вернёмся на старт?

Статьи в иностранных журналах, газетах 2018 г.


  1. Аманда Миллер. Новые инструменты для построения солнечной радиации (Amanda Miller, New instruments to plot solar radiation) (на англ.) «Aerospace America», том 56, №1, 2018 г., стр. 9 в pdf - 214 кб
    «Новейшие приборы [Total и Spectral Solar Irradiance Sensor, или TSIS-1] для измерения энергии, получаемой Землей от Солнца, находятся на борту Международной космической станции и, как ожидается, начнут генерировать данные к апрелю [2018]. Ученые говорят, что данные миссии могут быть важнее, чем что-либо другое, в понимании не только воздействия солнца на климат Земли, но и влияния людей на него. (...) Приборам, в настоящее время измеряющих полную лучистую энергию солнца, плюс то, как энергия распределяется по электромагнитному спектру, 10 лет после их прогнозируемой продолжительности активности. Замены, предназначенные в 2011 году, были потеряны, когда спутник НАСА Glory не смог достичь орбиты. 11-летние циклы, при которых выход энергии на «солнечный максимум» примерно на 0,1 процента больше, чем на минимальной фазе. (...) Понятно, что более высокий выход энергии во время солнечного максимума коррелируется с температурой 0,1 градуса Цельсия больше. (...) TIM [Total Irradiance Monitor] собирает солнечную радиацию на маленьком черном конусе, направленном на солнце. Солнечная энергия нагревает датчик. Используя электрическую энергию, прибор нагревает идентичный конус, обращенный от солнца, определяя его солнечные измерения на основе энергии, необходимой для этого. (...) новый Spectral Irradiance Monitor или SIM работает аналогичным образом, но рассеивает свет с помощью призмы и измеряет длины волн по отдельности (...) Запущенный из Космического центра Кеннеди на ракете SpaceX Falcon 9 декабря 15 [2017], TSIS-1 отправился на повторно используемой грузовой капсуле Dragon на космическую станцию. Полет SpaceX был первым, в котором повторно использовались как капсула Dragon, так и ракета-носитель первой ступени».
  2. Том Джонс. Их миссией стала наша миссия (Tom Jones, Their mission became our mission) (на англ.) «Aerospace America», том 56, №1, 2018 г., стр. 16-21 в pdf - 720 кб
    «В субботу утром, 1 февраля 2003 года, я смотрел по телевизору, как орбитальный челнок «Колумбия», некогда мой космический корабль, направлялся домой в 28-й космической миссии. Через несколько минут, после потери контакта с экипажем миссии STS-107, я встал на колени в молитве за тех астронавтов - моих друзей. Никто из нас не может забыть эти блестящие полосы, прочерченные в небе Техаса, доказательство того, что корабль и экипаж погибли. История Колумбии не закончилась ее жгучим разрушением в 60 км (200 000 футов) над Техасом. Физические останки орбитального корабля и уроки этой ужасной предотвратимой аварии учат новое поколение операторов и менеджеров космических кораблей тому, как предотвратить будущую космическую трагедию. (...) То, что произошло тем февральским утром, все еще требует отрезвляющего внимания. Колумбия была повреждена 16 января - куском изолирующей пены, вырванным из её внешнего топливного бака через 81 секунду после старта. Пена была видна на видео, врезающейся в передний край левого крыла орбитального аппарата. (...) Администраторы полета выразили беспокойство по поводу последствий входа в атмосферу, если система тепловой защиты была взломана. Эти опасения не дошли до команды управления миссией, и инспекция выхода в открытый космос (которая выявила бы ущерб) не проводилась. Управление полетов передало экипажу сообщение о том, что потенциальный ущерб был оценен как незначительный. (...) передний край левого крыла действительно был прорван, и горячая плазма при входе в атмосферу пронзила крыло и расплавила его внутреннюю алюминиевую структуру. На скорости 18 или 19 000 км/ч левое крыло вышло из строя, что привело к потере контроля и разрушению орбитального аппарата. (...) Через несколько часов после бедствия НАСА сформировало группу быстрого реагирования, направлявшуюся в зону воздействия. (...) Эта межведомственная группа [Дэвид Кинг, заместитель директора Центра космических полетов им. Маршалла] определила первоочередные задачи: [1] Защита населения. [2] Найти тела членов экипажа Колумбии. [3] Собрать остатки орбитального аппарата, имеющие решающее значение для определения причины аварии. В поисках с воздуха, земли и воды в конечном итоге приняли участие 25 000 американцев, что является крупнейшим наземным поиском в истории США. (...) Размещение экипажа было чрезвычайно важно для семей STS-107, их коллег-космонавтов и сплоченного персонала НАСА. (...) Кропотливые усилия обнаружили космонавтов, одного за другим, большинство в коридоре 2 на 8 километров. (...) Шесть членов экипажа были найдены в течение недели; последний космонавт STS-107 был обнаружен через 10 дней после аварии. (...) Экипажи обыскали 1,6 миллиона акров вдоль пути разлома, но аэрофотосъемки оказались неэффективными для обнаружения тысяч маленьких фрагментов Колумбии, разбросанных по сельской местности, в значительной степени под мощным древесным покровом. (...) Около 2000–3000 поисковиков находились в поле в любое время, просматривая каждый акр поисковой сетки на расстоянии вытянутой руки. Усиленные техасской лесной службой, команды потратили 1,5 миллиона человеко-часов и прошли 680 750 акров сельских районов Техаса и Луизианы. Они нашли обломки Колумбии повсюду, тысячами штук. (...) Когда поиск завершился к 30 апреля, команды обнаружили около 84 000 фрагментов общим весом 38 500 кг и составляющих 38 процентов орбитального аппарата. (...) Работа группы данных получила огромный импульс, когда поисковики в Техасе обнаружили магнитофон Colombia Orbiter Experiment, магнитную ленту «черного ящика», которая регистрировала измерения температуры и нагрузки от датчиков по всему орбитальному аппарату. (...) Обломки были затем отправлены в Космический центр Кеннеди и разложены на полу ангара для команды по реконструкции Колумбии [Майкла] Лейнбаха [директора по запуску STS-107 в Космическом центре Кеннеди]. (...) Анализируя охлажденные капли расплавленного металла, покрывающие другие части восстановленной структуры крыла, НАСА узнало, как горячая плазма проникла и разрушила левое крыло Колумбии. (...) В отчете комиссии за август 2003 года было установлено, что после неоднократных случаев потери пены НАСА не поняло риска катастрофического повреждения теплозащитного экрана и продолжало летать. Ущерб от потери пены был нормализован как «принятый риск». Кроме того, во время самой миссии были недостатки в руководстве и связи, которые мешали инженерам поднимать проблемы или понимать решения. Менеджеры не поняли, что может иметь место критический ущерб, и не смогли выяснить фактическое присутствие или степень ущерба Колумбии. (...) Обломки Колумбии сегодня хранятся на 16-м этаже здания сборочного цеха НАСА в центре Кеннеди. (...) В центре Кеннеди новые сотрудники узнают о серьезности космического полета, посетив Колумбийский исследовательский и заповедный район. (...) С 2016 года тысячи сотрудников НАСА видели артефакты космического корабля и слышали о важности эффективной коммуникации, получения критической информации для порой невосприимчивых боссов и избежания «нормализации отклонений», которая делает организацию способной оценивать потенциально смертельные риски. (...) Артефакты усиливают понимание того, что что-либо мелкое, открывает возможность другой катастрофы, как Челленджера или Колумбии". - Автор летал на Колумбии в 1996 году
  3. Дебра Вернер. Штормовое предупреждение (Debra Werner, Storm warning) (на англ.) «Aerospace America», том 56, №1, 2018 г., стр. 22-29 в pdf - 643 кб
    «Зная, что жители принимают решения об эвакуации, по крайней мере частично, основываясь на этих сдвигающихся прогнозах, американские метеорологи полны решимости сделать свои прогнозы по шторму и интенсивности более точными. Они собираются получить помощь в виде метеорологического спутника весом 2295 кг. В нем много нововведений, которые ожидаются годами. NOAA-20 прибыл на орбиту в ноябре [2017 года] и проходит наладочные работы, прежде чем приступить к работе по прогнозированию ураганов и других погодных явлений. Это первый из четырех спутников из 11,3 млрд. долл. США следующего нового поколения Polar Satellite System, которая постепенно примет на себя обязанности сегодняшних Polar Operational Environmental Satellites NOAA. (...) Национальный центр по ураганам ежегодно усредняет свои ошибки на трассе в милях, и с 1970 года наблюдается снижение средней ошибки (...) Полярные орбитальные аппараты NOAA участвуют в осмотре земного шара от полюса до полюса 14 раз в день, собирая наблюдения за критическими факторами, такими как температура и влажность. Эти показания передаются в модели вместе с данными самолетов, воздушных шаров, океанских буев и геостационарных метеорологических спутников NOAA. (...) Летая в 40 раз ближе к атмосфере [чем геостационарные спутники], полярные орбитальные аппараты предоставляют более точные данные, в том числе об определенных погодных особенностях в их полях обзора. Кроме того, их последовательные орбиты составляют общий обзор. (...) Одна вещь, которую полярные орбитальные аппараты не могут сделать, - это обеспечить почти немигающий взгляд на Америку, которая является уделом геостационарных спутников NOAA. Новейший Geostationary Operational Environmental Satellite-16, или GOES-16, был введен в действие в сентябре [2017 года] (...) Синоптики ожидают значительных улучшений в этих данных от NOAA-20, достаточно, чтобы в сезон ураганов 2018 года они начнут экспериментировать с шестидневными и семидневными прогнозами ураганов с целью когда-нибудь опубликовать прогнозы, смотрящие далеко вперед, по сравнению с сегодняшними прогнозами, которые ожидают на три-пять дней вперед. (...) Для измерений на трассе синоптики будут особенно полагаться на показания температуры двумя приборами NOAA-20: Advanced Technology Microwave Sounder, или ATMS, и CrIS, сокращенно от Cross-track Infrared Sounder. ATMS наблюдает микроволновое излучение, испускаемое поверхностью Земли и атмосферой, с помощью вращающихся отражателей, которые собирают энергию в 22 спектральных областях в диапазоне от 23 гигагерц до 183 ГГц. (...) Инфракрасные показания от CrIS дополняют микроволновые данные от ATMS. Облака в значительной степени блокируют инфракрасную энергию снизу, но везде CrIS измеряет температуру, а также содержание воды в атмосфере, которая может усиливать штормы. (...) Отфильтровывая определенные спектральные полосы и комбинируя другие, синоптики могут сосредоточиться на определенных слоях атмосферы. (...) CrIS наблюдает свет в 2200 спектральных полосах по сравнению с 19 спектральными полосами на своих предшественниках (...) Температура и скорость ветра - это еще не все. Синоптики также должны видеть, как развиваются штормы. Вот где появляются геостационарные спутники и третий спутник NOAA-20 и SNPP [Suomi National Polar-orbiting Partnership satellite]: первый в своем роде комплект видимых инфракрасных радиометров или VIIRS (... Еще до того, как ураган сформирует глаз циклона, синоптики могут исследовать изображения VIIRS и найти центр вращения. (...) Как правило, основными источниками ошибок являются недостаточные наблюдения «для адекватного отображения поля ветра, температуры и влажности вокруг и во время шторма», а также «ошибки в том, как компьютерные модели обрабатывают определенные физические процессы, такие как турбулентность в пограничном слое, обмен энергией с океаном и то, как модели обрабатывают образующиеся облака. Если все пойдет по плану, НОАА-20 уменьшит возможности ошибок".
  4. Кит Баттон. Самоцензура/дисциплина в НАСА (Keith Button, Self-censorship/-discipline at NASA) (на англ.) «Aerospace America», том 56, №1, 2018 г., стр. 30-37 в pdf - 779 кб
    «После избрания Дональда Трампа консорциум университетов, возглавляемый штатом Огайо, задумался над формулировкой заявки на получение гранта в НАСА. Вместо того, чтобы ссылаться на цель по сокращению выбросов углерода от самолетов, консорциум скорректировал формулировку, заявив, что исследование будет изучать «проблемы и возможности электрических движителей». Опасение заключалось в том, что обращение к выбросам углерода подорвало бы шансы на выигрыш гранта, учитывая политический климат после выборов Трампа, говорит Мейер Бензакин, профессор аэрокосмической промышленности штата Огайо. Цель и содержание пятилетнего проекта - сократить выбросы углерода путем сдвига в электрическую тягу - остался без изменений, и в апреле 2017 года консорциум выиграл грант в размере 10 млн. долларов США. (...) Это очищение от политически чреватой терминологии в документации, а иногда и произнесенное слово стало образцом среди исследователей и членов НАСА, упоминаемых в моём обзоре документов и интервью с дюжиной исследователей в частной индустрии, университетах и НАСА.Это игра в кошки-мышки, в которой некоторые задаются вопросом, не толкает ли страх перед администрацией Трампа ученых за грань между их ответственностью точно передать обоснование своей работы и желанием продолжать финансирование. (...) Тем не менее, до сих пор видны масштабы этой тенденции в НАСА. Следует ограничиваться главным образом бюрократическими взаимодействиями внутри правительства, в основном в документах, а иногда и в разговорах. Например, эта тенденция не распространилась на общественное лицо агентства. Страницы на веб-сайте НАСА по-прежнему содержат обширные свидетельства изменения климата, включая повышение уровня углекислого газа, повышение глобальных температур, сокращение ледового покрытия моря и ледникового покрова суши и повышение уровня моря, а также ссылки на связанные с НАСА миссии по климатологии. (...) Исследователи из Отделения наук о Земле НАСА были обескуражены избранием Трампа. Его взгляды на климат противоречат международному научному консенсусу о том, что потепление климата с 1950-х годов является однозначным и что человеческая деятельность, скорее всего, будет главной причиной этого потепления. (...) Однако пока не было массового отхода от позиций. (...) Сотрудники Науки о Земле начали полагать, что Белый дом может не принять идею, которая их больше всего беспокоит: сократить финансирование этого отдела НАСА с 1,9 миллиарда долларов и полностью остановить исследования Земли для НОАА, а затем не финансировать НОАА для продолжения работы, которую выполняла НАСА. (...) Сегодня Отделение наук о Земле остается в силе, и кандидат в администрацию Трампа на пост администратора НАСА, республиканец Джим Бриденстайн, штат Оклахома, не проявил желания к его демонтажу. (...) бюджетный топор упал, но не так глубоко, как опасались некоторые исследователи. Предложение администрации на 2018 год сократить пять из 18 космических проектов отдела. (...) В долларах бюджет подразделения будет урезан до 1,75 млрд долларов США по сравнению с бюджетом на 2017 год в 1,93 млрд долларов США. (...) некоторые исследователи защищают семантическое очищение. Их цель состоит не в том, чтобы скрыться от взора Белого дома, а в том, чтобы избежать формулировок, которые могут затруднить продвижение или защиту проекта в Конгрессе, который они считают своей последней линией обороны. (...) Тенденция не ограничивается Отделом наук о Земле. Технология в Управлении Исследовательской Миссии Аэронавтики, которая когда-то считалась снижением содержания углекислого газа в качестве парникового газа, теперь подчеркивается как повышение эффективности и конкурентоспособности американской экономики. Когда законодательные представители НАСА встречаются с членами Конгресса, они избегают упоминания об изменении климата и уделяют больше внимания анализам, показывающим экономические выгоды для интересов бизнеса США. (...) Успешна ли стратегия защиты проектов? Результаты смешанные. Администрация Трампа принесла «беспрецедентный набор изменений», говорит [Максвелл] Бойкофф [директор Центра исследований научно-технической политики в Университете Колорадо-Боулдер]. (...) «Эта новая администрация действительно вызвала изменения приоритетов».
