снегом. Большинство земных растений отражает инфракрасные лучи целиком, почему и получаются такие снимки.

Тихов изучил фотографии Марса, сделанные в инфракрасных лучах. Если «моря» и «каналы» Марса на них получаются белыми, рассуждал Тихов, значит, они представляют собой области, покрытые растительностью, подобной земной.

Но на полученных снимках ему не удалось рассмотреть белых пятен — марсианские «моря» не отражали инфракрасных лучей.

Тихов снова вернулся к исследованию свойств земных растений. Оказалось, что хорошо отражают инфракрасные лучи только южные растения, живущие в теплом климате. Они получают от Солнца столько тепла, что им уже не нужно тепло инфракрасных лучей, и они отражают их.

Иначе ведут себя северные растения: ель, можжевельник, морошка или мхи. Им, жителям холодных областей земного шара, не слишком избалованным щедротами солнечных лучей, приходилось для поддержания своей жизнедеятельности поглощать и видимые лучи и инфракрасные. И на снимках в инфракрасных лучах они не получались белыми, как не получались белыми и марсианские «моря».

Мы уже говорили, что Марс находится в полтора раза дальше от Солнца, чем Земля, почему климат там значительно более холодный и суровый, чем на Земле, похожий, может быть, только на климат наших полярных областей. Растения Марса должны поэтому походить на растения северных широт нашей планеты.

Так казавшийся сначала неудавшимся опыт фотографирования Марса в инфракрасных лучах стал убедительным доказательством существования там растительной жизни. «Вероятно там (на Марсе), — пишет Г. А. Тихов, — живут вечнозеленые растения типа наших мхов, плаунов и жестколистных приземистых растений вроде брусники, клюквы, морошки. Могут жить низкорослые деревца, похожие на земные карликовые березки и ивы».

В настоящее время исследования о существовании растительности на других планетах и в первую очередь на Марсе вылились в целую науку — астроботанику. В составе Академии наук Казахской ССР создан и плодотворно работает под руководством Г. А. Тихова специальный сектор астроботаники. Ученые, работающие в этой области науки, ищут и находят новые факты, подтверждающие и уточняющие наши знания о жизни на других планетах. И сегодня мы можем быть твердо убеждены, что Земля — отнюдь не единственная носительница жизни в нашей солнечной системе, что, очутившись на Марсе, космические путешественники найдут там жизнь хотя бы растительную.

Настанет время, и на Земле в специальных теплицах, в которых будут искусственно созданы условия, подобные марсианским, будут высажены семена привезенных оттуда растений. Может быть, среди них найдутся и такие, которые приспособятся к климатическим условиям некоторых областей нашей Земли. Среди них могут оказаться и чрезвычайно полезные для человека, обладающие удивительными свойствами...

Космические путешественники, видимо, привезут и на Марс семена земных растений. Трудно сказать, каковы возможности в этой области и какие результаты может принести обмен флорой между планетами...

А есть ли на Марсе фауна — животные, птицы, насекомые, разумные существа? На этот вопрос в настоящее время ответить трудно, почти невозможно. Но, по всей вероятности, развитие органического мира там не должно остановиться на создании растительных форм жизни, оно неизбежно должно создать и животные организмы.

В связи с этим необходимо упомянуть еще об одном интереснейшем явлении, наблюдаемом на Марсе, его «каналах».

Впервые «каналы» на Марсе — геометрически правильные полоски тянущиеся от одного «моря» до другого, — обнаружил итальянский ученый Анджело Секки почти 100 лет назад — в 1859 году. Он же дал им это злополучное название, ставшее позже причиной стольких недоумений, но зато усилившее интерес к Марсу со стороны не только астрономов.

Существование каналов подтвердил другой итальянский ученый — Скиапарелли. Его поразила геометрическая правильность этих образований на поверхности Марса, пересекающих в разных направлениях его рыжевато-красные пустыни. Скиапарелли обнаружил и другие закономерности в их строении: они никогда не обрывались на полпути, выходили из «морей» и, «озер» и в «моря» и «озера» впадали. Если каналы пересекались или встречались, на этом месте можно было заметить небольшое пятнышко.

В 1893 году Скиапарелли напечатал статью, в которой высказал предположение, что «каналы» Марса построены разумными существами, что с помощью этих каналов марсиане распределяют по поверхности своей планеты скудные запасы воды, образующиеся при таянии снегов и льдов полярных шапок и что, конечно, не сами каналы видны в телескопы, а широкие полосы полей и садов, выращенных трудолюбивым населением планеты вдоль этих каналов...

В настоящее время наиболее вероятно предположение, что каналы действительно представляют собой узкие полосы растительности. Изменение цвета этой растительности идентично с изменением цвета растительности марсианских «морей». Мало того, изменение цвета каналов происходит не сразу, а начиная от полярных шапок весной — как будто тающая вода течет по их руслам со скоростью 3,4 километра в час, и по мере ее продвижения пробиваются из почвы ростки растений... Но спор о происхождении «каналов» не снят с повестки дня до сих пор.

В сентябре 1956 года произойдет «великое противостояние» Марса. Две планеты сблизятся на предельно близкое расстояние — между ними будет «всего» 56 млн. километров. Астрономические трубы различных величин и систем нацелятся на красную планету. Может быть, раскроют, наконец, тайну марсианских «каналов».

А если астрономических методов окажется недостаточно, окончательно спор о каналах разрешат астронавты. С нашей точки зрения, гипотезы о том, что «каналы» — это какие-то своеобразные разломы в почве Марса, еще менее убедительны, чем предположение о создании разумными обитателями этой планеты грандиознейшей оросительной системы. И главное — почему это невозможно? Почему только на Земле материя смогла развиться до своей высшей формы, когда она начинает постигать самое себя? Почему Земле должна быть отдана привилегия быть единственной носительницей разума в нашей планетной системе?

На это обычно отвечают: а почему марсиане, сумевшие построить столь изумительную ирригационную систему, не прилетают к нам на Землю?

А почему мы до сих пор не прилетаем на Марс? Мы, создающие на поверхности нашей планеты целые искусственные моря? Наши сооружения не уступают по грандиозности марсианским, особенно если мы учтем сжатые сроки наших строек и пониженную силу тяжести на Марсе, составляющую там всего 0,38 земной. А вспомним грандиознейшие и совершеннейшие оросительные системы, создававшиеся древними народами тысячи лет назад, — в Египте, Ассирии, Китае, Хорезме. Ведь эти оросительные системы создавались еще тогда, когда люди и не мечтали о межпланетных перелетах. И может быть, как раз сейчас развитие марсианской техники стоит накануне космического полета для открытия Земли, подобно тому как наша техника рассчитывает свои силы для полета на Марс...

Во всяком случае астронавтам, которые первыми прилетят на эту бесспорно несущую на себе жизнь планету, надо будет предучесть возможность встречи с разумными ее обитателями, стоящими не ниже их на лестнице знания, культуры, развития...

ПЛАНЕТЫ, О КОТОРЫХ МЫ НИЧЕГО НЕ ЗНАЕМ

Как, разве есть в солнечной системе такие планеты?