  5. Адам Хадхази. Долгое ожидание Уэбба (Adam Hadhazy, The long wait for Webb) (на англ.) «Aerospace America», том 56, №2, 2018 г., стр. 8 в pdf - 268 кб
    «В сентябре прошлого года [2017] НАСА объявило, что дата запуска Уэбба перенесена с октября 2018 года на 2019 год. (...) Задержка является последней в череде перерасходов средств и графика, поскольку разработка Уэбба началась в 1990-х годах, первоначально запуск запланирован на в 2007 году и цена в 500 млн. долл. Из-за временного недофинансирования и недостатков в создании бюджет увеличился до 8,8 млрд. долл. (...) При разработке основного пересмотра бюджета Уэбба в 2011 году менеджеры откладывали резервные фонды для работы с почти неизбежными проблемами, которые возникают, когда крупные, сложные проекты рядом с финишной чертой. (...) В случае Уэбба, задержка сосредоточена на компьютерном оборудовании и солнцезащитном щите космического корабля, в настоящее время проходит интеграцию и тестирование в Northrop Grumman в Редондо-Бич, Калифорния. Солнцезащитный экран будет заслонять Уэбба от тепла и света солнца, Земли и Луны, так как инфракрасный свет, излучаемый слабыми, холодными, отдаленными явлениями, выделяется в его наблюдениях. Во время запуска Уэбба на ракете Ariane 5 из Французской Гвианы солнцезащитный экран будет сложен в стиле оригами, чтобы поместиться в обтекатель, как и первичное зеркало телескопа диаметром 6,5 метра, состоящее из 18 шестиугольных сегментов. (...) телескоп разворачивается по одному шагу за раз, по наземным командам, а не с помощью автоматической последовательности. Тем не менее, чтобы солнцезащитный экран развернулся в космосе до его полного размера теннисного корта, необходимо задействовать 107 мембранных спусковых устройств. (...) Тестовое развертывание солнцезащитного экрана в Northrop Grumman потребует замены исполнительных механизмов, и эти замены заняли больше времени, чем предполагалось. Дополнительные тесты вибрации и акустики, имитирующие условия запуска, которые испытает Уэбб, все еще ожидаются, когда научные приборы телескопа - в настоящее время находящиеся в Космическом центре имени Джонсона НАСА - подключены к его компьютерному оборудованию и солнцезащитному экрану. (...) Когда Вебб запустят, его сторонники говорят, что телескоп придётся ещё ожидать".
  6. Генри Кэнэдэй. Доступная микрогравитация (Henry Canaday, Affordable microgravity) (на англ.) «Aerospace America», том 56, №2, 2018 г., стр. 24-28 в pdf - 644 кб
    «Познакомьтесь с G-Force One, самолетом, который в 2004 году стал новым блестящим примером космического предпринимательства. Самолет, управляемый базирующейся в Вирджинии компанией Zero Gravity Corp. (Zero-G), дает туристам, желающим заплатить 4950 долларов США, или ученым, ощущение, что они находятся в космосе. (...) В наши дни Zero-G рекламирует себя главным образом как компания «космических развлечений и туризма», но это также хит среди материаловедов, садоводов и других технологов, которые жаждут экспериментом за эти несколько секунд невесомости разрешитьсвои загадки. (...) Blue Origin планирует предложить ракету New Shepard для суборбитальных полетов как пассажирам, так и экспериментаторам в 2018 году или сразу после завершения испытаний. С New Shepard откроется возможность для исследователей сопровождать свои эксперименты в течение трех-четырех минут. (...) Основными преимуществами Zero Gravity являются емкость и предположительная стоимость. Blue Origin и Virgin Galactic будут иметь более длительную продолжительность и слегка «более чистую» невесомость. Конкурс, видимо, приветствуется. (...) Для ученых привлекательность этих полетов, называемых параболами по форме дуги, которую создает самолет, - это цена. G-Force One может взять команду из пяти исследователей и все их испытательное оборудование из международного аэропорта Орландо Санфорд, штат Флорида, над Мексиканским заливом за 38 500 долларов США. Для некоторых экспериментаторов предпочтительной площадкой будет Международная космическая станция, но она может стоить в несколько раз больше платы G-Force One только для того, чтобы провести эксперимент на станции. Кроме того, ученые не могут сопровождать их проект. (...) Есть также сбросные башни. Это недорого, но время эксперимента короткое. Лучшая в США - в исследовательском центре НАСА имени Гленна в Огайо, и он предлагает только пять секунд невесомости. (...) Высотные ракеты, которые достигают суборбитальных высот, являются еще одним вариантом, но они предлагают возможности только для беспилотных полетов и экспериментов. Размер и вес экспериментального оборудования также ограничены. (...) Для исследователей космоса или тех, кто хочет создать коммерческие базы в космосе, пайка в условиях микрогравитации может стать необходимой. (...) Проблема, как выяснила НАСА в параболическом эксперименте на KC-135, заключается в том, что в условиях микрогравитации пары могут оставаться в припое в виде крошечных пузырьков, которые ослабляют соединения. (...) возможное решение: Поместите крошечные кусочки железа в припой и притяните припой к паяному соединению с помощью магнитов, толкая пузырьки вверх и наружу, как гравитация. (...) [Джон] Кульман (почетный профессор механического и аэрокосмического машиностроения в Университете Западной Вирджинии, проводящий эти эксперименты) выбрал Zero-G, потому что его предыдущий опыт параболического полета научил его, что 20-21 секунда невесомости будет достаточно долго, чтобы припой расплавился и затвердел. (...) 15 ноября 2017 года команда Кульмана работала на 30 параболах, паяя отдельные соединения, а также используя печи для оплавления для пайки компонентов печатных плат. (...) Анализ результатов займет месяцы. (...) Исследователи космоса наверняка захотят выращивать свои собственные овощи (...) Но микрогравитация создает проблемы, говорит Одри Уэбб, председатель отделения и инструктор в Общественном колледже штата Гадсден в Алабаме. Нет силы тянуть воду к корням растений, чтобы они могли питать рост растений. (...) Уэбб выбрал Zero-G отчасти потому, что космическая станция была слишком дорогой, от 80 000 до 90 000 долларов США только для перевозки в один конец в предыдущем эксперименте. (...) Команда Уэбба взлетела на 30 парабол. Пилоты Zero-G могут адаптировать гравитацию во время параболы и первые пять парабол изобразили лунную и марсианскую гравитацию. Затем каждая пара исследователей пыталась одновременно наблюдать пять парабол с датчиками и камерами на предмет попадания воды. Различные методы были использованы для полива растений. (...) Она [Уэбб] говорит, что для предварительных экспериментов достаточно 20-секундной невесомости, но если она найдет обнадеживающий подход к проблеме, она может решить провести эксперимент в трехмесячном испытании на космической станции."
  7. Майкл Дж. Данн. Лучшая защита Земли (Michael J. Dunn, Earth’s best defense) (на англ.) «Aerospace America», том 56, №2, 2018 г., стр. 46-47 в pdf - 323 кб
    «Я категорически не согласен с тем, что «Aerospace America» характеризует ядерный вариант против опасных околоземных объектов как «Hail Mary» (Радуйся, Мария), у которого будет «мало шансов предотвратить катастрофу». В статье «Коррекция курса» [октябрь 2017 года] говорится, что кинетический ударник предпочтителен, «поскольку технология для его проведения является наиболее зрелой». (...) Для обсуждения давайте представим, что тело, аналогичное метеороиду, образовавшему кратер Баррингер в Аризоне (диаметр 1,2 километра, глубина 0,17 км), было обнаружено в 2 астрономических единицах от Земли, и его траектория показала, что оно на пути столкновения с Землей. (...) Давайте постулируем, что у нас есть средства для перехвата этого метеороида, когда оно достигнет 1 астрономической единицы, расстояния, эквивалентного расстоянию от Земли до Солнца или 149 597 870 километров. (...) перехватчику потребуется общая движущаяся дельта-скорость 17,408 км/сек. Время перехвата (рассчитанное делением 1 а.е. на 6,222 км/сек) составит 278,3 дня. (...) Чтобы гарантировать, что метеороид не попадёт на Землю его траектория должна отклоняться, по крайней мере, на радиус Земли 6 378 км, скажем, 10000 км для круглого числа с некоторым запасом. Грубо говоря, это может привести к поперечному или боковому возмущению скорости 0,416 м/с. Таким образом, кинетический ударник d для придания импульсного возмущения 228 661 760 кг-м/с. (...) для этого потребуется импактор (или стая ударников) массой 36 750 кг. Вполне возможно, что ударник просто расколет метеороид, а не нарушит его траекторию. (...) Предположим, мы могли бы доставить ядерное устройство, такое как водородная бомба царь-бомба советской эпохи, мощностью 100 мегатонн, весом 27 000 кг, с точностью 0,1 до 1,0 км. Приблизительно половина выхода будет доступна в виде излучения (рентгеновских фотонов) достаточной энергии для ионизации материала поверхности метеороида и образования тонкой плазмы. (...) Открытая площадь метеороида будет составлять приблизительно 1 963,5 квадратных метра, что приведет к суммарному приложению силы в диапазоне от 3,229 x 1012 до 3,229 x 1010 ньютонов в течение 0,1 мсек. Это означает, что ядерное устройство может выполнить возмущение импульса, если детонировать на расстоянии, немного превышающем 0,1 км. (...) поскольку метеорит Баррингер был испарен в результате его удара, это логичный вывод о том, что 10-мегатонная ядерная боеголовка, взорванная при ударе, также испарит аналогичный метеороид. (...) Наша условная угроза метеороида могла бы, только теоретически, быть решена массивным кинетическим ударником, требующим движущих маневров в конце игры для достижения требуемого возмущения поперечного импульса с неизвестными конечными эффектами. С другой стороны, это также может быть решено с помощью ядерной детонации с близкого расстояния на проходящей траектории, с использованием технологии, которой более полувека. Справедливо сказать, что ядерное решение является «наиболее зрелым».
    Ссылка на статью: Адам Хадхази, корректор курса «Аэрокосмическая Америка», том 55, №9, 2017 г.
    http://epizodyspace.ru/bibl/inostr-yazyki/aerospace-america/2017/9/Hadhazy_Course_corrector_Aerospace_America_55_no_09_(2017).pdf
  8. Том Ризен. Испытания надувных посадочных поверхностей (Tom Risen, Inflatable lander faces tests) (на англ.) «Aerospace America», том 56, №3, 2018 г., стр. 10 в pdf - 205 кб
    «НАСА работает с 2005 года над концепцией гиперзвукового надувного аэродинамического замедлителя, или HIAD. Трубы из ткани будут раздуваться в космосе, вытягивая перед собой теплозащитный экран из карбидокремниевой ткани, чтобы защитить космический корабль от жара и давления гиперзвуковых условий. Отход от твердых аэрооболочек может добавить возможность проход через тонкую атмосферу с космического корабля большего диаметра, подобного тем, которые требуются для полета человека на Марс. Астронавты или роверы также могут осмелиться приземлиться на более высоких областях на Марсе, таких как южный Нагорье, которое, как предполагает НАСА, когда-то было частично над уровнем моря, когда на красной планете был океан. (...) Нил Читвуд, главный исследователь HIAD в Лэнгли [Исследовательский центр] (...), говорит, что он координирует свою деятельность с United Launch Alliance о возможности спасения ракетных ступеней [с низкой околоземной орбиты] путем их защиты с помощью HIAD. (...) Инженеры запустили более раннюю версию HIAD в 2012 году и выбросили её из ракеты на высоте 450 километров. Он приземлился в Атлантическом океане, как и планировалось. Команда НАСА планирует, что аэродинамическая оболочка в демонстрации 2021 года будет в пять раз тяжелее, чем ее предшественник. Инженеры отделят эту оболочку от ракеты на высоте, превышающей высоту полета 2012 года, чтобы проверить ее способность противостоять более интенсивному нагреву и давлению при более высокой скорости входа в атмосферу».