Едва зайдет Солнце (или перед его восходом), в лучах зари можно нередко видеть удивительно красивую, переливающуюся голубоватым блеском звезду. Она носит имя древней богини красоты — Венеры. Другие ее — древние же названия — утренняя или вечерняя звезда.

Конечно, астрономы давно уже измерили и взвесили эту планету. Оказалось, что она является ближайшей соседкой Земли. Она может приближаться к Земле на расстояние 39 млн. километров — на 16 млн. километров ближе, чем Марс. Орбита Венеры находится внутри орбиты Земли; эта планета ближе к Солнцу, чем Земля. Ее диаметр чуть меньше земного — 12 400 километров, и она покрыта толстым слоем атмосферы, открытой в 1761 году М. В. Ломоносовым.

Кое-что астрофизики могут сообщить будущим астронавтам и об этой атмосфере.

Прежде всего они расскажут о том, что она непрозрачна, в ней плавают густые облака, по всей вероятности, водяного пара, которые, подобно чадре, скрывают от нас лицо этой красавицы-планеты. По величине сумерек считают, что толщина этой атмосферы в три-четыре раза больше, чем земной. Сообщают астрофизики и температуру верхнего слоя облаков Венеры — около плюс 50° на освещенной стороне и около минус 23° на ночной. О химическом составе атмосферы Венеры окончательных данных нет. Есть сведения, что ее верхние слои содержат большое количество углекислого газа, азот, но почти не содержат кислорода.

Венера находится к Солнцу значительно ближе, чем Земля. Полярные сияния, которые трепещут в высоких слоях атмосферы над приполярными областями земного шара, вызываются проникновением туда потоков корпускул, летящих от Солнца. На Венеру таких частиц, исторгнутых Солнцем, попадает значительно больше, чем на Землю. Интенсивность полярных сияний на ней должна быть значительно большей, чем на Земле. В последнее время это удалось подтвердить наблюдениями.

А попробуйте спросить астрономов и астрофизиков о строении поверхности Венеры, о физических условиях, которые найдут там будущие астронавты. Покрыта ли поверхность этой планеты бескрайним кипящим океаном, из которого только кое-где высовываются извергающие дым и огонь вершины вулканов? Представляет ли она собой песчаную пустыню, с поверхности которой тугие вихри сгущенной атмосферы подхватывают тучи пыли, которая и закрывает от нас планету? Или это непроходимые джунгли густой яркокрасной и оранжевой растительности: могучие пальмы с широкими листьями свекольного цвета, лианы с темновишневыми стволами, красная, словно кровью политая, трава? Какая там температура и сколько времени длятся сутки? Даже на эти «простые» вопросы ответов еще нет.

Так разве можем мы говорить, что человечество уже открыло Венеру — прекрасную утреннюю звезду, которой любовались еще пастухи древнего Вавилона? И сможет ли оно открыть эту планету, узнать о ней хотя бы столько, сколько мы знаем о Луне и о Марсе?

По всей вероятности, нет.

Совершенствование уже известных методов исследования, таких, как спектральный анализ, может быть, даст ответ на некоторые вопросы, например о составе атмосферы Венеры. Увеличение мощности радиолокаторов и повышение точности радиолокационной разведки, возможно, позволят определить первые очертания материков. Но окончательно открыть Венеру смогут только астронавты на космических кораблях.

Первые полеты на Венеру, по всей вероятности, будут разведочными, без посадки на этой планете. Приблизившись к загадочной планете, командир корабля изменит его траекторию, сделает корабль искусственным спутником этой от века лишенной спутников планеты. С близкого расстояния, применяя совершеннейшие методы исследования, астронавты со своей космической обсерватории сумеют заглянуть под густой слой облаков, определить состав, строение, толщину и плотность атмосферы Венеры, характер ее поверхности, составить карты и выбрать места для посадки.

Только после этого можно будет решать вопрос о дальнейшем освоении этой планеты. Если космический корабль будет иметь возможность по своим энергетическим условиям, по конструкции совершить посадку, он ее совершит. И тогда еще один мир, вслед за Луной и Марсом, войдет в число посещенных человеком.

Возможно, посещение Венеры придется отложить до следующего полета: подсчитав запасы топлива, капитан корабля увидит, что для взлета с поверхности Венеры и обратного полета топлива у него не хватит.

А возможно, что посещение этой планеты будет вообще невозможно (например, если она представляет собой бескрайний океан без единого клочка суши). Тогда единственными форпостами земной науки станут здесь искусственные спутники, которые, несомненно, будут созданы и у этой планеты.

Но нет сомнения, что и этот мир, каким бы он ни был, будет открыт наукой для человечества.

Еще ближе к Солнцу, чем Венера, находится Меркурий. Он кружится так близко от него, что почти тонет в его лучах. Коперник всю жизнь мечтал увидеть эту планету, но так и не нашел ее.



Художник И. М. Кольчицкий

Меркурий значительно меньше Земли, но чуть больше Луны. Его диаметр равен 5140 километрам. Год на Меркурии длится 88 земных суток. Подобно тому, как Луна всегда повернута к Земле одной стороной, Меркурий повернут всегда одной и той же стороной к Солнцу.

Атмосфера Меркурия едва ли плотнее атмосферы Луны, эти два мира, видимо, во многом схожи между собой. На дневной, не защищенной атмосферой поверхности Меркурия температура достигает плюс 410°. При этой температуре уже плавятся такие металлы, как свинец и олово. Возможно, что лучи Солнца, освещающие эту планету, кое-где отражаются от сверкающих озер, образованных этими расплавленными металлами.

На другой стороне Меркурия — царство вечного мрака, рассеиваемого только светом звезд и планет, и холода, вряд ли многим отличающегося от холода космического пространства. На дневной стороне — озера расплавленного свинца, на затененной — ледяные скалы из затвердевшего азота и кислорода.

Между двумя областями этого мира контрастов должна лежать неширокая полоса, так сказать, «умеренного климата». Вследствие либрации — покачивания, подобного тому, благодаря которому мы видим несколько больше половины Луны, Солнце в этой полосе Меркурия восходит над горизонтом и заходит.

Видимо, в этой области «умеренного климата» и следует искать астронавтам место для посадки космического корабля, а затем отсюда отправляться на разведку и освещенной и затененной областей планеты.

По своим отражательным свойствам поверхность Меркурия подобна поверхности Луны. Видимо, его поверхность — во всяком случае с освещенной Солнцем стороны, потому что о затененной мы сказать вообще ничего не можем, — такая же неровная, пористая и шероховатая, как и лунная, но крупных неровностей — гор, по всей вероятности, там нет.

К СОЛНЦУ

Полет на Меркурий и полеты по траекториям, еще более близким к Солнцу, будут возможны только на космических кораблях, оборудованных специальной защитой от испепеляющих солнечных лучей.


Раздается грохот. Корабль вздрагивает и отрывается от бетонного поля ракетодрома. Несколько мгновений — и, превратившись в тонкую стрелу, он исчезает в голубизне неба.


В межпланетном пространстве единственным способом передачи тепла от одного тела к другому является лучеиспускание. Обычно думают, что излучают только раскаленные тела. Это неверно. Генераторами лучей того или иного вида являются все нагретые тела. Интенсивность излучения и его вид зависят от степени нагретости тела. Чем выше температура тела, тем больше лучистой энергии оно выбрасывает в пространство.

Все знают, как «пышет жаром» от раскаленного, но еще не светящегося темного предмета, например заслонки духовки или щипцов для завивки волос. Обычно думают, что это от металла нагревается воздух, а мы ощущаем уже тепло этого воздуха, но в действительности это не так. Это мы ощущаем тепло излучаемых железным предметом инфракрасных тепловых лучей.

Стоит предмет нагреть до температуры около 600°, и мы заметим, что он начнет светиться вишнево-красным цветом. При дальнейшем нагревании предмет станет яркокрасным, затем белым. Каждому оттенку цвета соответствует своя температура тела.

Для того чтобы жар не обжигал лица сталеваров, они, заглядывая в печи, где при температуре свыше 1000° варится сталь, заслоняются щитком с темным, не пропускающим инфракрасных лучей стеклом. Значит, от теплового излучения можно заслониться.

Тем же целям — заслониться от теплового излучения — служат сверкающие каски пожарных. А такими блестящими, сверкающими их делают для того, чтобы они возможно большую часть лучей, падающих на них, отражали.

Защищаясь от радиации Солнца, космический корабль будущего, которому понадобится подлететь близко к нашему центральному светилу, будет заслоняться от его губительных лучей рядом последовательно поставленных экранов. Под защитой ряда таких зонтиков он должен будет совершить большую часть полета.

Наружный самый крупный зонтик будет находиться в наиболее неблагоприятных условиях. Несмотря на то, что его внешняя полированная поверхность будет отражать большую часть солнечных лучей, температура его может подняться выше допустимой. А допустимой надо считать температуру размягчения или плавления металла, из которого он будет сделан. Для того чтобы снизить температуру этого щита, необходимо будет обеспечить его интенсивное охлаждение. Сквозь систему полостей и труб в нем будет циркулировать охлаждающая жидкость точно так же, как циркулирует вода в рубашке двигателя внутреннего сгорания. А «радиатором» для охлаждения этой нагретой жидкости будут холодильники в затененной этими же самыми щитами части пространства. Ведь температура здесь будет такая же, как и в остальном космическом пространстве. Конечно, охлаждение холодильника также будет осуществляться путем теплоизлучения.

Второй слой зонтика на свою внешнюю поверхность воспримет уже только излучение внешнего слоя; он весь будет находиться в его тени.



Фонтаны раскаленных газов — протуберанцы бушуют на поверхности Солнца. Брошенная в их водоворот Земля (кружок вверху) была бы подобна челноку, попавшему в главный поток Ниагары

Может быть, понадобится третий слой. И в тени этих трех щитов космический корабль сможет сравнительно близко подлететь к Солнцу.

А как же будут участники экспедиции изучать центральное светило, если они будут отгорожены от него столькими экранами?

Во-первых, в экранах можно проделать отверстие, сквозь которое узкий луч, не претерпевший никаких изменений, не ослабленный расстоянием и атмосферой, попадает в лабораторию космического корабля и все, что сможет, расскажет о Солнце. Во-вторых, можно будет на его пути расположить специальные фильтры, которые поглотят все лучи, кроме одного узкого пучка спектра. Можно будет, наконец, сделать и сами эти экраны таким образом, чтобы сквозь них проходили лучи только одного какого-нибудь участка спектра. И тогда человек в упор, лицом к лицу, увидит пылающее гневное Солнце — с темными рябинками пятен, с косматыми завитками протуберанцев, в сверкающем блеске его великолепной короны. А будет ли нужен такой полет?

Да, обязательно будет нужен. И не только интересы науки или погоня за сенсационным рекордом явятся побудительной причиной этого полета. Чисто практические интересы заставят совершить его.

Энергия Солнца — это первопричина и первооснова существования жизни на Земле и на других планетах. Энергия Солнца — это и ветер, вращающий лопасти ветряных мельниц, это и вода, работающая в лопатках плотин гидроэлектростанций. Энергия Солнца заключена и в кусках каменного угля, сгорающего в топках наших теплоэлектростанций, и в черном золоте Земли — густых каплях нефти, взрывы которой движут поршни двигателей внутреннего сгорания. Это Солнце, наконец, поддерживает на нашей планете температуру, при которой возможна жизнь и в воздухе, и на суше, и в глубинах моря.

Так неужели человеку не понадобится приблизиться к Солнцу и посмотреть, хорошо ли работает его «механизм»?

От излучения Солнца во многом зависит погода на Земле. Деятельностью Солнца предопределяются интенсивность полярных сияний и магнитных бурь. От деятельности Солнца в значительной степени зависит качество радиосвязи на Земле и будет зависеть радиосвязь с космическими кораблями.

Так, неужели человек не попытается рассмотреть, а потом, — как знать! — может быть, и воздействовать даже на первоисточник таких важных факторов, как погода в атмосфере и «погода в эфире».

Наконец, Солнце — это гигантская лаборатория, в которой при недоступных в наших земных лабораториях температурах, давлениях, степенях ионизации и других условиях происходят таинственные реакции превращения веществ, сложные физические процессы. Впервые один из легчайших газов — гелий — открыли на Солнце, а потом им стали надувать аэростаты и дирижабли. Может быть, и таинственные процессы, которые можно будет рассмотреть, приблизившись к Солнцу, удастся моделировать на Земле и поставить на службу людям.

Нет, человек ни за что не откажется от такого полета!. Рано или поздно, но он обязательно совершит его. Ибо нет преград для пытливости человека, нет тайн, которых не откроет ему природа.

ПО СПУТНИКАМ ПЛАНЕТ

Трудно угадать сейчас, но, видимо, полеты и на Луну, и на Марс, и на Венеру, и на Меркурий уложатся в одно-два десятилетия, а может быть, произойдут почти одновременно. Но нет сомнения, что дальнейшее приобщение планет к числу посещенных и освоенных человеком несколько затормозится.

Во-первых — это произойдет потому, что между Марсом и следующей по порядку планетой от Солнца — Юпитером пространство отнюдь не безопасно для космического плавания. Если «подводные камни» на путях космических кораблей — метеориты представляют не малую опасность в любой точке пространства, то здесь вероятность встречи с ними увеличивается во много раз.

В одном американском научно-фантастическом рассказе космические путешественники будущего находят золотой астероид и привозят его на Землю. Вряд ли будет окупаться, во всяком случае на первых этапах космических перелетов, транспортировка из пояса астероидов на Землю золота, даже если бы там действительно были золотые астероиды. А вот опасностью для космических кораблей они грозят немалой.

С Земли мы наблюдаем только самые крупные астероиды — небольшие планеты диаметром в десятки и сотни километров. Отмечены и астероиды, имеющие диаметр всего в несколько километров. А сколько разной «мелочи» — осколков величиной от нескольких граммов до сотен тысяч тонн движется еще в этом пространстве, сказать трудно. Видимо, очень много. И столкновение с каждым из них грозит гибелью космическому кораблю.