  9. Аманда Миллер. Перспектива для охотников за планетами (Amanda Miller, Fast forward for planet hunters) (на англ.) «Aerospace America», том 56, №3, 2018 г., стр. 22-29 в pdf - 449 кб
    «TESS, транзитный обзорный спутник Exoplanet, финансируемая НАСА миссия по поиску планет на сумму 200 миллионов долларов США, которая должна начаться, возможно, в апреле [2018], (...) будет регулярно фиксировать яркость отдельных звезд и принимать периодические снимки, содержащие сотни тысяч звезд. Эти изображения и данные будут загружены для миссионерских групп в исследовательском центре Эймса в Калифорнии и Массачусетском технологическом институте, которые будут отмечать «объекты интереса» с помощью так называемой транзитной фотометрии из-за яркости падения звезды на некоторое время, это может означать, что планета проходит перед ней. Эти цели и исходные данные будут опубликованы для других охотников за планетами, которые попытаются узнать больше об этих планетарных кандидатах или идентифицировать их как новые. (...) Если TESS сможет быстро собрать огромную числовую последовательность вероятных координат планет, другие инструменты могут затем увеличить самые интригующие возможности и, возможно, дадут человечеству свой первый элементарный взгляд на подобный Земле мир - не спустя десятилетия, а всего через несколько лет. (...) Разработчики TESS ожидают, что первые открытия экзопланет космическим аппаратом будут подтверждены к середине 2019 года на пути к сбору косвенных доказательств существования 20 000 кандидатов в течение двухлетней базовой миссии. Эта цифра будет большим вкладом по текущему количеству примерно 3700 подтвержденных миров, вращающихся вокруг звёзд, кроме нашей собственной (...) НАСА считает, что около 50 или около того могут быть каменистыми планетами, в том числе горстка в (...) «обитаемых» зонах вокруг своих звезд. (...) Экзопланеты подтвердили, что среди целей TESS будут достаточно близкие к Земле для исследования космическим телескопом Джеймса Уэбба, запуск которого запланирован на 2019 год. Уэбб будет спекроскопировать свет, сияющий сквозь атмосферу планеты, чтобы попытаться выяснить её содержимое. (...) План состоит в том, чтобы взглянуть на более холодные звезды [так называемые звезды М-карлики], потому что планеты, вращающиеся в своих обитаемых зонах, предположительно ближе к звезде и вращаются чаще. Это повышает вероятность того, что TESS обнаружит их в своей первоначальной двухлетней миссии. Численность и долговечность M-карликов дают охотникам на планеты надежду на то, что на хорошо расположенной планете могли быть созданы условия, благоприятствующие жизни. (...) [TESS будет использовать орбиту], которую ни один космический корабль никогда не использовал. Это своего рода эллиптическая орбита, называемая 2:1 лунной резонансной орбитой, резонансной, относящейся к устойчивому соотношению времени: TESS вращается вокруг Земли дважды при каждом витке Луны вокруг Земли. (...) TESS также будет первым космическим аппаратом в сети Deep Space Network, который будет отправлять информацию на частоте Ka-диапазона 26 ГГц, которую НАСА только начинает использовать. Эта линия будет в сотни раз быстрее, чем старая, более низкая частота вблизи линии S-диапазона. (...) Посмотрев на один кусочек неба, ученые сделали поразительный расчет, что наша галактика, вероятно, содержит более 100 миллиардов планет в обитаемых зонах. Эта концепция, на самом деле, вызвала интерес к TESS".
  10. Том Райзен. InSight раскопает секреты Марса (Tom Risen, InSight digs for Mars secrets) (на англ.) «Aerospace America», том 56, №4, 2018 г., стр.9 в pdf - 707 кб
    «Лаборатория реактивного движения, финансируемая НАСА, планирует запустить зонд с 5 мая по 8 июня [2018] для приземления на Марсе и провести первые комплексные измерения внутренней части планеты, которые могли бы определить, как формируются другие каменистые планеты, включая Землю. (...) InSight [Interior Exploration using Seismic Investigations, Geodesy and Heat Transport] предназначен для того, чтобы глубже проникнуть в Марс, чем люди когда-либо копали в другом мире (...) InSight - это первая миссия с целью измерения теплового потока внутри Марса, и первая миссия в дальнем космосе, сопровождаемая орбитальными кубсатами".
  11. Дейл Маккиби. Для Марса 2020, схемотехника - это ключ (Dale McKeeby, For Mars 2020, circuitry is a key) (на англ.) «Aerospace America», том 56, №4, 2018 г., стр.16-19 в pdf - 831 кб
    «Наши сотрудники здесь, в Pioneer Circuits (компания в Санта-Ана, Калифорния), начали работать над марсоходами в 1994 году, когда мы получили запрос от Лаборатории реактивного движения НАСА в Калифорнии, чтобы построить схему для предстоящей миссии, теперь известной как Mars Pathfinder. 10,6-килограммовый марсоход миссии, названный Sojourner, был первым на марсианской поверхности (...) Проблема заключалась в весе проводки, необходимой для подачи питания на электронику ровера (...) Анализ показал, что эта проводка будет весить 0,7 килограмма - этого достаточно, чтобы сделать ровер слишком большим и тяжелым. Pioneer принял вызов и создал 30-слойную гибкую печатную плату PWB, которая заменила всю жесткую проводку и уменьшила вес до 87 граммов. (...) Что сделало схему особенной (...), так это производственный процесс. Мы разработали сложный процесс, в котором отдельные субламинаты [листы ламинатов] были связаны вместе с нагревом, давлением и адгезивами. (...) Конструкция этой PWB представляет собой совокупность жестких и гибких цепей, которые пересекаются от одной жесткой секции к другой с гибким интерфейсом цепей. (...) Этот новый марсоход [Mars 2020], собранный в JPL, будет весить 1050 кг и размером с седан [автомобиль], не включая его роботизированную руку. Его дизайн создавал знакомые проблемы с питанием и схемотехникой, но в гораздо больших количествах. (...) Рука была особым испытанием. Она должна быть сложена во время приземления, а затем раскрыта, чтобы правильно расположить Mastcam-Z примерно на 1,5 метра над шасси ровера. Для обеспечения электропитания и создания канала передачи данных в Mastcam-Z мы выбрали гибкий кабель расширенной длины, аналогичный кабелю Curiosity, Spirit и Opportunity. (...) Чтобы создать такой длинный кабель, мы разработали запатентованную методику соединения длинных гибких цепей, состоящих из полиимидной пленки толщиной 0,002 мил [0,00005 мм] и листов, покрытых медью. Наша технология сращивания обеспечивает гибкость соединений благодаря разработанной нами уникальной методике снятия напряжения. Мы применили эту технологию к Марсу 2020, который нуждается в гибких цепях до 10,66 метров. (...) Mars 2020 представляет собой уникальную проблему для наших гибких схем сплайсинга. Они должны доставлять электроэнергию от двух батарей ровера к его электронике, включая 23 камеры, а также обеспечивать пути передачи данных, чтобы помочь марсоходу перемещаться, избегать опасностей и брать образцы. (...) Кроме того, электроника внутри этих камер использует жесткие гибкие цепи, которые сочетают в себе долговечность жестких цепей с надежностью и гибкостью гибких цепей. Основные цели использования гибких и жестких гибких контуров состояли в том, чтобы преодолеть ограничения в пространстве и весе, а также повысить надежность (...) Манипулятор ровера будет иметь датчик силы крутящего момента, чтобы определять силы, приложенные к руке, чтобы дать обратную связь с роботом и помогает ему быть гибким и адаптируемым в своих движениях. (...) Недавно разработанная многослойная гибкая схема руки обеспечивает более точный контроль крутящего момента. (...) В целом, Mars 2020 добавляет список технологий гибких цепей, которые обеспечивают возможности марсоходов ».
    [1 мил = 1/1000 дюйма]
  12. Том Джонс. Разыскивается: реалистичный лунный план (Tom Jones, Wanted: a realistic moon plan) (на англ.) «Aerospace America», том 56, №4, 2018 г., стр.20-23 в pdf - 967 кб
    «Объявляя стратегию администрации Трампа по возвращению на Луну, исполняющий обязанности Администратора НАСА Роберт Лайтфут сказал аудитории в Хантсвилле, штат Алабама, что агентство будет работать с подрядчиками для строительства минимального форпоста возле Луны для поддержки космонавтов в ежегодных визитах небольшой продолжительности, который выступает в качестве технологической лаборатории и транспортного узла для возможных посадок на поверхность. (...) НАСА говорит, что знает, как построить эту Лунную Орбитальную Платформу или LOP-G (Памятка для НАСА: найдите Лучшее название!). Сборка в космосе начнется в 2023 году, когда стартует ракета SLS с первым космическим кораблем «Орион» с экипажем на борту. НАСА также говорит, что знает, что астронавты будут делать во время последовательных посещений: проводить лунные наблюдения, управлять роверами и испытывать оборудование для разведки. Что не очень понятно, так это то, как это предприятие по возвращению на Луну будет успешным, когда два предыдущих проекта НАСА не удалось запустить. (...) Когда в октябре 2017 года вице-президент Майк Пенс пообещал «возобновить американское присутствие на Луне», НАСА переориентировало свое планирование для этого форпоста с орбитальной промежуточной станции до "ворот" как на близлежащую лунную поверхность, так и в дальний космос, а именно на Марс. (...) Ахиллесова пята лунной кампании всегда будет скупым финансированием. НАСА прогнозирует, что в течение пяти лет это будет стоить около 2,7 миллиардов долларов США для проведения кампании по исследованию Луны и для первоначального запуска ЛОС. Тем не менее, предлагаемый администрацией бюджет НАСА на 2019 год содержит лишь незначительное увеличение - до 19,9 млрд. долл. США, за которым следуют еще четыре года постоянных расходов. Чтобы найти деньги на Луну, НАСА было приказано перетянуть средства из космоса и наук о Земле, а также с Международной космической станции, перенаправив их на лунную кампанию. Это высокий заказ. Конгресс, скорее всего, отклонит эти изменения приоритетов, оставив лунную программу недофинансированной. (...) Бюджет НАСА должен увеличиться, иначе мы по-прежнему будем смотреть на Луну издалека, когда МКС погрузится в Тихий океан после 2028 года, предполагаемой даты завершения жизни для станции. (...) Никакая особенность бюджета НАСА администрации не вызвала большего противоречия, чем ее предложение прекратить государственное финансирование МКС к 2025 году. Перенос операций станции на коммерческий сектор к тому времени мог бы в последующие годы высвободить 3 миллиарда долларов США в последующие годы для исследования Луны. (...) Конгресс не допустит беспощадной раздачи многомиллиардного государственного актива частному сектору. Также НАСА не может передать модули МКС, принадлежащие нашим международным партнерам. (...) Реальность такова, что бюджет НАСА должен увеличиться. Увеличение на 5 процентов до 21 миллиарда долларов США является минимально необходимым капиталовложением. (...) Одно только финансирование не гарантирует возвращения на Луну. Вот некоторые дополнительные шаги, которые НАСА должно предпринять: [1] Не ограничивайте необходимые ресурсы. (...) НАСА должно сообщить Конгрессу и общественности, сколько будет стоить возвращение на Луну, и в случае голосования за эти ресурсы выполнить в рамках этого бюджета. [2] Ведите переговоры с нашими международными партнерами по МКС о сотрудничестве вокруг Луны, но опасайтесь, чтобы какой-либо один партнер встал на критический путь при создании "лунных ворот". (...) [3] Не покупайте лунные корабли, как НАСА всегда делало - нанимая подрядчиков для выполнения подробных и беспрецедентных спецификаций. Попросите индустрию развивать коммерческие проекты (...) [4] Наконец, поместите людей-исследователей в центр работ по Луне. (...) Покажите, как жилища астронавтов, источники питания, вездеходы и скафандры обеспечат опыт, необходимый для развертывания этих же систем на Марсе. В течение последних 10 лет НАСА имела возможность говорить о людях на Марсе, не делая ничего, чтобы сделать это реальностью. (...) Есть основания для оптимизма. Новые коммерческие космические фирмы могут разрабатывать инновационные конструкции космических аппаратов и доступные услуги по запуску и логистике. (...) Десятилетний опыт работы на Луне и вокруг нее может дать НАСА и его партнерам технологическую зрелость, чтобы снизить риск экспедиций на Марс и снизить их стоимость до приемлемого уровня. (...) Учитывая национальную волю и адекватные ресурсы, НАСА и его партнеры могут сделать эту работу. Луна все еще там - пойдем.
  13. Аманда Миллер, Дело для WFIRST (Amanda Miller, The case for WFIRST) (на англ.) «Aerospace America», том 56, №4, 2018 г., стр. 24-29 в pdf - 949 кб
    «Если вы один из тех, кто работает над широкоугольным инфракрасным телескопом НАСА (WFIRST), вы начинаете ощущать дополнительные причины, по которым Белый дом хочет завершить разработку космического аппарата, даже несмотря на то, что программа стоимостью 3,2 млрд. долл. США в значительной степени ограничена бюджетом. WFIRST соответствует всем научным обещаниям, которые были, когда вы приступили к работе над ним десять лет назад. (...) С научной точки зрения, три предстоящих космических телескопа НАСА призваны собрать воедино несколько разных головоломок. WFIRST ликвидирует пробелы в расчете числа и типов планет в галактике и уточнит преобладание и свойства «темной энергии», теоретического явления или силы, которая, кажется, заставляет вселенную разлетаться все быстрее и быстрее. (...) Международные партнеры, предоставляющие оборудование, технологии и исследования, нервничают, что их инвестиции могут сойти на нет. (...) Астрофизики сказали, что вещество, явление или отталкивающая сила должны вызывать расширение вселенной с ускоряющейся скоростью, и что эта темная энергия должна составлять большую часть вселенной. Фактически, с сегодняшними наблюдениями, они оценивают, что темная энергия составляет 68 процентов. (...) К тайне темной энергии добавляется теория общей теории относительности Эйнштейна, в которой говорится, что гравитация должна замедлять расширение. «Является ли это космическим ускорением из-за странной, ранее неизвестной «темной энергии», которая побеждает притяжение гравитации в огромных масштабах вселенной, или возможно, что мы обнаружили, что формулировка закона гравитации Эйнштейном не совсем правильно? Этот вопрос, поставлен в обзоре приоритетов астрономии и астрофизики в 2010 году, проведенном Национальным исследовательским советом, подразделением Национальной академии наук, инженерии и медицины США. В обзоре WFIRST указан в качестве рекомендуемой в стране «высшей приоритетной» космической миссии для астрономии и астрофизики. (...) Национальное разведывательное управление предоставило НАСА зеркало шириной 2,4 метра среди телескопического оборудования, которое больше не соответствует задачам этого агентства. (...) WFIRST Wide Field Instrument - это 300-мегапиксельная цифровая камера, которая записывает измерения, предназначенные как для исследования темной энергии, так и для нового статистического обзора экзопланет. (...) «Если мы не сделаем WFIRST - если США решат не строить и не запустить WFIRST - тогда мы не добьемся того прогресса, который нам необходим для понимания темной энергии», [Пол] Герц [директор Отдел астрофизики НАСА в Управлении научных миссий]. «Темной энергии в 15 раз больше, чем нормальной материи во вселенной, и мы не понимаем этого, и Национальная академия наук заявила, что это самая важная научная проблема, которую необходимо решить». (...) Почему НАСА также нужно новое исследование экзопланеты галактики? (...) «WFIRST, потому что он использует совершенно другой метод, будет чувствителен к различным типам планет. Так, в частности, WFIRST более чувствителен к планетам, которые находятся далеко от их звезды, - объясняет Герц, - в тех местах, где в нашей солнечной системе находятся Юпитер, Сатурн, Уран и Нептун. (...) Считается, что получение прямого визуального изображения - это самый верный способ узнать, действительно ли планета похожа на Землю, говорит Джереми Касдин, главный исследователь коронографического прибора WFIRST. Коронографы - это оптика, которая блокирует свет звезды, обнаруживая планеты, которые в противном случае замаскированы ярким светом. (...) Коронаграф WFIRST подходит для фотографирования планет-гигантов, но для захвата меньшего каменистого мира, такого как Земля, потребуется более мощный телескоп. Цель WFIRST - продемонстрировать технологию будущего телескопа. Касдин считает, что благодаря более чувствительному телескопу и проверенному на практике коронографу будут возможны первые фотографии экзопланет размером с Землю. (...) WFIRST может легко изобразить 1 миллиард галактик за всю свою жизнь. «Было бы большой потерей для науки и большой потерей для лидерства США в науке», если бы WFIRST был сокращен, - говорит Герц, глава астрофизики НАСА».