В будущем, вероятно, будет создана специальная служба «космической погоды», которая возьмет на учет все блуждающие метеорные рои, потоки, скопления астероидов и будет указывать наиболее безопасные пути. Может быть, будут даже приняты какие-нибудь меры по расчистке наиболее «судоходных фарватеров» от этих «подводных камней». Но это еще в очень отдаленном будущем. А на первых порах кольцо астероидов явится значительным препятствием для земных космических кораблей, движущихся в плоскости земной орбиты к крупным далеким планетам.

Есть и второе препятствие, которое затормозит освоение замарсианских областей солнечной системы. Это отдаленность этих планет и чрезмерная длительность полета до них. Ведь только полет на Юпитер с облетом вокруг него и возвращением на Землю по эллиптической орбите займет 6 лет. Такой же полет на Сатурн затянется на 12 лет, а на Уран — на целых 30 лет! Космическим путешественникам, которые решатся на такой полет, придется провести в тесной кабине ракеты большую часть жизни.

Выход откроет широкое использование для космических полетов атомной энергии. С ее помощью корабль сможет «выпрыгнуть» из плоскости эклиптики и преодолеть пояс астероидов, так сказать, над ним или под ним. Атомная же энергия позволит космическому кораблю развить скорости, которые сократят продолжительность полета до самых отдаленных планет — Нептуна и Плутона — с десятилетий до нескольких месяцев и даже недель.

Впрочем, высадка на эти планеты, кроме Плутона, вряд ли будет осуществлена, даже в очень отдаленном будущем. Дело в том, что, по предположениям астрономов, эти планеты состоят главным образом из газов: Юпитер и Сатурн — из водорода, Уран и Нептун — из аммиака, метана и воды. Твердое ядро у них находится очень глубоко, во всяком случае значительно ниже того слоя, где давление достигает такой величины, что самые трудносжимаемые газы превращаются в жидкости. Космический корабль, упавший под действием притяжения Юпитера в его атмосферу, проваливаясь сквозь нее, был бы раздавлен чудовищным давлением газов, подобно тому как давление воды раздавливает закупоренную бутылку, опущенную на канате глубоко в море, еще тогда, когда корабль не погрузился и на десятую часть глубины могучей атмосферы гигантской планеты.

Но полет в замарсианские области солнечной системы даст не мало интересного. Совершим этот полет. В нашем распоряжении мечта — лучший космический корабль, который когда-либо будет создан. Мы можем с ним высаживаться на любой планете и на любом спутнике, мгновенно преодолевать невообразимо огромные расстояния. Воспользуемся этим кораблем, чтобы представить себе, что увидят космические путешественники, которые когда-либо отправятся в такой полет.

...Итак, позади орбита Марса, впереди таинственный пояс астероидов. Эти крохотные планетки бегут по самым различным, нередко очень вытянутым орбитам. Есть среди них даже такие, которые в ближайшей к Солнцу точке проникают внутрь орбиты Меркурия, а в наиболее отдаленной приближаются к Юпитеру.

Затормозим полет нашего корабля около одной из этих крошек-планет. Вот, медленно поворачиваясь, словно лениво подставляя лучам Солнца все свои грани, движется по своей орбите гигантская глыба. Она имеет очень неправильную форму. Конечно, ни атмосферы, ни жизни нет на ее поверхности. Атмосферы она удержать не могла бы даже очень короткое время, — слишком мало ее притяжение; а жизнь на ее поверхности просто не могла появиться.

Есть предположение, что в далеком будущем, когда широко развернется строительство искусственных островов разного назначения и в разных концах солнечной системы, когда человек, по словам К. Э. Циолковского, «завоюет все околосолнечное пространство», эти крохотные планеты будут использованы космическими созидателями как строительный материал. Ничего невозможного в этом нет. Эти от века летящие в пространство скалы созданы природой из тех же элементов, что и земные породы. Бесспорно среди них будущие работники космоса найдут и высококачественные металлы — железо, никель почти в чистом виде, как находят их в метеоритах. Бесспорно, что каменные астероиды могут быть использованы в переработанном виде в качестве почвы для космических оранжерей. Может быть, среди астероидов попадется и золотой самородок невиданной величины. Что ж? И золоту найдется деловое применение в этом создаваемом в космосе мире, где каждый килограмм доставленного с Земли вещества вряд ли будет стоить намного дешевле килограмма золота.

Выдвигается и другое предложение использовать астероиды в интересах человека. В первую очередь это относится к астероидам с вытянутой траекторией, таким, как Икар. Их предполагается использовать в качестве «океанских пароходов дальнего следования», которые могут принимать на свои палубы шлюпки, боты и другие мелкие суда и совершать с ними длительные переходы. Точно так же, «причалив» к попутному астероиду, космический корабль может совершать довольно значительные путешествия. Космическое путешествие на астероиде в некоторых случаях может оказаться удобнее, чем простой полет на корабле.

По мнению А. А. Штернфельда, для целей таких «трансокеанских» путешествий будут созданы специальные «орбитальные корабли», движущиеся вокруг Солнца по вытянутым траекториям, специально выбранным с расчетом обеспечивать удобную связь между планетами. «Причалив» к такому «океанскому лайнеру» в тот момент, когда он пролетает вблизи орбиты Земли, космический корабль вместе с ним долетит, например, почти до орбиты Юпитера и там покинет его гостеприимный борт. Космический корабль отправится выполнять намеченную задачу на спутнике Юпитера, а орбитальный корабль продолжит свой путь по орбите...

Лучи Солнца освещают то большую, то меньшую площадь медленно поворачивающегося астероида. Поэтому блеск его все время изменяется. Двигаясь по своей орбите, он стремительно удаляется от нас. Вот он уже превратился в меняющую свой блеск звездочку и, наконец, мигнув в последний раз, исчез в темноте...

Снова полный вперед. Перед нами ярко сияет на черном бархате неба самая крупная планета солнечной системы — Юпитер. Отчетливо различима сплюснутость у полюсов этого блестящего золотистого шара, перечеркнутого рядом темных, параллельных экватору полос. Он стремительно вертится вокруг своей оси: сутки на этом великане продолжаются менее 10 часов.

Юпитер примерно в пять раз дальше от Солнца, чем Земля. Поэтому движется он по своей траектории значительно медленнее Земли, а траектория у него значительно длиннее земной. И год на Юпитере поэтому продолжается почти 12 земных лет.



Гигантские вихри и бури непрерывно сотрясают могучую атмосферу Юпитера — первой планеты на орбиту которой вылетят астронавты, преодолев пояс астероидов

В величественном движении вокруг Солнца гигантскую планету сопровождает целая свита спутников. На ее небе сияют целых двенадцать лун. Среди них есть и спутники-великаны, не уступающие по величине нашей Луне и даже превосходящие ее. И есть спутники-крошки, которые, оказавшись в семье астероидов, почувствовали бы себя в своем кругу. Поперечники их составляют от 20 до 120 километров.

Бесспорно на промерзшую поверхность всех этих далеких лун чужой планеты ступит когда-нибудь нога человека. Астронавты установят свои приборы и начнут в упор исследовать великана нашей солнечной системы. Что представляют темные полосы на его диске? Откуда появляется и куда исчезает таинственное красное пятно, периодически словно всплывающее в облачном покрове его атмосферы. Чем — вулканической ли деятельностью, распадом ли радиоактивных элементов или выделением тепла от гигантского сжатия — объясняется более высокая (на 15°) температура на его видимой поверхности, чем она должна была бы быть по расчетам, если бы в его температурном балансе участвовала одна радиация Солнца? Наконец, что скрывается под его чудовищно толстой атмосферой? Слой льда толщиной в 25 тыс. километров, покрывающий твердое металлическое ядро, как думает зарубежный астроном Вильдт? Или под чудовищным давлением газов на глубине 11 тыс. километров от видимой поверхности планеты водород, из которого в основном состоит этот гигантский шар, переходит в твердое «металлическое» состояние, как считает советский астроном А. Г. Масевич?



Окруженный матово-серебристым кольцом, Сатурн покажется будущим астронавтам дивным произведением ювелирного искусства, висящим на черном бархате неба

Сколько тайн раскроет смелым посланцам Земли этот золотистый шар, медленно плывущий в свете своих многочисленных лун...

Дальше. Еще один гигантский скачок делает наш корабль — и уже далеко позади остался Юпитер, а впереди выплывает из мрака чудо солнечной системы — красавец Сатурн.

Эта планета не похожа на все другие. Ее окружает в плоскости экватора гигантской ширины многослойное кольцо. Оно так велико, что наш земной шар, положенный на него, казался бы вишней, приколотой к широкому полю летней дамской шляпы.

Ярко освещенный золотисто-желтый диск планеты, окруженный разноцветными мерцающими кольцами, на черном фоне неба кажется дивной драгоценностью, сделанной волшебным ювелиром.

Но на поверхность этой красавицы-планеты тоже не сможет опуститься наш корабль. Так же как и у Юпитера, не известно, есть ли у нее то, что принято у нас называть «поверхностью планеты». По всей вероятности, Сатурн такой же холодный газовый шар, как и Юпитер. Внешняя часть атмосферы Сатурна имеет температуру минус 155° — на 15° более низкую, чем Юпитер. При этой температуре уже легко сжижаются и замерзают многие газы.

Наш корабль все больше и больше приближается к гигантской планете, диаметр которой равен 120 800 километрам. Уже проступают отдельные детали строения его поверхности: темные и светлые полосы, цветные пятна, пропадающие и появляющиеся вновь в его атмосфере. Как и у Юпитера, вихри и бури проносятся в этом океане промерзающего газа, скрывающего таинственное ядро планеты.

Из девяти лун Сатурна наиболее интересна шестая, названная Титаном. Ее масса почти в два раза превышает массу нашей Луны. Она покрыта мощной метановой атмосферой. К сожалению, физическая природа этого мира, находящегося так далеко от нашего, почти не изучена. Что там, под тяжелым зеленым пологом атмосферы? Зеленовато-синие озера сжиженных газов? Промерзшие камни, покрытые вековым инеем? Или, может быть, внутреннего вулканического тепла этой луны достает на то, чтобы поддерживать сносную для жизни температуру в этом освещаемом далеким Солнцем и близким ярким Сатурном мире? И, может быть, эта жизнь, приспособившаяся к ядовитой метановой атмосфере, все же существует здесь, хотя бы в самых простейших ее формах?

На все эти вопросы найдут ответы будущие астронавты. Они спустятся на дно атмосферы Титана и привезут на Землю фотографии непривычных для нас пейзажей этого мира. Они исследуют строение другого спутника Сатурна — Япета, узнают, почему одна сторона этой луны, обращенная к планете, в шесть раз светлее ее другой стороны.

Вперед, вперед! Двигаясь от Солнца, мы прошли едва четверть расстояния до крайних известных нам границ солнечной системы.

Но чем дальше от Солнца, тем реже встречаются на пути нашем планеты, тем больше открытий остается совершить грядущим космическим путешественникам.

Медленно набирая скорость, мы пролетаем совсем близко от поверхности колец Сатурна. Толщина их несоизмеримо мала по сравнению с шириной, — она едва ли превосходит 15—20 километров. По существу это стремительный плоский, как лист, поток метеоритов, среди которых не мало и довольно крупных — свыше 10—15 метров. Их покрытые белым инеем грани сверкают в лучах Солнца... Наш корабль все набирает и набирает скорость. Ведь для того чтобы достичь орбиты следующей известной нам планеты — Урана, нам надо пролететь больше, чем мы пролетели, начав свой путь от самого Солнца. Ведь среднее расстояние Урана от Солнца несколько больше 2 млрд. 872 млн. километров! А от орбиты Земли его орбита отстоит в 2 млрд. 722 млн. километров! Чтобы преодолеть это расстояние, снаряд, выпущенный из фантастического орудия и летящий по прямой с постоянной скоростью в 2 километра в секунду, должен будет затратить почти 45 лет! Космический рейс на Уран по эллиптической траектории займет свыше 16 лет! Вперед, вперед!

...Уран. Несмотря на свои внушительные размеры — его поперечник равен 53 400 километрам, — эту планету невооруженным глазом увидеть очень трудно, так далеко находится она от Земли. Астронавты полетят на нее с Земли, не видя в иллюминаторы цели своего полета, даже в виде крохотной звездочки. А мы уже приближаемся к нему. Зеленоватая звездочка вырастает в зеленоватый же диск.

На Уране еще холоднее, чем на Сатурне. Температура на его поверхности опускается до минус 170°. В очень сильные телескопы на его поверхности различают такие же полосы, как и у Сатурна и Юпитера.

Очень интересно и сложно на Уране чередование дня и ночи и времен года. В результате ли космической катастрофы или по какой-то еще не известной нам закономерности, проявившейся при образовании солнечной системы, но Уран опрокинулся на бок; ось его вращения почти точно лежит в плоскости орбиты. Благодаря такому своему положению он подставляет лучам Солнца то один свой полюс, то другой. Общая продолжительность года на Уране равна 84 земным годам. Примерно 42 года на одном полюсе Урана царит непрерывный день, на другом — ночь. На средних широтах около 21 года день и ночь аккуратно сменяют друг друга, но на одном полушарии удлиняются дни, а на другом — ночи. Затем 21 год на широте 45 градусов одного полушария длится непрерывный день, а в другом полушарии на той же широте — ночь, после чего снова наступает 21-летний период смены дня и ночи. Потом полушария как бы меняются местами и все явления протекают в обратном порядке.


...Мы на Плутоне. Солнце светит нам в спину, и легкая тень от корпуса гигантского корабля лежит на бесконечной сумрачной равнине, как дорога в неизвестное. Здесь — граница солнечной системы. За ней, там, дальше, распростерся бескрайний океан космического пространства. Но и его черную бездну пересекут когда-нибудь посланцы Земли, отправившиеся на разведку соседних звезд

Уран имеет пять спутников. Плоскости их орбит почти перпендикулярны к орбите планеты. О том, какие физические условия обнаружат будущие астронавты на их поверхностях, можно только догадываться.