  14. Джесс Спонабл. Ускоритель для военных космических самолетов (Jess Sponable, A boost for military spaceplanes) (на англ.) «Aerospace America», том 56, №4, 2018 г., стр. 30-33 в pdf - 736 кб
    «Запуск SpaceX Falcon Heavy в феврале [2018] и восстановление двух из трех ступеней РН должны вызвать тектонический сдвиг в представлениях ВВС США о возможности создания небольшого парка космических самолетов для создания глаз, ушей и присутствия во всем мире. (...) Короче говоря, подвиг SpaceX предполагает, что теперь экономически целесообразно создавать и эксплуатировать новый класс транспортных средств: военные космические самолеты глобального масштаба, способные достичь любой точки мира менее чем за час. (...) Вместо запуска SpaceX по расписанию военные космические самолеты будут запускаться по требованию, могут быть полностью использованы повторно, развернуты за несколько часов и регулярно летать в космос или пролетать над любым местом на Земле. В зависимости от миссии они могут быть спроектированы так, чтобы скользить высоко в атмосфере Земли или летать над ней на краю космоса. (...) С точки зрения физического размера и сухого веса, военные космические самолеты, уменьшенные с космических кораблей SpaceX, не будут больше коммерческого самолета. (...) Используя технологии и экономическую эффективность, продемонстрированные SpaceX и другими начинающими предпринимателями, экспериментальные космические самолеты или даже оперативные системы могут потенциально разрабатываться за долю стоимости многих современных военных самолетов. (...) С тех пор, как военно-воздушные силы армии стали ВВС США в 1947 году, служба предусматривала и инвестировала много миллиардов в создание глобальных космических самолетов. В течение десятилетий Стратегическое воздушное командование (SAC) стимулировало создание высокоскоростных самолетов, включая X-15, X-24, XB-70, и разработку концепций космических самолетов, в том числе X-20 DynaSoar и X-30 National Aero. Космический самолет, ни один из которых не летал. (...) С окончанием холодной войны SAC был ликвидирован, а его активы были переданы другим основным командам. Кроме того, на пенсию вошли стратегические соображения ВВС о будущих системах вооружений и любые существенные инвестиции для продолжения наследия службы по развитию высокоскоростных технологий. (...) К счастью, некоторые работы по продвинутым технологиям запуска и посадки продолжались. (...) В конечном итоге настоящие гении Америки, наши предприниматели, вошли в дело. (...) Даже Boeing инвестирует средства в DARPA [Агентство перспективных исследовательских проектов в области обороны] в рамках программы Experimental Spaceplane XSP на своем космическом самолете Phantom Express. С агрессивными целями DARPA, заключающимися в очень долгой жизни и быстром темпе (темпе и интенсивности операций) десять полетов за десять дней, Boeing, вероятно, наиболее близок к достижению работоспособности, подобной самолету, необходимой для военных космических самолетов. (...) Выступая перед Ассоциацией ВВС в феврале [2018 года], начальник штаба ВВС генерал Дэвид Голдфейн, как сообщается, предупредил: «Вопрос не в том, «если», а в том, когда» военнослужащие будут воевать в космосе. Он был частично прав. Реальная проблема не в боевых действиях в космосе, а в полете в космосе или вблизи него для выполнения множества миссий ВВС. (...) Быстро заменяя потерянные ИСЗ на орбите или летая разведывательной миссией за один проход из центральной части Соединенных Штатов, время реагирования, относительная неуязвимость и скорость космических самолетов могут быть ключевыми для предотвращения эскалации будущих конфликтов. Если история учит, то далеко не уверен, что военные США решат разработать военные космические самолеты. (...) Если ВВС серьезно относятся к своему технологическому наследию, им необходимо активизировать и инвестировать в серию X-самолетов и проектов, которые используют предпринимательские инвестиции и прокладывают путь к запуску по требованию глобальных возможностей». - Автор ушел из DARPA в ноябре 2017 года, где был руководителем программы по разработке экспериментального космического самолета XSP.
  15. Ральф Д. Лоренц и др. «Стрекоза: концепция спускаемого аппарата на вертолете для научных исследований на Титане» (Ralph D. Lorenz et al., Dragonfly: A Rotorcraft Lander Concept for Scientific Exploration at Titan) (на англ.) «John Hopkins APL Technical Digest», том 34, №3, 2018 г., стр. 374-387 в pdf - 5,39 Мб
    «Команда, возглавляемая Лабораторией прикладной физики Университета Джона Хопкинса (APL), предложила революционный посадочный аппарат, который использует роторы для приземления в густой атмосфере и низкой гравитации Титана и может многократно перемещаться в новые места, умножая научную ценность миссии и инструментов полезной нагрузки. (...) Авторы надеются, что [концепция Dragonfly] будет выбрана в конце 2017 года для исследования фазы A и, в конечном итоге, для полета. Однако, независимо от результатов запроса New Frontiers 4, Dragonfly представила новую революционную парадигму в исследование планет путем демонстрации подробного предложения по реализации беспрецедентной региональной мобильности. Изложив эту концепцию, авторы предсказывают, что отныне может быть трудно представить миссию «Титан», которая не использует эту возможность».
  16. номер полностью (на англ.) «The Planetary Report» 2018 г. том 38. №1 (Мартовское равноденствие 2018) в pdf - 6,01 Мб
    Марс как экзопланета (Mars as an Exoplanet)
    На обложке: данные космического аппарата Mars Atmosphere and Volatile Evolution (MAVEN) помогают ученым разгадать тайну эволюции Красной планеты от более теплого и влажного мира к холодному и сухому месту, которое мы знаем сегодня. Полученные знания помогут им лучше судить, какие экзопланеты могут быть гостеприимными для жизни, как мы ее знаем. Эта особенность, представленная в научном эксперименте с высоким разрешением на разведывательном орбитальном аппарате Марса, является частью речного канала в регионе Эолис / Зефирия-Плана вблизи экватора Марса.
    НАСА / JPL-Caltech / UA

    Глазами MAVEN: Брюс Якоски и Дэвид Брейн изучают Марс, чтобы предсказать обитаемость экзопланет.
    Жизненно важная поддержка: Кейт Хауэллс приветствует наших добровольцев в Вашингтоне, округ Колумбия.
    За пределами Нептуна: Мишель Баннистер использует Обследование происхождения Внешней Солнечной системы, чтобы найти далекие малые планеты.
    #SpaceHaiku: Мы пригласили участников и публику проявить творческий подход к поэзии. Вот пример того, что мы получили.
    Брюс Беттс объявляет о новом туре победителей Гранта Шумейкера NEO и представляет PlanetVac.
    Почему мы создали Совещание по планетарной науке: представители Джон Калберсон и Дерек Килмер обсуждают Совещание по планетарной науке.
    снимок из космоса. Эмили Лакдавалла демонстрирует Венеру, увиденную Акацуки.
    Ваше место в космосе. Билл Най рассказывает о том, как мы продвигаем космическую науку.
    Венера, Марс, Юпитер и Сатурн!
  17. номер полностью (на англ.) «The Planetary Report» 2018 г. том 38. №2 (Июньское солнцестояние 2018) в pdf - 4,99 Мб
    Умные роботы (Smarter Robots)
    На обложке: три года спустя на Марсе операторы Curiosity подключили программное обеспечение искусственного интеллекта к своему главному компьютеру, что позволило роверу выбирать для себя, какие каменные цели ударить с помощью исследующего лазерного луча. Благодаря этому программному обеспечению «Автономное исследование для сбора расширенной науки» (AEGIS) Curiosity может выбирать перспективные цели без команд от людей, которые его создали. Этот автопортрет Curiosity, снятый на хребте Vera Rubin, собран из изображений, снятых его имитатором Марс-Лэнс (MAHLI) 23 января 2018 года. Ободок кратера Гейла виден слева (север) и справа (юг).
    NASA / JPL-Caltech / MSSS

    Автоматизация науки на Марсе: Рэймонд Фрэнсис и Тара Эстлин рассказывают об интеллектуальной системе нацеливания на борту Curiosity и Opportunity.
    Приключение Instagram: Энди Де Фонсека надеется на более темное небо.
    Наше заинтересованное сообщество: Ричард Шут представляет спонсоров PlanetVac, книгу Эмили Лакдаваллы и нашу новую кампанию Kick Asteroid.
    Интегрировано и доставлено: Брюс Беттс сообщает о последних этапах LightSail 2.
    Кейси Драйер обсуждает историю и неопределенное будущее миссий по возвращению образцов.
    Ваше место в космосе Билл Най рассказывает о тесте PlanetVac в Мохаве, прогрессе в Вашингтоне, округ Колумбия, и LightSail 2.
    Все пять планет невооруженным глазом, Персеиды и полное лунное затмение!
    Снимок из космоса. Эмили Лакдавалла представляет живописный портрет Юпитера.
  18. номер полностью (на англ.) «The Planetary Report» 2018 г. том 38. №3 (Сентябрьское равноденствие 2018) в pdf - 9,95 Мб
    Возвращение к Меркурию (Return to Mercury)
    На обложке: до настоящего времени Меркурий посетили только два космических аппарата. Эта улучшенная цветная мозаика Меркурия была собрана Тедом Стриком из множества отдельных кадров, сделанных Маринером 10, когда он покинул Меркурий после своего первого пролета 29 марта 1974 года. Тонкие цвета не были видны в современных версиях мозаики; Вернувшись к нему с современной цифровой обработкой изображений, Страйк обнаружил оранжевые, фиолетовые и коричневые оттенки в цветовых данных.
    НАСА / JPL / Тед Стрик

    от редактора Ваше место в космосе: на орбитах и в организационных схемах
    Билл Най рассказывает о своем очень напряженном лете 2018 года и обещает расширить влияние Общества.
    Путешествие на Меркурий. Эльза Монтаньон рассказывает о трудностях доставки двух космических аппаратов БепиКоломбо с Земли на Меркурий.
    ВОЛОНТЕРСКИЙ ФОНАРЬ
    Нисса Лонсдейл отмечает австралийских добровольцев, которые рассказывают о космических исследованиях.
    Приземление и возврат образца
    Длинный Сяо представляет две амбициозные китайские лунные миссии, одна из которых совершит первую в мире посадку на противоположной стороне Луны.
    Чандраян-2 Шрирам Бхираварасу ожидает индийское лунное предприятие 2019 года с орбитальным аппаратом, посадочным аппаратом и вездеходом.
    РАЗВИТИЕ В КОСМИЧЕСКОЙ НАУКЕ
    Удачная Поездка. Брюс Беттс сообщает о новаторском испытании возможностей PlanetVac в калифорнийской пустыне.
    ПРАВДА ДЛЯ КОСМОСА
    Зачем запускать космическую программу? Кейси Драйер наблюдает за происхождением нового космического агентства в Австралии и за тем, как Планетарное общество помогло это сделать.
    Четыре планеты и метеорный поток Геминид украсят небо Земли в этом квартале.
    Эмили Лакдавалла представляет планетарный отчет.
    Запуск LightSail 2 - вы приглашены! Ричард Шут приглашает участников присоединиться к нам во Флориде.
  19. номер полностью (на англ.) «The Planetary Report» 2018 г. том 38. №4 (Декабрьское солнцестояние 2018) в pdf - 12,5 Мб
    На обложке: когда астронавты Аполлона-8 Билл Андерс, Фрэнк Борман и Джим Ловелл обогнули Луну, они стали первыми людьми, которые стали свидетелями Восхода Земли над поверхностью пришельцев. Культовое изображение было впервые опубликовано 30 декабря 1968 года, 50 лет назад в этом месяце.
    НАСА / Шон Доран
    ПРАВДА ДЛЯ КОСМОСА
    Полное погружение в небеса. Кейси Драйер оценивает значение программы «Аполлон», посвященной ее 50-летию.
    ВАШЕ МЕСТО В КОСМОСЕ
    Нет места, как наша планета. Билл Най вдохновлен связью между исследованием других миров и открытиями на Земле.
    Пролёт дома. Вики Гамильтон исследует, как OSIRIS-REx использовала свой облет Земли, чтобы проверить приборы на пути к астероиду Бенну.
    Космический корабль Земля. Мы посмотрим, как разные лунные и планетарные миссии фотографировали наш родной мир и его луну.
    Создание жизни. Майкл Л. Вонг спрашивает, как наше понимание происхождения жизни на Земле способствует нашему поиску в другом месте.
    Ричард Шут обсуждает варианты благотворительной деятельности на конец года.
    РАЗВИТИЯ КОСМИЧЕСКОЙ НАУКИ
    Занятое лето. Брюс Беттс сообщает о статусе LightSail 2 и смотрит в будущее солнечного плавания.
    Четыре планеты, а также лунные и солнечные затмения будут украшать небо Земли в этом квартале.
    Джеймс А. Ловелл младший, Аполлон 8
  20. номер полностью (на англ.) «Spaceport magazine» 2018 г №1 в pdf — 6,39 Мб
  21. Томаш Пшибел. Экспедиционный модуль для Луны (Výletní lod' pro Měsíc) (на чешском) «Letectví + kosmonautika» 2018 г №1 в pdf — 1,38 Мб
    Программа "Аполлон" и предистория
  22. Томаш Пшибел. Европейское и китайское повторное использование (Znovupoužzitelnost evropská i čínská) (на чешском) «Letectví + kosmonautika» 2018 г №1 в pdf — 319 кб
    Европейцы и китайцы освоят технику возврата РН
  23. Томаш Пшибел. Неосуществленная мечта о Луне (Nenaplněný sen o Měsíci) (на чешском) «Letectví + kosmonautika» 2018 г №1 в pdf — 695 кб
    Умер Ричард Гордон. Он был командиром неполетевшего КК "Аполлон-18"
  24. Томаш Пшибел. История корабля снабжения "Прогресс" (Historie zásobovací lodi Progress) (на чешском) «Letectví + kosmonautika» 2018 г №1 в pdf — 989 кб
  25. номер полностью (на англ.) «Spaceport magazine» 2018 г №2 в pdf — 3,64 Мб
  26. номер полностью (на англ.) «Spaceport magazine» 2018 г №3 в pdf — 2,83 Мб
  27. номер полностью (на англ.) «Spaceport magazine» 2018 г №4 в pdf — 2,30 Мб
  28. номер полностью (на англ.) «Spaceport magazine» 2018 г №5 в pdf — 3,80 Мб
  29. номер полностью (на англ.) «Spaceport magazine» 2018 г №6 в pdf — 2,43 Мб
  30. номер полностью (на англ.) «Spaceport magazine» 2018 г №7 в pdf — 3,29 Мб
  31. номер полностью (на англ.) «Spaceport magazine» 2018 г №8 в pdf — 3,29 Мб
  32. номер полностью (на англ.) «Spaceport magazine» 2018 г №9 в pdf — 4,19 Мб
  33. номер полностью (на англ.) «Spaceport magazine» 2018 г №10 в pdf - 3,37 Мб
  34. номер полностью (на англ.) «Spaceport magazine» 2018 г №11 в pdf - 5,00 Мб
  35. номер полностью (на англ.) «Spaceport magazine» 2018 г №12 в pdf - 3,24 Мб
  36. номер полностью (на англ.) «Orion» 2018 г, январь в pdf — 2,58 Мб
  37. номер полностью (на англ.) «Orion» 2018 г, февраль в pdf — 2,52 Мб
  38. номер полностью (на англ.) «Orion» 2018 г, март в pdf — 2,27 Мб
  39. номер полностью (на англ.) «Orion» 2018 г, апрель в pdf — 8,85 Мб
  40. номер полностью (на англ.) «Orion» 2018 г, май в pdf — 3,86 Мб
  41. Научные цели и полезные данные миссии Chang'E— 4 (Yingzhuo Jia et al., The scientific objectives and payloads of Chang’E-4 mission) (на англ.) «Planetary and Space Science» (in press), available online February 21, 2018 в pdf — 1,92 Мб
    «Лунный исследователь Chang'E-4 — это резервная копия Chang'E-3, которая состоит из спутникового ретранслятора связи, посадочного устройства и ровера, считается, что исследователь Chang'E-4 будет запущен в конце 2018 года, он планируется приземлиться на южном полюсе бассейна Айткен и провести разведку на месте на обратной стороне Луны с поддержкой связи ретрансляционного спутника. Планируется дя миссии Chang'E-4 установка шести видов научных полезных нагрузок для выполнения соответствующих задач, три вида полезной нагрузки на посадочной площадке — это камера посадки (LCAM), рельефная камера (TCAM) и низкочастотный спектрометр (LFS) и три вида полезных нагрузок на ровере — это панорамная камера (PCAM), лунный проникающий радиолокатор (LPR) и оптико— и ближне-инфракрасный спектрометр (VNIS). LFS недавно разработан для посадочного устройства Chang'E-4, а другие пять видов полезных нагрузок являются унаследованными инструментами от Chang'E-3. Кроме того, к шести полезным нагрузкам, также имеются три международные совместные служебные нагрузки, которые должны быть установлены на Chang'E-4, это Lunar Lander Neutrons и Dosimetry (LND), установленные на посадочной площадке, Advanced Small Analyzer for Neutrals (ASAN) установленный на ровере, Нидерландско-Китайский низкочастотный проводник (NCLE), установленный на ретрансляционном спутнике. В документе в основном рассматриваются научные задачи Chang'E-4, обзор зоны посадки, конфигурация полезной нагрузки и дизайн системы, а также задача для каждой полезной нагрузки с ее основным технологическим индексом».
  42. Кейтлин Аренс и др., «Белая книге о Плутоне», посвященная миссии: справочная информация, обоснование и новые рекомендации миссии (Caitlin Ahrens et al., A White Paper on Pluto Follow On Missions: Background, Rationale, and New Mission Recommendations) (на англ.) 2018 год 12 марта в pdf — 640 кб
    Исследователи, заинтересованные в разведке Плутона и Харона, собрали самодельную коллективную белую книгу о Плутоне. Следят за миссиями:
    «Здесь мы кратко рассмотрим результаты, сделанные New Horizons, и возможность для последующей миссии по более детальному изучению системы Плутона. В качестве следующего шага в изучении этой впечатляющей спутниковой системы планет мы рекомендуем использовать орбитальный КА для ее изучения значительно более подробно, с новыми типами приборов и с течением времени наблюдать за его изменениями. Мы также призываем к углубленному изучению миссии орбитального КА для Плутона пеед Десятилетним планированием планетарных наук в 2023 году».
  43. НАСА. Обзор миссии TESS (The TESS Science Writer's Guide) (на англ.) NASA. April 2018 в pdf — 4,41 Мб
    «Спутник Suriting Exoplanet Survey Satellite (TESS) откроет тысячи экзопланет на орбите вокруг самых ярких звезд-карликов в небе. В двухлетнем обзоре солнечной окрестности TESS будет контролировать яркость звезд для периодических мерцаний, вызванных транзитом планет. Ожидается, что миссия TESS найдет планеты от маленьких, скалистых миров до гигантских планет, демонстрируя разнообразие планет в галактике». — Обзор объясняет научные цели, отвечает на некоторые вопросы, связанные с миссией и ее наукой, имеет список сокращений и глоссарий.
    скачал отсюда https://www.nasa.gov/sites/default/files/atoms/files/tesssciencewritersguidedraft23.pdf
  44. Юн Вэй, Чжунхуа Яо, Вэйсин Ван. Дорожная карта Китая для исследования планет (Yong Wei, Zhonghua Yao, Weixing Wan, China’s roadmap for planetary exploration) (на англ.) «Nature Astronomy», том 2, №5, 2018 г., стр. 346-348 в pdf — 776 кб
    «Китайский« тринадцатый пятилетний план», выпущенный 17 марта 2016 года, объявил, что разведка планет является национальным приоритетом. Впервые Китай явно указал на намерение идти дальше, чем система Земля-Луна. (...) Наш ближайший сосед, Луна, был выбран в качестве первой цели национального уровня в Китае. (...) Используя инженерное наследие миссий к Луне, китайская национальная стратегия могла бы сфокусироваться на следующей цели — Марсе — которая представляет большой интерес для международного планетарного сообщества в первую очередь за его научное разнообазие, а также частично за его потенциал в качестве обитаемой среды. (...) Следуя стратегии «Тринадцатая пятилетка», следующие три планетарные миссии Китая, которые в настоящее время находятся на стадии планирования , представляют собой миссии возвращения с кометы/астероидов, запуск которой запланирован на 2025 год, миссия с возвратом образцов с Марса с предварительным запуском около 2030 года и миссия к Юпитеру и его спутникам с предварительным временем запуска также около 2030 года. (...) Китай, несомненно, находится на пути к тому, чтобы стать важным участником исследований в области планетологии.
  45. НАСА. Марс "Инсайт" (NASA, Mars InSight Launch) (на англ.) NASA. Press Kit, May 2018 в pdf — 6,81 Мб
    «Следующая миссия NASA на Марс — Инсайт — начнется с ВВС Ванденберга в Калифорнии уже 5 мая 2018 года. Ожидается, что она достигнет Красной Планеты 26 ноября 2018 года. InSight — это миссия на Марс, но это больше, чем миссия к Марсу, это поможет ученым понять формирование и раннюю эволюцию всех твёрдых планет, включая Землю. Технологический демонстратор под названием Mars Cube One (MarCO) совмещен с запуском InSight и отправится отдельно на Марс». — Пресс-кит дает обзор космических аппаратов, миссии, целей науки и экспериментов. Приложение посвещено Mars Cube One Tech Demo.
    скачал отсюда https://www.jpl.nasa.gov/news/press_kits/insight/download/mars_insight_launch_presskit.pdf
  46. Сюй Линь, Цзоу Юнляо, Цзя Инчжуо. Китайское планирование освоения дальнего космоса и исследования Луны до 2030 года (Xu Lin, Zou Yongliao, Jia Yingzhuo, China’s Planning for Deep Space Exploration and Lunar Exploration before 2030) (на англ.) «Chinese Journal of Space Science», том 38, №5, 2018 г., стр. 591-592 в pdf - 63 кб
    «Нынешнее исследование Луны изменилось с просто научного исследования на науку использования ресурсов. На основе предыдущего исследования Луны китайские ученые и технические эксперты предложили общий план предварительного строительства лунной исследовательской станции на Южном полюсе Луны путем несколько миссий до 2035 года, исследование Луны, а также использование лунных платформ и использование ресурсов на месте. Кроме того, Китай также изучит Марс, астероиды и Юпитер и его спутники. В этом документе кратко представлены идеи китайских ученых и технических специалистов по исследованию окололунного и дальнего космоса".
  47. Цзя Инчжуо, Фань Юй, Цзоу Юнляо. Научные цели и полезные данные первого китайского исследования Марса (Jia Yingzhuo, Fan Yu, Zou Yongliao, Scientific Objectives and Payloads of Chinese First Mars Exploration) (на англ.) «Chinese Journal of Space Science», том 38, №5, 2018 г., стр. 650-655 в pdf - 545 кб
    «Китай планирует осуществить первую миссию по исследованию Марса в 2020 году. Он проведет глобальное и всестороннее исследование Марса и высокоточное обнаружение ключевых областей на Марсе с орбиты, при посадке и передвижении». Научные задачи включают изучение морфологии Марса и характеристики геологического строения, изучение характеристик почвы и распределения водяного льда на поверхности Марса, изучение состава материала на поверхности Марса, изучение ионосферы и поверхности, климата и характеристик окружающей среды Марса, изучение полей и внутренней структуры Марса и марсианских характеристик магнитного поля. Миссия оснащена 12 научными полезными нагрузками для достижения этих научных целей. В этом документе в основном представлены научные цели, исследовательские задачи и научные полезные нагрузки».
  48. Сюй Линь, Цзо Юнляо, Цинь Лан. Последние научные результаты Китайской программы исследования Луны (Xu Lin, Zuo Yongliao, Qin Lang, Latest Scientific Results of China’s Lunar Exploration Program) (на англ.) «Chinese Journal of Space Science», том 38, №5, 2018 г., стр. 598-603 в pdf - 2,22 Мб
    «Благодаря реализации Китайской программы исследования Луны (CLEP) был получен большой объем данных. В этом документе будут представлены последние научные результаты, основанные на этих данных, в том числе о составе, топографии, космической среде, подповерхностной структуре Луны и исследование астероидов и наблюдения с Луны и т. д."
  49. Венкатесан Сандараджан. Обзор и техническая архитектура индийской миссии Chandrayaan-2 к Луне (Venkatesan Sundararajan, Overview and Technical Architecture of India's Chandrayaan-2 Mission to the Moon) (на англ.) AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2018-2178) в pdf — 1,07 Мб
  50. К.Сареш Амитах. Потенциальные посадочные площадки для Chandrayaan-2 в Южном полушарии Луны (K. Suresh Amitabh. T. P. Srinivasan, Potential Landing Sites for Chandrayaan-2 Lander in Southern Hemisphere of Moon) (на англ.) 49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) в pdf — 325 кб
    «Вторая лунная миссия ISRO будет состоять из орбитера и лэндора, содержащего ровер. Основная задача миссии Chandrayaan-2 — доставить и активизировать ровер для проведения анализа на месте. (...) Эти участки являются частью бассейна Южного Полярного бассейна, который содержит большое количество интересных объектов по составу поверхности и геологии».
  51. Германский аэрокосмический центр (DLR) (ред.), Александр Герст — К новым горизонтам в науке и обществе(Deutsches Zentrum für Luft— und Raumfahrt (DLR) (Hrsg.), Alexander Gerst. horizons — Aufbruch zu neuen Horizonten in Wissenschaft und Gesellschaft) (на немецком) Bonn, 2018 в pdf — 7,92 Мб
  52. Германский аэрокосмический центр (DLR) (ред.), Александр Герст — К новым горизонтам в науке и обществе(Deutsches Zentrum für Luft— und Raumfahrt (DLR) (Hrsg.), Alexander Gerst. horizons — a journey of discovery for science and society) (на англ.) Bonn, 2018 в pdf — 7,95 Мб
    Описание миссии на МКС «Горизонты — знания для завтра», которая началась 6 июня 2018 года и, вероятно, продлится 187 дней до 10 декабря 2018 года. Немецкий астронавт Александр Герст в качестве представителя ЕКА будет командиром МКС во время последней часть миссии. Будет проведено около 50 немецких экспериментов. Буклет дает некоторую информацию об этих экспериментах. Приводится анализ затрат и выгод, каждый евро, который расходуется в космосе, дает прибыль в евро на Земле. Также приводятся некоторые основные факты по МКС и Европейской космической лаборатории «Колумбус». Описание фокусируется на участии Германии в этих европейских мероприятиях.