Не задерживаясь, летим еще вперед... До Нептуна — следующей планеты солнечной системы — от Солнца 4 млрд. 496 млн. километров. Наше жаркое Солнце, на которое больно взглянуть невооруженным и не затененным закопченным стеклом глазом, отсюда видно, как яркая, имеющая едва различимый диск звезда.

Нептун лишь немного меньше Урана — его поперечник равен 49 700 километрам. Но ось его наклонена к плоскости орбиты всего на 29°, то есть почти так же, как у Земли и Марса. Поэтому смена дня и ночи и смена времен года там происходит почти так же, как на Земле. Только год там тянется почти 160 земных лет! Но зато сутки там короче наших: вокруг своей оси Нептун делает полный оборот всего за 15 часов 40 минут. Температура на поверхности Нептуна равна минус 190°. На его поверхности и на поверхностях его двух спутников космические путешественники будущего найдут голубоватые полупрозрачные скалы из замерзшего азота; в узких ущельях, пробитых в этих скалах, струятся медленные реки из сжиженного кислорода. В метаново-водородной атмосфере плавают тяжелые кислородные облака. А в ненастье горные породы, среди которых встречается и обычный наш земной лед, орошает кислородный дождь или, может быть, кислородный град.

Это фантастическая картина? Да. Но что в ней окажется реальным, смогут установить космические путешественники, посетив этот мир.

Вот уже и близки известные нам границы солнечной системы. Нам осталось посетить только Плутон, планету, открытую всего четверть века назад — в 1930 году. Плутон находится сравнительно недалеко от Нептуна. Благодаря большой вытянутости своей орбиты он иногда бывает даже ближе к Солнцу, чем Нептун. А среднее его расстояние от Солнца равно 5 млрд. 917 млн. километров. «Всего» примерно на 1,5 млрд. километров больше, чем у Нептуна.

Так далеко от Солнца находится этот мир, так слабо он освещается его лучами, что даже измерить диаметр Плутона до сих пор по-настоящему не сумели. Предположительно эта планета больше Марса и меньше Земли. Оборот вокруг Солнца она совершает за 248,5 земного года.

И вот наш корабль, полыхая дюзами, медленно садится на поверхность, состоящую из затвердевших, превратившихся в лед газов — кислорода, азота, метана. Над голубоватой пустыней, над скалами, в гранях которых трепещет отблеск звезд, встает яркая желтая звезда с почти неразличимым диском. Это наше Солнце. Оно очень далеко, почти в 40 раз дальше, чем от Земли. Его лучи бессильны разогнать тьму, которой покрыт этот мир. Сумерки — нечто вроде ленинградской белой ночи — вот что представляет собой яркий день в этом мире.

Мы стоим спиной к встающему над горизонтом нашему центральному светилу, и тень от нашего корабля, словно темная полоска дороги, убегает вдаль, к горизонту. Мы стоим на границе нашей солнечной системы и смотрим в безбрежный океан черного пространства, который открывается перед нами. Миллионы и миллиарды километров пути, столь дерзко пройденного нашим кораблем, — миллионы и миллиарды километров, которые вслед за мечтой неизбежно пролетят реальные корабли наших астронавтов — эти необозримые пространства внутри нашей солнечной системы несоизмеримы с расстояниями, которые отделяют наше Солнце от соседних ближайших солнц. До сих пор мы как бы переправлялись через мелкие ручейки, а теперь перед нами открылась необозримая ширь великого океана!

Что ж? Это и есть та окончательная преграда, которую поставила на пути человека природа и которую он при всей свой дерзости не сможет перешагнуть?

К ЗВЕЗДАМ

Самой близкой к нашей солнечной системе звезды мы, жители Северного полушария, не видим. Это незаметная, скромная звездочка, на которую, наверное, не обращают никакого внимания жители Южного полушария, имеющие возможность любоваться великолепным Южным Крестом. И только астрономы знают, что эта звездочка находится от нас на расстоянии «всего» в 40 тыс. млрд. километров. Из-за такого соседнего с нами расположения ее назвали Проксима, что значит «Ближайшая». Луч света от этой «Ближайшей», пролетая 300 тыс. километров в секунду, доходит к нам на Землю только через 4 года 3 месяца 7 дней.

Все другие звезды находятся еще дальше от нашей солнечной системы. Причем дальше и вдвое, и втрое, и в сотни тысяч, и в миллионы раз.

Чтобы добраться до Проксимы Центавра на космическом корабле, вполне пригодном для сообщений в пределах солнечной системы, способном развить и поддерживать скорость, предположим, в 20 километров в секунду, надо будет затратить — ни много, ни мало — 65 тыс. лет! Сколько поколений должно будет сменить друг друга в кабине космического корабля, чтобы, наконец, отдаленный потомок покинувших Землю космических путешественников смог увидеть впереди не усыпанное звездами небо, а яркий диск звезды, превратившейся в солнце!

Значит, полеты к звездам невозможны?

Роковое слово «невозможно» нередко подводило людей куцой мысли, не верящих в силу человеческого разума.

— Человек — не птица, летать не может, — говорили люди в те годы, когда рязанский подьячий Крякутной надул дымом большой мешок и поднялся в воздух.

— Полет аппаратов тяжелее воздуха невозможен, — важно заявляли многие «авторитеты» воздухоплавания полтора века спустя, когда первые самолеты еще только учились летать.

— Посещение Луны и других планет солнечной системы невозможно — еще 50 лет назад это было общераспространенным убеждением.

Оглянитесь вокруг! Сколько из того, что для нас сейчас просто и привычно, всего 150 лет назад было невозможным! Невозможным было электрическое освещение. Невозможной была запись звука. Невозможной была фотография.

Невозможным было воспроизведение движущихся изображений на экране — сегодняшнее кино.

Невозможным была передача движущихся изображений по радио — телевидение и передача изображений по проводам.

Невозможным был автомобиль, трактор, комбайн, искусственный шелк, гидромеханизация угледобычи, паровая турбина, гидравлическая турбина, электродвигатель, трамвай и т. д. Все эти вещи были изобретены после 1805 года, то есть меньше чем 150 лет назад.

Во времена Пушкина рассказ о человеке, обладающем обычным современным фотоаппаратом, мог бы пойти, пожалуй, только под рубрикой научной фантастики. А описание телевизора было бы признано вообще совершенно неправдоподобным. Ведь в то время еще не были открыты радиоволны — основа телевидения. Человек, открывший их, — знаменитый немецкий физик Генрих Герц — родился только через 20 лет после смерти Пушкина — в 1857 году.

Но зато, как правило, сбываются самые смелые прогнозы, основанные на вере в торжество человеческого разума, на вере в его силу.