    — Немецкая версия
    https://www.dlr.de/dlr/de/Portaldata/1/Resources/documents/2018/horizons_Broschuere_DE.pdf
    — Английская версия
    https://www.dlr.de/dlr/en/Portaldata/1/Resources/documents/2018/horizons_Broschuere_GB.pdf]
  53. Solar Probe (на англ.) NASA, 2018 в pdf — 3,35 Мб
    двухстраничный проспект миссии к Солнцу
  54. Пол Э. Каст. «Профиль человечества: культурная подпись жителей Земли за пределами атмосферы» (Paul E. Quast, A profile of humanity: the cultural signature of Earth’s inhabitants beyond the atmosphere, (на англ.) «International Journal of Astrobiology», published online as "first view" on August 15, 2018, стр. 1-21 в pdf — 288 кб
    «Эклектичный спектр артефактов и «сообщений», которые мы рассылаем по обширному космосу, может стать одним из наиболее устойчивых остатков нашей нынешней цивилизации, но как его затяжное наследие адекватно документирует множество общественных ценностей и общего культурного наследия нашего разнородного мира? (...) Этот каталог (...) стремится сопоставить все культурные ресурсы, которые в настоящее время могут быть получены с космических аппаратов (не ориентированных на миссию, культурный материал, который передает впечатление о Земле) и внеземных передач (электромагнитные сигналы, которые преднамеренно направлены вне мира, чтобы воплотить философскую идентичность человечества) в космосе за пределами наших планетарных границ, чтобы провести перекрестный анализ того, как мы в настоящее время иллюстрируем разнообразие нашей планеты, прежде чем, впоследствии, определить, как мы могли бы соответствующим образом изобразить нашу коллективную человеческую цивилизацию [и биосферу] в глубоком космосе и космическом времени". - «В настоящее время нет сводного перечня многочисленных многогранных «техномаркеров», которые определяют наш мир на расстоянии (...), приведенный ниже каталог представлен в качестве каталога незавершенного производства для документирования небесного наследия нашей цивилизации за пределами Земли. (...) Принцип, общий критерий для всех перечисленных ниже списков заключается в том, что заявленная информация будет доступна в космосе и останется доступной в некотором объеме в течение умеренных или продолжительных периодов времени. (...) Это каталог был составлен с целью количественной оценки диапазона культурных ценностей, которые в настоящее время находятся в космосе, с тем чтобы предоставить вспомогательные данные для дальнейшего академического изучения и общинных исследований".
  55. НАСА Пресс-кит, Parker Solar Probe. Миссия прикосновения к Солнцу (NASA Press Kit, Parker Solar Probe. A Mission to Touch the Sun) (на англ.) август 2018 в pdf — 2,76 Мб
    "Миссия NASA «Parker Solar Probe» произведет революцию в нашем понимании Солнца. Миссия «коснется Солнца», пролетев прямо через солнечную корону, столкнувшись с жестокой жарой и радиацией и предоставив беспрецедентно близкие наблюдения за звездой, у которой мы живем. Эти наблюдения будут касаться нерешенных научных вопросов, таких, например, как создаётся солнечная энергия Солнца и как ускоряется солнечный ветер. Это также принесет пользу людям на Земле, внося важный вклад в нашу способность прогнозировать основные события космической погоды, которые влияют на жизнь и технологии на Земле. Такая информация может пролить свет не только на то, как Солнце управляет космической средой в нашей собственной солнечной системе, но и обеспечит понимание других звезд во всей Вселенной. Чтобы раскрыть тайны короны, Parker Solar Probe будет иметь четыре инструмента, предназначенные для изучения магнитных полей, плазменных и энергетических частиц и изображения короны и солнечного ветра. Миссия будет использовать семь полётов Венеры в течение почти семи лет, чтобы постепенно уменьшать свою орбиту вокруг Солнца и выполнить в общей сложности 24 близких пролёта. Космический аппарат приблизится к Солнцу примерно на 3,8 миллиона миль (6,2 миллиона километров), гораздо ближе, чем раньше.
    Чтобы выполнить эти беспрецедентные исследования, космические аппараты и приборы защищены от солнечного тепла теплозащитным щитом толщиной до 4,5 дюйма (11,4 см), который выдерживает температуры почти 2500 градусов по Фаренгейту [1370 градусов Цельсия]». Обзор аппарата, его миссии и экспериментов, также приводятся некоторые основные факты по солнечной физике.
  56. 10 свежих фактов о миссии SpaceIL (SpaceIL, 10 Cool Facts about the SpaceIL Mission) (на англ.) нет даты в pdf — 1,33 Мб
    «Космический аппарат SpaceIL предназначен для установки нового мирового рекорда. Это будет самый маленький космический корабль, когда-либо построенный [который был отправлен на Луну], и он будет использовать израильскую технику на самом большом расстоянии от дома». — Описаны некоторые основные факты израильской миссии по посадке на Луну, о космическом аппарате и некоторых его компонентов.
  57. SpaceIL, пресс-релиз: Израиль запустит историческую миссию на Луну с мыса Канаверал в декабре (SpaceIL, Press Release: Israel to Launch Historic Moon Mission from Cape Canaveral this December) (на англ.) 10.07.2018 в pdf — 490 кб
    «На исторической пресс-конференции сегодня в израильской аэрокосмической промышленности (IAI). Космический объект MBT в Иехуде, Израиль, некоммерческая SpaceIL и IAI объявили о начале лунной миссии с мыса Канаверал, штат Флорида, в декабре этого года, приземлится на Луну в феврале. Конечная дата посадки будет объявлена ближе к событию. Лунная посадка завершится восьмилетним интенсивным сотрудничеством между SpaceIL и IAI и сделает Израиль четвертой страной после США, Китая и России, достигшей Луны. Космический аппарат будет запущен как вторичная полезная нагрузка на ракете SpaceX Falcon 9 с мыса Канаверал, штат Флорида, и его путешествие на Луну продлится около двух месяцев. Израильский космический аппарат для Луны будет самым маленьким лэндером, массой всего 1,322 фунта или 600 килограммов. Приблизительно 88 миллионов долларов (320 миллионов шекелей) были инвестированы в разработку и строительство космических аппаратов, в основном от частных спонсоров, возглавляемых SpaceIL President Mr. Morris Kahn, который пожертвовал около 27 миллионов долларов или 100 миллионов шекелей».
    Скачано отсюда:
    [pdf-файл, созданный с http://www.spaceil.com/news/%d7%99%d7%a9-%d7%9c%d7%a0%d7%95-%d7%9e%d7%95%d7 % а2% D7% 93-% D7% A9% D7% 99% D7% 92% D7% 95% D7% a8-% D7% 95% D7% a0% D7% 97% D7% 99% D7% AA% D7 % 94 /]
  58. Адам Хадхази, Направление: Меркурий (Adam Hadhazy, Destination: Mercury) (на англ.) «Aerospace America», том 56, №8, 2018 г. (сентябрь), стр. 36-41 в pdf - 920 кб
    «Для миссии BepiColombo эти температуры [высокие] представляют собой сложнейшую проблему для обеспечения высококачественных результатов в области науки. «Термическое покрытие было самым большим препятствием», - говорит Масаки Фуджимото, ученый проекта JAXA BepiColombo. У Меркурия КА плучает более чем в 10 раз больше солнечного облучения, чем которое мы получаем на Земле, это приводит к максимальной температуре на поверхности Меркурия около 450 градусов по Цельсию (850 градусов по Фаренгейту). Как говорит руководитель проекта ESA BepiColombo Ульрих Рейнингхаус «это температура, достигнутая в лучших дровянных неаполитанских пиццериях». Чтобы справиться с этими температурами пиццерии, необходимы нововведения для MPO, (орбитального аппарат Меркурия) - большего из двух орбитеров BepiColombo, весом в 1150 килограммов. Для начала, чтобы избежать повышения температуры и теплового повреждения, солнечные батареи MPO будут постоянно поворачиваться, ловя солнце под низким углом, лишь бы хватало для выработки энергии. Что касается изоляции космических аппаратов, инженеры Airbus - основного подрядчика BepiColombo - поняли, что для этой роли не хватит обычных полимеров, поэтому они разработали новое, 50-слойное одеяло из керамических тканей и алюминиевых листов. Эти одеяла обертывают вокруг всех поверхностей MPO, за исключением радиатора шириной 3,7 м, который всегда обращен от Солнца. Рейнингхаус объясняет, что все внутренние тепловыделения, а также внешнее тепло, которое будет неизбежно просачивается через изоляцию, передается на этот радиатор тепловыми трубами для последующего испускания в космос. Кроме того, титановые листы на поверхности радиатора отразят интенсивное тепло, исходящее от Меркурия. (...) Чтобы выжить в меркурианских условиях, MMO [Mercury Magnetospheric Orbiter, теперь переименованный в MIO] опирается на иные стратегии, чем его партнер, MPO. Для распределения тепла, MMO вращается, 15 оборотов в минуту. Его восьмиугольное тело имеет отполированную зеркальную поверхность, чтобы отражать избыток солнечного света, который не нужен солнечным элементам ММО для преобразования в электричество». В статье также объясняются основные задачи миссии BepiColombo.
  59. Том Джонс, Лунный корабль (Tom Jones, Moon ship rising) (на англ.) «Aerospace America», том 56, №8, 2018 г., (сентябрь), стр. 22-27 в pdf - 1,01 Мб
    «Орион рассчитан на поддержку экипажа автономно 21-дневной миссии на Луне. Космический корабль также может состыковываться с запланированной Лунной орбитальной платформой-шлюзом на срок до одного года, доставляя расходные материалы из этого форпоста. Следующий Орион отправится в лунный рейс в начале 2020 года под названием «Миссия разведки-1». EM-1 станет последней проверкой управления Ориона, системы связи и теплозащиты до первой миссии с экипажем Ориона, EM-2 в 2022 году. (...) Орион будет отправлен по траектории к Луне космической системой запуска на водороде (ICPS, с ускорителями Delta 3 и 4). Орион выполнит близкий лунный пролет, а затем выйдет на высокую орбиту вокруг Луны. Орион останется на этой устойчивой лунной орбите, примерно в 70 000 километров выше Луны, но дальше от Земли, чем когда-либо путешествовал любой космический корабль с человеком, - до тех пор, пока его расширенная проверка систем не будет завершена. Орион останется на далекой орбите в течение одного или двух 14-дневных оборотов, а затем выполнит маневр возвращения к Земле в Тихий океан. Добавляя время прохождения туда и обратно на Луну, EM-1 продлится от 26 до 42 дней». - Также даются сведения о дальнейших миссиях.
  60. Том Рисен. «Отправлен на Солнце» (Tom Risen, Taking on the Sun) (на англ.) «Aerospace America», том 56, №8, 2018 г., стр. 42-43 в pdf - 599 кб
    «Когда инженеры приступили к работе над солнечным зондом NASA Parker десятилетие назад, им нужно было создать теплозащитный экран, который был бы легким, отражающим и достаточно прочным, чтобы космический корабль стал первым, кто полетел в самую внешнюю атмосферу солнца, называемую короной, и разгадал загадку того, почему эта область более горячая, чем та, которая ближе к поверхности».
  61. JAXA. Миссия к Меркурию. BepiColombo. MIO - Магнитосферный орбитер Меркурия (JAXA, Mission to Mercury. BepiColombo. MIO - Mercury Magnetospheric Orbiter) (на англ.) август 2018 г. в pdf - 979 кб
    «BepiColombo - это международный план по исследованию Меркурия, который ведется в сотрудничестве между Японским агентством аэрокосмических исследований (JAXA) и Европейским космическим агентством (ESA). Задача этой крупномасштабной международной совместной миссии состоит в том, чтобы одновременно отправить два космических аппарата на орбиту Меркурия - MPO (планетарный орбитальный аппарат Меркурия) аппарат ESA и MIO (ранее называвшийся MMO, орбитер Меркурия), которым управляет JAXA, и провести всестороннее исследование Меркурия. (...) Чтобы узнать, что происходит внутри Меркурий, важно точно измерить магнитное поле планеты. Между тем, суровые солнечные ветры вокруг Меркурия вызывают возмущения в электромагнитном поле и мешают измерению магнитного поля. Комбинация MPO и MIO позволит нам отличать собственное магнитное поле Меркурия от солнечного ветра. Таким образом, мы можем получить более точную информацию о внутренней части Меркурия ». - Обзор миссии, ее научных целей и инструментов.
  62. JAXA, Кандидаты на посадочные площадки для миссии Hayabusa2 (JAXA, Candidates for landing sites for the Hayabusa2 mission) (на японском и английском языках) 23.08.2018 в pdf — 1,50 Мб
    0. Hayabusa-2 и план текущей миссии
    1. Статус проекта и общий график
    2. Кандидаты на место и ожидаемые даты
    3. Выбор кандидатур на приземление
    4. Научные дискуссии для кандидатур на приземление
    5. Выбор кандидатур на место посадки для MASCOT
    6. Выбор кандидатур на место посадки для MINERVA-II
    7. Стратегия успешного приземления
    8. Планы на будущее
  63. CNES, Mascot. Мобильный разведчик астероидов (CNES, Mascot. Mobile Asteroid Surface Scout) (на англ.) сентябрь 2018 г в pdf - 7,51 Мб
    «MASCOT должен приземлиться на астероиде Рюгу в октябре 2018 года. Эта миниатюрная лаборатория весом 10 кг будет отделена от своего КА, Hayabusa-2, примерно в 60 м над поверхностью». Файл объясняет научные инструменты MASCOT и его цеь на Рюгу, даёт сравнение между MASCOT и Philae и описывает роль и задачу международных партнерских организаций.
  64. ESA, "БепиКоломбо". Медиа-кит перед запуском (ESA, BepiColombo. Launch Media Kit) (на англ.) 09.10.2018 в pdf - 12,2 Мб
    «BepiColombo - совместная миссия ESA-JAXA к Меркурию - планируется запустить РН Ariane 5 с космодрома в Куру, Французская Гвиана, в 01:45 по Гринвичу 20 октября 2018 года. BepiColombo - первая европейская миссия к Меркурию, самой маленькой и наименее исследованной планеты во внутренней Солнечной Системе. Это первая миссия к Меркурию, направленная на отправку двух космических аппаратов для одновременного проведения дополнительных измерений динамической среды планеты. (...) Миссия состоит из двух научных орбитальных КА: орбитального устройства (MPO), а также магнитосферного орбитального аппарата JAXA (MMO). ESA создало и трансферный модуль (MTM).
    Путь к Меркурию будет включать комбинацию ЭРДУ и гравитационных маневров. В течение семи лет миссия совершит один пролет Земли, два - Венеры и шесть - Меркурия. Орбитатеры смогут управлять некоторыми из своих инструментов во время фазы перелёта, доставляя уникальные возможности для сбора научных данных о Венере, например». - В файле для СМИ содержится информация о предстоящем запуске, обзоре миссии и ее научных целей, научные инструменты и фото. Гиперссылки ведут к дальнейшей информации в Интернете.