В XIII веке, в черные годы торжества мракобесия и религии, жил и творил знаменитый английский философ Роджер Бэкон. Каким замечательным прозрением являются его слова о возможностях науки! Вот что писал он в 1267 году:

«Можно сделать орудия плавания, идущие без гребцов, суда речные и морские, плывущие при управлении одним человеком быстрее, чем если бы они были наполнены людьми. Так же могут быть сделаны колесницы без коней, движущиеся с необычайной скоростью... Можно сделать летательные аппараты, сидя в которых человек сможет приводить в движение крылья, ударяющие по воздуху, подобно птичьим... Можно сделать аппарат, чтобы безопасно ходить по дну моря и рек... Прозрачные тела могут так быть отделаны, что отдаленные предметы покажутся приближенными... так, что на невероятном расстоянии будем читать малейшие буквы и различать малейшие вещи, а также будем в состоянии рассматривать звезды, как пожелаем... приблизить к Земле Луну и Солнце».

В те годы каждая из этих идей казалась невозможной. И вот они все, и не только они, а и тысячи других, еще более «неисполнимых»,, воплощены в жизнь.

Убежденные в том, что нет преград и последних границ для познания, что есть непознанное, но нет непознаваемого, мы можем сказать: нет, не остановит человека бескрайний океан космического межзвездного пространства! Он смело ринется в него на разведку далеких солнц. Конечно, это произойдет не на глазах нашего и следующего поколения.

Настанет день — и в черные пространства Вселенной к звезде Проксима в созвездии Центавра ринется сверхскоростной космический корабль. Он будет больше всех космических кораблей, которые будут бороздить к тему времени пространства солнечной системы. И работать он будет на совершенно новом принципе. Не газы, а осколки расщепленных ядер будут выбрасываться в сопло его реактивного двигателя. И поток этих размолотых первозданных кирпичиков вещества будет изливаться со скоростью, близкой к скорости света — около 300 тыс. километров в секунду.

Пассажиры ракеты не будут переутомлять себя чрезмерной перегрузкой от ускорения. Ускорение в 10 метров в секунду за секунду заменит им обычное земное притяжение, и они будут чувствовать себя в своих каютах, как на Земле, дома. Через 123 дня, когда скорость ракеты достигнет колоссальной величины — 100 тыс.. километров в секунду, двигатели будут выключены. К этому времени Солнце превратится в далекую звездочку и совершенно исчезнет покинутая астронавтами Земля.

Корабль полетит по инерции. Время астронавтов будет заполнено-научной работой, наблюдениями, исследованиями... Конечно, не незаметно пройдут 12 с лишним лет полета, но, наверное, и продолжительность человеческой жизни будет в те времена значительно большей, чем сейчас. Вперед идет, развивается не только астронавтика, а и все другие науки, в том числе биология и медицина.

Но вот крохотная незаметная звездочка — Проксима становится самой яркой звездой небосвода, приобретает видимый диск. Надо начинать торможение. «Излучая» впереди себя столбы вещества, разогнанного до скорости света, так же не спеша, замедляя свой бег всего на. 10 километров в секунду за секунду, начнет корабль снижать скорость своего полета. И через 123 дня капитан сможет посадить свой корабль на поверхность одной из планет системы Проксимы Центавра.

Не будем гадать, что они там увидят. Ласковой ли прохладой, раскаленным ли жаром пустыни, морозным ли дыханием полярного льда встретит их чужая планета, на которой даже небо будет другим...

Вряд ли наше описание космического корабля для межзвездных полетов окажется точнее описания, данного Бэконом самолету. Да и не надо претендовать на это. Главное здесь другое.

Вселенная не имеет границ. Но не имеет границ и могущество человеческого разума, человеческого дерзания.

ЗАКЛЮЧЕНИЕ

Начатая рассказом о древнейших временах человеческой истории, эта книга, несомненно, является книгой о будущем. Ибо осуществление космических сообщений во всей широте этой идеи — дело будущего.

Но будущее неразрывно связано с настоящим, корни будущего в настоящем. Будущее начинается сегодня. И если внимательно присмотреться, первые ростки этого будущего, из которых поднимется роскошное дерево космических сообщений, можно рассмотреть уже сегодня.

Эти ростки — достижения многих наук: астрономии, физики, теплотехники, медицины, радиотехники, металлургии и др. Ведь решение проблемы космических сообщений потребует концентрации знаний и опыта многих областей науки.

Эти ростки — достижения нашей техники — реактивные двигатели скоростных самолетов, жидкостные высотные ракеты, приборы радиотелеуправления полетами на больших скоростях и многое другое. Конструкторы будущих ракетных кораблей примут все эти достижения нашей техники в золотой фонд того исходного, с чего они начнут свою работу.

И, пожалуй, самое главное — это люди, воодушевленные мыслью продвинуть вперед решение проблемы космических сообщений, работающие в этой области, отдающие свой труд, время, знания и опыт решению этой проблемы.

Совсем недавно проблемой космических сообщений занимались редкие одиночки-энтузиасты, какими были, например, К. Э. Циолковский, Ф. А. Цандер, Ю. В. Кондратюк. Сегодня в ряде стран мира созданы целые общества астронавтов. Общества некоторых стран — Англии, США, Франции — насчитывают тысячи и десятки тысяч членов. Происходят международные конгрессы астронавтов, на которых ученые выступают с сообщениями о проделанной работе, обсуждают планы на будущее. Такое общество астронавтов существует и в нашей стране.

Оно создано сравнительно недавно. Всего около двух лет назад в большом светлом зале Дома авиации, вдоль стен которого стоят многочисленные модели летательных аппаратов, начиная от «летающих этажерок» 20-х годов этого века и кончая современным реактивным самолетом, скорость которого превосходит скорость распространения звука, состоялось организационное собрание секции астронавтики, создаваемой при Центральном аэроклубе им. В. П. Чкалова. В зале собрались энтузиасты космических полетов — ученые, инженеры, врачи, студенты высших учебных заведений. Вступая в эту секцию, они поставили своей задачей способствовать в нашей стране осуществлению космических полетов с мирными целями.

В настоящее время в секции астронавтики существует целый ряд научно-технических комитетов, в которых разрабатываются отдельные вопросы общей проблемы космических сообщений.

Врачи и биологи, объединенные в научно-техническом комитете по биологии космического полета, занимаются изучением влияния условий космического пространства на организм человека. Здесь, в опытах и научных исследованиях, закладываются первые основы новой науки будущего — космической медицины.

Астрономы составляют прогнозы условий, которые встретит человек, когда он придет в миры других планет. Найти безопасные пути для межпланетного корабля, пути, на которых космос не обстреляет астронавтов ядрами метеоров, найти средства борьбы с метеорной опасностью — этими и многими другими вопросами занимаются члены научно-технического комитета по астрофизическим проблемам.

Широкий круг проблем волнует ученых и инженеров, входящих в состав научно-технического комитета по ракетной технике. Здесь и конструирование ракетных двигателей и целых космических кораблей различных назначений. Здесь и поиски наиболее эффективных топлив, и исследования способов охлаждения стенок камер сгорания и сопел, и поиски жаростойких сплавов и материалов. Широкий круг инженерных вопросов, которые составят не один курс лекций в специальных астронавтических вузах будущего.