  65. Арианспейс. Ариан-5. VA245 БепиКоломбо (Arianespace, Ariane 5. VA245 BepiColombo) (на англ.) октябрь 2018 г. в pdf - 1,48 Мб
    «Для своего седьмого запуска года Arianespace будет использовать Ariane 5 с Космического центра Гвианы (CSG), чтобы отправить космический аппарат BepiColombo в путь к самой маленькой и наименее изученной земной планете Солнечной системы: Меркурию». - Пресс-кит с описанием миссии, описанием ракеты-носителя Ariane 5, информацией о последовательности обратного отсчета и запуска.
  66. Омран Шараф идр. Миссия Эмиратов к Марсу (EMM) 2020 Обзор (Omran Sharaf et al., Emirates Mars Mission (EMM) 2020 Overview, EPSC Abstracts) (на англ.) EPSC Abstracts, Vol. 12, EPSC2018-370, 2018 в pdf - 170 кб
    Резюме лекции, проведенной на «Европейском планетарном научном конгрессе 2018» в Берлине, Германия, 19 сентября 2018 года. «Объединенные Арабские Эмираты (ОАЭ) вошли в гонку космических исследований с объявлением в 2014 году миссии Emirates Mars Mission (EMM), первая миссия Эмиратов на другую планету. В рамках этой миссии ОАЭ должны отправить беспилотную обсерваторию под названием «Надежда», которая будет запущена летом 2020 года и дойти до Марса к 2021 году, чтобы совпасть с 50-летием ОАЭ. Она уникальна и обладает сильным потенциалом для новых и значительных открытий, которые способствуют работе глобального сообщества космической науки. EMM прошла этап развития (...) Миссия предназначена для ответа на следующие три вопросы науки: (1) Как нижняя марсианская атмосфера реагирует глобально, суточно и сезонно на солнечную энергию? (2) Как условия в атмосфере Марса влияют на скорость циркуляции атмосферы? (3) Как Марсианская экзосфера ведет себя временно и пространственно? Каждый вопрос согласован с тремя целями миссии и четырьмя исследованиями, которые изучают циркуляцию и соединения в атмосфере Марса посредством измерений, выполненных с использованием трех инструментов, которые отображают Марс в видимой, инфракрасной и ультрафиолетовой длинах волн. Данные будут собраны на Марсе в течение всего марсианского года, чтобы предоставить ученым ценное понимание изменений в атмосфере Марса сегодня. В настоящем документе представлен обзор задач миссии, науки, космических аппаратов, а также наземных и пусковых сегментов».
  67. Джонатан К. Макдауэлл. Граница космоса: пересмотр линии Кармана (Jonathan C. McDowell. The edge of space: Revisiting the Karman Line) (на англ.) «Acta Astronautica», 13.05.2018 в pdf - 2,80 Мб
    Известный всем автор взялся за ревизию границ. В отличие от меня, мечтаюшего поднять границу с космосом до 122 км, он предлагает опустить её до 80 км. Но в одном мы едины - круглые цифры не отражают сущности. Нет и правовых законов, нет даже согласия - 100 км, принятые ФАИ сейчас - от поверхности или границы условной сферы?
    Автор вообще отвергает версию, что 100 км предложил Карман. Автор даёт массу примеров и расчётов, получает теоретическую границу аэродинамического полёта в 86 км, приводит много примеров низкого перигея ИСЗ до примерно той же высоты, разбирается с астронавтами и их "крылышками"
    Заодно он прошёлся по границам сферы действия Земли, сфере Хилла, границе Солнечной системе.
    Пора юристам согласовать границы государств и в атмосфере! Тут он правильно говорит, что старт проходит в пределах государства, а с возвращением будут проблемы.
  68. Алан Стерн и др., "Новые Горизонты" за Плутоном: пролёт Ультима Туле (Alan Stern et al., New Horizons Beyond Pluto: The Ultima Thule Flyby) (на англ.) 24.10.2018 в pdf - 5,19 Мб
    Презентация слайдов с пресс-конференции 24 октября 2018 года. Обзор миссии - за пределами Плутона: Ультима Туле в контексте - Планы научных исследований пролёта - Цели миссии.
    Видео пресс-конференции (1 час):
    https://files.aas.org/dps50/DPS_50_Press_Webcast_10_24_2018.mp4
  69. НАСА, Mars InSight посадка пресс-кит (NASA, Mars InSight Landing Press Kit) (на англ.) November 2018 в pdf - 12,6 Мб
    «Следующая миссия НАСА на Марс - InSight - ожидает высадиться на Красной планете 26 ноября 2018 года. (...) В 2008 году Лаборатория реактивного движения НАСА успешно посадила космический лэндер «Феникс» около Северного полюса Марса. InSight базируется на космическом КА Phoenix, оба из которых были построены Lockheed Martin Space. Несмотря на изменения теплового щита и парашюта, общий дизайн посадки по-прежнему очень похож: после отделения от полётного аппарата СА спускается через атмосферу. Парашют и РД замедляют падение космического корабля, а стойки поглощают некоторый удар при приземлении. (...) Инженеры InSight построили жесткий космический аппарат, способный безопасно приземлиться в пыльном буре, если это необходимо. Тепловой щит космического корабля разработан достаточно толстым, чтобы противостоять «пескоструйной обработке» взвешенной пылью. У него также есть парашют, который был испытан, он надёжнее, чем у Phoenix, в случае, если он сталкивается с большим сопротивлением воздуха из-за ожидаемых атмосферных условий пыльной бури. Последовательность ввода, спуска и посадки также имеет определенную гибкость при переменчивой погоде. Команда миссии будет получать ежедневный прогноз погоды с орбитального аппарата NASA «Mars Reconnaissance Orbiter» за несколько дней до посадки, чтобы они могли приспосабливаться при развертывании парашюта InSight и еще он использует радар, чтобы найти поверхность Марса». - Пресс-кит дает обзор космического аппарата, миссии, научные цели и эксперименты. Приложение объясняет «Mars Cube One Tech Demo».
    Скачал с
    https://www.jpl.nasa.gov/news/press_kits/insight/landing/download/mars_insight_landing_presskit.pdf
  70. CNES, ExoMars 2020. Oxia Planum выбран в качестве посадочной площадки (CNES, ExoMars 2020. Oxia Planum selected as landing site) (на англ.) «Press Release» PR181-2018, 20.11.2018 в pdf - 382 кб
    «Oxia Planum станет посадочной площадкой для миссии ExoMars 2020 - второй миссии в программе ExoMars, возглавляемой ЕКА в сотрудничестве с Роскосмосом. (...) Oxia Planum находится на краю древнего бассейна под названием Chryse Planitia и имеет мощные отложения осадочных глин, которые датируются более четырех миллиардов лет. Подобные отложения глины были обнаружены на многих других - столь же древних - участках планеты, что указывает на процесс формирования, вызванный действием воды в планетарном масштабе. Состав этих месторождений означает, что они могут быть лагунами или морскими отложениями, что, возможно, свидетельствует о существовании древнего марсианского океана в соответствии с результатами, представленными командой, предложившей место (Quantin, Carter et al. 2018). Научная цель ExoMars 2020 состоит в том, чтобы обнаружить потенциальных следы жизни в образцах, извлеченных с глубины до двух метров, с использованием системы скважин, что обеспечит защиту собранных марсианских образцов от космическая бомбардировки, которая уничтожает органическое вещество. Планируемая посадка на Марс весной 2021 года, миссия ExoMars 2020 будет иметь российскую наземную платформу с российскими и европейскими приборами для измерения параметров окружающей среды в течение всего марсианского года (687 земных дней). Его европейский марсоход будет оснащен девятью научными приборами, предназначенными для изучения и анализа поверхности». - Топографическая карта «показывает эллипсы посадки в начале и в конце окна запуска».
  71. SpaceIL, пресс-релиз: SpaceIL и IAI отправят капсулу времени на исторической лунной миссии Израиля (SpaceIL, Press Release: SpaceIL, IAI to Send Time Capsule on Israel's Historic Moon Mission) (на англ.) 17.12.2018 в pdf - 512 кб
    «Израильская некоммерческая компания SpaceIL и Israel Aerospace Industries (IAI) представили сегодня в космическом отделе IAI капсулу времени, которая отправится на Луну - и останется там на неопределенный срок - с первым израильским космическим аппаратом, который запустится с мыса Канаверал, штат Флорида, в феврале, 2019. (...) В начале 2019 года космический аппарат, недавно названный Beresheet (еврейское слово Genesis), запустят вместе с другими спутниками в качестве вторичной полезной нагрузки ракеты SpaceX Falcon 9. Точная дата запуска остается неопределенной, так как SpaceIL ожидает окончательного подтверждения от запускающей компании. (...) Космический аппарат, конструкция которого была выполнена в космическом отделе IAI, успешно завершил серию недавних испытаний для изучения интеграции систем и прошёл серию сложных экспериментов, направленных на проверку его долговечности. Одновременно проверочные испытания проверяли функционирование космического корабля в сценариях, которые он мог испытать во время полета. Поскольку реальные космические условия не могут быть имитированы, то испытания проводятся частично на симуляторе SpaceIL, имитирующем космические условия, и частично на самом космическом аппарате. Затем SpaceIL вскоре отправит космический корабль на стартовую площадку на мысе Канаверал, штат Флорида. В октябре SpaceIL и Израильское космическое агентство объявили о сотрудничестве с НАСА, которое позволит SpaceIL улучшить его способность отслеживать и связываться с космическим кораблем до, во время и после посадки на Луну. Две недели назад ретрорефлектор от НАСА был установлен на космическом аппарате, инструмент, который отражает лазерные лучи и позволит НАСА точно определить местоположение космического аппарата на поверхности Луны после приземления. SpaceIL, Израильское космическое агентство и НАСА также договорились, что НАСА получит доступ к данным, собранным магнитометром, установленным на израильском космическом аппарата».
    отсюда http://www.spaceil.com/general/spaceil-iai-to-send-time-capsule-on-israels-historic-moon-mission/
  72. Джун Хуан и др., Геологические характеристики кратера фон Кармана: Район посадочной площадки Чанг'е-4 (Jun Huang et al., Geological Characteristics of Von Kármán Crater, Northwestern South Pole-Aitken Basin: Chang’E-4 Landing Site Region) (на англ.) «Journal of Geophysical Research: Planets», том 123, 2018 г., стр. 1684-1700 в pdf - 2,78 Мб
    Научная статья с геологическим анализом планируемой посадочной площадки миссии Chang'E-4. «Бассейн Южный полюс-Айткен на обратной стороне Луны является самой большой известной ударной структурой (SPA) в Солнечной системе. Это ключевая область, готовая ответить на несколько важных вопросов о Луне, включая ее внутреннюю структуру и тепловую эволюцию. Мы очертили геологическую историю важной области (кратер фон Кармана) в пределах SPA. В 2018 году новая китайская лунная миссия Chang'E-4 (CE-4) будет первой, которая приземлится в кратере Фон Кармана, в бассейне SPA. Научные приборы CE-4, установленные на посадочной платформе и ровере, будут анализировать как поверхность, так и недра этого региона. Здесь мы представляем подробное геологическое исследование выбранной зоны посадки CE-4 на основе по данным дистанционного зондирования Луны. Наше исследование выявило несколько целей, представляющих большой научный интерес, и предлагает проверяемые гипотезы для миссии CE-4 ".
  73. Дуэйн А. Дей. Жуткий Аполлон: Аполлон 8 и ЦРУ (Dwayne A. Day, Spooky Apollo: Apollo 8 and the CIA) (на англ.) «The Space Review», 03.12.2018 в pdf - 608 кб
    «В рассекреченной записке ЦРУ от октября 1968 года сообщалось о деятельности Центра зарубежного ракетного и космического анализа ЦРУ, FMSAC (...). Среди достижений Центра в 1968 году заместитель директора ЦРУ по науке и технике Карл Дакетт писал: Вероятность того, что в декабре США будут выполнять пилотируемый лунный полет на корабле "Аполлон-8", является результатом прямой разведывательной поддержки, которую FMSAC оказала НАСА в отношении нынешних и будущих советских планов в космосе. Лучшее и наиболее полное историческое изложение лунного решения Аполлона-8 содержится в книге Чарльза Мюррея и Кэтрин Блай Кокс 1989 года «i: Аполлон: Гонка на Луну» . Мюррей и Кокс посвятили этой теме десять страниц. четко указывалось, что решение отправить Аполлона-8 на околоземную миссию в подавляющем большинстве определялось агрессивным графиком Аполлона, а не соревнованием холодной войны. На этих десяти страницах они не упоминали о советской лунной деятельности. (...) Ни одна из официальных записей НАСА по этому вопросу, или в дневнике Джорджа Лоу [директора отдела программного обеспечения космических кораблей Аполлона], не упоминает о советских планах по проведению лунного полета. Лоу и другие представители НАСА, безусловно, были осведомлены о советских усилиях, но нет официальных записей НАСА, указывающих, что это даже учитывалось при принятии решений. Хотя разведывательная информация о советской деятельности в то время была засекречена и не упоминалась в несекретных записях НАСА, Советская деятельность также упоминалась в публичных новостных источниках, и поэтому представители НАСА могли хотя бы сослаться на эти сообщения. (...) Возможно, в июне или июле [1968] ЦРУ каким-то образом узнало о предстоящем полетеЗонд 5 и сообщило об этом НАСА. Полет Zond 5 состоялся в сентябре, после того, как решение Apollo 8 было принято. Также возможно, что FMSAC преувеличивал свою роль в околопланетном решении НАСА или, по крайней мере, предполагал, что FMSAC сыграл более значительную роль в убеждении руководства НАСА предпринять попытку выполнить миссию «Аполлон-8» вокруг Луны, чем это было на самом деле. Без более подробной информации это все еще невозможно узнать. Даже если ЦРУ действительно предоставило НАСА обширную информацию о планах СССР, это не обязательно означает, что, как отмечается в записке, решение НАСА было «результатом» информации ЦРУ. Только представители НАСА, принявшие решение «Аполлона-8», знали, какие факторы повлияли на них больше всего. Это был в первую очередь Джордж Лоу, чьи записи указывают на то, что график Аполлона был основным фактором. (...) Конечно, гонка на Луну с Советами установила больший контекст , в котором были приняты все решения НАСА. Преобладание доказательств по-прежнему подтверждает вывод о том, что именно график «Аполлона» диктовал решение, не конкретные советские действия».