Огромное место в общей проблеме космических сообщений занимает и работа научно-технического комитета по вопросам космической навигации. Найти наиболее рациональные пути, связывающие планеты, рассчитать их траектории, разработать вопросы взлета и посадки, разработать общие вопросы астронавигации, создать методы и приборы для ориентации в пространстве — вот обширный круг проблем, разрабатываемых в этом комитете.

Специалисты по автоматике и телемеханике, ученые и инженеры,, занимающиеся вопросами радиотелеуправления, работают в научно-техническом комитете по радиотелеуправлению космическим кораблем в полете. Здесь рассматривают схемы сверхмощных радиолокаторов, способных сопровождать своим лучом космический корабль хоть до самой посадки на Марсе, создаются проекты быстродействующих автоматических аппаратов для управления на расстоянии. Увлекательнейшие области техники — радио и автоматика ставятся здесь на службу космическому полету.

Таким образом, научно-технические комитеты секции астронавтики охватывают своей, работой по существу всю широту проблемы в целом. Кружки по изучению проблем космического полета, в той или иной степени связанные с Московской секцией астронавтики, существуют во многих городах нашей страны и во многих высших учебных заведениях.

Работы в области астронавтики ведутся в нашей стране и в общегосударственном масштабе. В системе Академии наук СССР создан специальный координационный комитет, направляющий деятельность многочисленных институтов и отдельных ученых в области астронавтики. Председателем этого комитета является акад. Л. И. Седов.

В Академии наук СССР учреждена специальная медаль им. К. Э. Циолковского, присуждаемая за выдающиеся работы в области астронавтики.

В ближайшее время начнет выходить в нашей стране журнал «Межпланетные сообщения».

Космические сообщения — проблема колоссальная по своей значимости. Трудно переоценить ее значение для развития науки, для прогресса всего человечества. По последствиям, к которым может привести решение этой проблемы, ее можно будет сравнить разве лишь с открытием атомной энергии. Но вместе с тем решение этой проблемы сопряжено с колоссальными трудностями. Каждый шаг вперед потребует огромной работы, гигантского напряжения интеллектуальных и производительных сил целых народов.

Но нет сомнения, что согласованный труд ученых, инженеров, энтузиастов космических полетов во многих странах, в том числе и в нашей стране, которая уже внесла и бесспорно внесет немалый вклад в мировую астронавтику, в ближайшие годы будет увенчан выдающимися достижениями. Нет сомнения, в частности, что уже в самое ближайшее время будет сделан первый шаг в космическое пространство — созданы автоматические искусственные спутники. А затем в космическое пространство отправится и человек...

Когда-то люди жили небольшими общинами и знали в лучшем случае свою страну да соседние с ней страны. Мы сейчас с некоторым недоумением даже представляем себе это время. Как это так люди не знали, что Земля круглая, что существует материк Америка, что можно объехать вокруг всего земного шара. В наше время каждый школьник 5-го класса знает, что Земля обращается вокруг Солнца и вращается вокруг своей оси и что звезды — это тоже далекие солнца, подобные нашему.

А ведь еще 500 лет не прошло с тех пор, как были окончательно утверждены все эти положения. И всего 350 лет назад гениального ученого, утверждавшего эти идеи, сожгли на костре.

Будет время, и наши сегодняшние знания, наши сегодняшние достижения, которыми мы гордимся, покажутся незначительными им, жителям будущего, им, которым суждено достичь такой власти над природой, такого могущества, о которых даже самые смелые фантасты не смеют писать сегодня в своих романах.

Но не надо завидовать мудрым провидцам прошлого, борцам за истину — их мужеству, их открытиям. Немало осталось и на нашу долю. Людям эпохи великих открытий — Колумбу, Васко де Гама, Магеллану— выпало счастье открыть земной шар. Галилею, Бруно, Копернику и позднейшим ученым досталось утвердить Землю в пространстве, найти ее истинное положение во Вселенной. Но немало простора и в наше время и для проявления мужества и для свершения великих открытий. Наше поколение должно первым вступить на почву соседних планет. Вряд ли это меньше сделанного Колумбом и Коперником!

Не надо завидовать и людям будущего, для которых привычной реальностью будет многое, о чем мы может только мечтать. Нам выпало счастье первых шагов, и пусть они завидуют нашему счастью!


СОДЕРЖАНИЕ

Вступление
Глава I. Открытие планеты

Пень, диск или шар?

Эратосфен измеряет Землю

Судьба рукописей Аристарха Самосского

Система Клавдия Птолемея

Первое кругосветное путешествие

Наука и религия

Восстание Коперника

Костер, который будет гореть вечно

Планеты перестали быть звездами

Законодатель неба

Наша планета

Вселенная, в которой мы живем

Дзета Возничего

Начало новой эры
Глава II. Отвергнутые пути

Из мглы веков

Вездесущая сила

«Кеворит» и «минус-материя»

Скорость против притяжения

Из пушки на Луну

Электропушка

Космическая праща
Глава III. Подвиг Циолковского

Подарок человеку

По тому же пути

Отношение масс

Космические поезда

Пересадочная станция
Глава IV. Двигатели космических кораблей

Борьба за скорость

Двигатель скоростного самолета

Самая трудная часть пути

Жидкостный ракетный двигатель

Атомная ракета
Глава V. В космическом пространстве

Управляют автоматы

В мире без тяжести

Потоки лучей

Отопление Солнцем

Оранжерея в космосе

Космические снаряды

Дороги между планетами
Глава VI. Этапы великого наступления

Разведка в ионосферу

В 10 000 раз быстрее

Рождение второй Луны

Автоматическая лаборатория

Человек в космосе

Космический остров

Грузовые поезда

Лаборатория в космосе
Глава VII. Штурм Луны

Первая разведка Луны

Автоматическая танкетка

С искусственного спутника

Соседний мир

Луна-город

Когда это произойдет?
Глава VIII. В дальние рейсы

К живым — живые

Планеты, о которых мы ничего не знаем

К Солнцу

По спутникам планет

К звездам
Заключение


Михаил Васильевич Васильев
ПУТЕШЕСТВИЯ В КОСМОС
Редактор В. А. Голубкова Корректоры Л. И. Флястер и И. В. Дзегилевич
Оформление Р. Г. Алеева Иллюстрации Н. И. Антипова, Е. Н. Голяховского, Н. М. Кольчицкого, Н.И. Гришина, М. П. Митурича, С. А. Вицрумба, Н. А. Ращектаева
Художеств.-техн. ред. Е. И. Пергаменщик и М. И. Майборода

Сдано в набор 28.IX.55 г.. Подп. к печати. 3.XII.55 г. Форм. бум. 70Х92/16.
Физ. печ. л. 11+12 вкл. Усл. печ. л. 13,748. Уч.-изд. л. 12,17. Тираж 45 000.
А06989. Изд. инд. НП-19. Цена 6 руб. 50 коп.


Госкультпросветиздат, Москва, проезд Владимирова, 9-а.
Заказ 516. Типография Госкультпросветиздата, Москва, ул. Маркса и Энгельса, 14.

к началу

назад