    [pdf-файл из
    http://www.thespacereview.com/article/3617/1]
  74. Ульрих К. Кёлер, MASCOT в стране Чудес (Ulrich Köhler, MASCOT in Wonderland) (на англ.) «DLR magazine», №159, 2018 г., стр. 36-39 в pdf - 385 кб
    «День германского единства - 3 октября - в 2018 году не будет забыт теми, кто работает в Центре микрогравитации (MUSC) в Кельне в DLR [Deutsches Zentrum für Luft- und Raumfahrt (Немецкий аэрокосмический центр)]. Особый день, который начался очень рано в центре управления. Большая часть команды MASCOT уже была там накануне вечером. А оставшиеся ученые из Германии, Франции и Японии прибыли незадолго до полуночи. Четыре эксперимента, четыре команды. Была тихая, сосредоточенная атмосфера, полная напряженности, среди десятков мониторов и открытых ноутбуков. Все старались быть настолько спокойными, насколько это необходимо, но и как можно более сосредоточенными. На другой стороне Солнца, в 300 миллионов километров, должно было произойти внеземное событие. Ровно в 03:57 и 21 секунда CEST [Центральноевропейское летнее время], астероидный спускаемый аппарат сыграет главную роль его жизни - и команда на Земле не сможет вмешаться. Мобильный астероидный лэндер размером с микроволновую печь Surface Scout - MASCOT - полностью оснащенный высокотехнологичной робототехникой, отделится от космического корабля Hayabusa-2 на высоте 51 метра и начнет спуск к астероиду Рюгу диаметром примерно 900 метров ". - Воспоминания высадки MASCOT на астероид Рюгу 3 октября 2018 года одним из членов команды.
  75. Джеффри М. Мур и др. Большие надежды: планы и прогнозы на встречу New Horizons с объектом Пояса Койпера 2014 MU69 («Ultima Thule») (Jeffrey M. Moore et al., Great expectations: Plans and predictions for New Horizons encounter with Kuiper Belt object 2014 MU69 ("Ultima Thule")) (на англ.) «Geophysical Research Letters», том 45, 2018 г., стр. 8111-8120 в pdf - 189 кб
    «Встреча New Horizons с холодным классическим объектом пояса Койпера 2014 MU69 (неофициально называется« Ultima Thule», далее «Ultima») 1 января 2019 года будет первым случаем, когда космический аппаат так близко наблюдал один из свободно вращающихся маленьких обитателей Пояса Койпера. Будучи связанным, но не считающимсяя образовавшимся в той же области Солнечной системы, что и кометы, которые исследовались до настоящего времени, он также будет самым отдаленным и наиболее древним телом, которое когда-либо посещал космический аппарат. В этом письме мы начнем с краткого обзора холодных классических объектов пояса Койпера, примером которых является Ультима. Мы дадим краткий предварительный обзор наших планов встречи. Мы отмечаем, что в настоящее время известно об Ультиме из наблюдений с Земли. Затем мы анализируем наши ожидания и возможности для оценки состава Ultima, геологии поверхности, структуры, околоземного пространства, малых лун, колец и поиска активности».
  76. Р.Ф. Виммер-Швейнгрубер. Эксперимент по нейтронной дозиметрии на лунной поверхности (LND) на Chang’E4 (R. F. Wimmer-Schweingruber et al., The Lunar Lander Neutron & Dosimetry (LND) Experiment on Chang’E4) (на англ.) in: Lunar and Planetary Science Conference, The Woodlands, Texas, March 19-23, 2018 в pdf - 1,20 Мб
    «Chang'E 4 - это следующая китайская миссия на Луну, которую планируется запустить в декабре 2018 года с посадкой на противоположной стороне Луны в бассейне Айткена на Южном полюсе. Миссия состоит из посадочного аппарата, ровера и ИСЗ связи. Здесь мы опишем эксперимент по нейтронному и дозиметрическому анализу лунного аппарата (LND), который будет размещен на посадочном аппарате. (...) Несмотря на то, что задача посадки людей на Луну уже не за горами - измерения радиации в окрестностях Луны на удивление скудны. (...) Современные знания о радиационной среде на поверхности Луны основаны исключительно на расчетах с использованием моделей переноса излучения с входными параметрами из моделей для спектров галактических космических лучей и для событий солнечных частиц. Это очень сомнительно, особенно потому, что мы знаем, что эти модели чреваты неопределенностями. (...) Чтобы улучшить наши знания о поле поверхностного излучения на Луне, LND предоставит следующие измерения: 1) Временные значения мощности дозы заряженных и нейтральных частиц (...). 2) Спектры заряженных частиц (...). 3) Частота тепловых нейтронов (...). 4) LET-спектры (...). 5) Спектры быстрых нейтронов (...). 6) Состав излучения (...)."
  77. М. Визер, X.-D. Ванг. Усовершенствованный небольшой анализатор для нейтральных веществ (ASAN) на ровере Chang'E-4 (M. Wieser, X.-D. Wang, The Advanced Small Analyzer for Neutrals (ASAN) on the rover of Chang'E-4) (на англ.) in: CNSA-ESA Workshop on Chinese-European Cooperation in Lunar Science, 16 - 18 July 2018, Abstract no. 34 в pdf - 169 кб
    «Chang'E-4 продолжает использовать анализатор Advanced Small Analyzer для нейтральных веществ (ASAN), инструмент анализа энергетически нейтральных атомов (ENA), созданный в Шведском институте космической физики в Кируне в сотрудничестве с Национальным центром космических наук (NSSC) в Академии наук Китая в Пекине, Китай. (...) Основной задачей ASAN является измерение на поверхности энергичных нейтральных атомов и потоков ионов, отражённых назад от поверхности Луны. (...) Так как трудно или невозможно воспроизвести условия поверхности Луны в лаборатории, приборы, размещенные на лунных аппаратах, являются единственным вариантом для исследования этих процессов. ASAN, установленный на ровере Chang'E-4, выполнит первые измерения ENA непосредственно на поверхности Луны».
  78. IAU. Лунные кратеры названы в честь Аполлона-8 (IAU, Lunar craters named in honour of Apollo 8) (на англ.) «IAU Press Release», №1811, 05.10.2018 в pdf - 1,16 Мб
    «Рабочая группа по номенклатуре планетных систем Международного астрономического союза сегодня [5 октября 2018 года] официально утвердила наименование двух кратеров на Луне в ознаменование 50-й годовщины миссии «Аполлон-8». Названия кратеров «Восход Земли Андерса» (Anders’ Earthrise) и « 8-й - к дому» (8 Homeward). Недавно названные кратеры видны на переднем плане изобразительной цветной фотографии Earthrise, сделанной астронавтом Уильямом Андерсом. (...) Рабочая группа по номенклатуре планетарной системы (WGPSN) Международного астрономического союза, которая назвала кратеры, орган, ответственный за присвоение имен планетам в нашей Солнечной системе. Два названных кратера были ранее обозначены буквами ".
    [pdf-файл из
    https://www.iau.org/news/pressreleases/detail/iau1811/
    На сайте есть несколько форматов изображений и дополнительные ссылки.]
  79. Ричард Юрек. Человек, победивший в лунной гонке. Восход Земли (Richard Jurek, The Man Who Won the Moon Race -- The editors, Earthrise, Reprised) (на англ.) «Air & Space», том 33, №6, 2018-2019 г., стр. 44-55 в pdf - 9,61 Мб
    «Редакторы журнала [ Time ] также призвали к особому признанию отдельного «землянина» из 400 000 или около того людей, работающих в то время на Аполлоне: 42-летний австрийский менеджер НАСА по имени Джордж Лоу. Имя было практически неизвестно широкой публике, но если бы не Лоу, сообщает Time: «Не было бы полета Аполлона-8 на Луну». Редакция могла бы пойти еще дальше. Без Лоу президент Джон Ф. Кеннеди, возможно, никогда бы не отправил нацию на лунную высадку, а, возможно, никогда бы не продолжилась программа после пожара Аполлона-1, который остановил программу менее чем за два года до триумфа Аполлона-8 ". - Далее следует биографический очерк Джорджа Лоу. - 17 октября 1960 года Лоу написал [Абэ] Сильверстайну [директору программ космических полетов НАСА] записку, в которой просил небольшую рабочую группу - позже названную комитетом Лоу - представить «надлежащее обоснование» для лунной программы и дать ей «более прочную основу» с точки зрения технических и бюджетных требований. Сильверстайн одобрил простым «ОК» -так записано в блокноте. Менее чем через четыре месяца, 7 февраля, комитет Лоу подготовил подробный отчет о методах полета на Луну, а также графики и приблизительные бюджеты. При надлежащем финансировании, как утверждалось в докладе, можно совершить посадку на Луну к концу десятилетия. (...) На самом деле, именно план Джорджа Лоу стал основой для вызова Кеннеди «к концу десятилетия». (...) Шесть лет спустя, когда огонь в Аполлоне 1 унес жизни трех космонавтов и поставил под сомнение будущее программы на Луне, НАСА вновь обратилось к Лоу. В апреле 1967 года [Джеймс Э.] Уэбб [администратор НАСА] назначил его на пост руководителя программы Аполлон (... Лоу знал, что одной из главных причин пожара была плохая координация инженерных изменений на космическом корабле «Аполлон». Решение проблемы создавало риск ухудшения ситуации. «Восстановление означало изменения, а изменения означали проблемы, если они не находились под полным контролем». сказал он. «Нашим решением был CCB, Configuration Control Board. Его цель: внимательно следить за техническими изменениями, которые могут непреднамеренно повлиять на некоторые другие части сложной системы Apollo. (...) В конце концов, Правление смогло разобраться в хаосе. «С июня 1967 года по июль 1969 года мы встретились 90 раз, рассмотрели 1697 изменений и одобрили 1341, - сказал Лоу. - Мы разорвали командный модуль - буквально все 2 миллиона частей - и затем снова собрали его так, как нам хотелось бы». (...) К августу 1968 года Лоу стало ясно, что первый готовый к полету лунный модуль не будет построен вовремя к исходной декабрьской целевой дате для Аполлона-8, которая должна была проверить и командный / сервисный модуль, и Лунный десантный корабль фирмы Грумман на околоземной орбите. (...) Идея отправиться на Луну до того, как посадочный аппарат был готов, была заложена в его сознании более года назад, на его первой неделе в качестве менеджера программы "Аполлон". [Кристофер] Крафт [начальник отдела полетов] и Дик Слейтон, глава офиса астронавтов встретились. Крафт упомянул несколько способов, которыми программа могла компенсировать задержки из-за пожара: один был полет на орбиту Луны перед посадкой, с только командным и служебным модулями. Лоу принял это к сведению. Идея застряла у него, и он начал сосредотачиваться на ней все больше и больше, поскольку задержки с лунным кораблем становились все хуже. Однако Крафт, по большей части, выбросил это из головы. «Мы все были озадачены», - вспоминает он, когда Лоу предложил реальную идею в августе 1968 года. «Это было самое смелое решение космической программы», - сказал Крафт. (...) Потребовалось несколько частных встреч, чтобы преодолеть скептицизм. Наконец, после серии исполнительных встреч в Вашингтоне 10 и 11 ноября 1968 года «Аполлон-8» был утвержден для полета на лунную орбиту. Об этом было объявлено миру на следующий день, и менее чем через шесть недель Борман, Ловелл и Андерс отправились на Луну. (...) В течение этой исторической недели было много драматичных и напряженных моментов. Один из них был чуть менее чем через 70 часов, когда телеметрия подтвердила, что Аполлон-8 успешно вышел на лунную орбиту незадолго до 4 часов утра по хьюстонскому времени в канун Рождества. Когда в Управлении полетами разразились приветствиями, Джордж Лоу вышел на улицу, полон удовлетворения и посмотрел на растущий полумесяц. Позже он вспомнил: «Мне это виделось иначе». - Галерея работ художников-космонавтов в честь «Восхода Земли», знаменитой фотографии Земли, подвешенной над горизонтом Луны, сделанной астронавтом во время миссии «Аполлон-8» Биллом Андерсом."

    Подвигу экипажа "Аполлона-8" - полвека! Я его неплохо помню.
    На основе данных, предоставленных Лунным разведывательным орбитальным аппаратом (LRO), это видео воссоздает обстоятельства, при которых была сделана знаменитая фотография "Восход Земли".
    Только ссылка:
    https://www.youtube.com/watch?v=VDf0ONl-nDw (где-то 54 Мб)
  80. НАСА, New Horizons. За Плутоном. Пролёт Ultima Thule 1 января 2019 года. Миссия в Пояс Койпера (NASA, New Horizons. Beyond Pluto. The Ultima Thule Flyby January 1, 2019. Kuiper Belt Extended Mission) (на англ.) Ultima Thule Flyby Press Kit, December 2018 в pdf - 10,7 Мб
    «Расширенная миссия к Поясу Койпера (KEM) увела New Horizons на расстояние 1 млрд. Миль (1,6 млрд. Км) от Плутона для встречи с Ултимой Туле, которая была обнаружена в 2014 году с помощью мощного космического телескопа Хаббла. Расширенная миссия до и после пролета Ультимы также включает в себя исследования группы New Horizons по отдаленным KBO [объектам пояса Койпера], а также по изучению гелиосферной пыли и плазмы на расстоянии до 50 астрономических единиц от Солнца в 2021 году». - Пресс-кит дает обзор пояса Койпера и его объектов, миссии «Новые горизонты» к Плутону и ее результатов, расширенной миссии, ее научных целей, космического корабля и его научных инструментов.
    Скачал с
    http://pluto.jhuapl.edu/News-Center/Resources/Press-Kits/NewHorizonsPressKit__UT.pdf]
  81. Аполлон 11 - Бортовая расшифровка разговоров (Apollo 11 - Bordtranskript) (на немецком) in: Aaron Aachen (Hrsg.), Aus dem Papierkorb der Weltgeschichte, Berlin, 2018 г., стр. 72-73 в pdf - 914 кб
    Нейл Армстронг всегда утверждал, что его знаменитые слова «Это один маленький шаг для человека, но гигантский скачок для человечества» не были запланированы задолго до этого, они пришли на ум, когда он выходил из лунного модуля. Бортовая запись рассказывает другую историю, а именно, что астронавты обсуждали это во время полета, шутили. - Этот «документ» взят из книги с другими удивительными письмами и документами от людей, известных в мире или в Германии. Вскоре становится очевидным, что все они подделаны! Автор (псевдоним) использовал оригинальную версию «Голосовую расшифровку разговоров Аполлона-11», напечатанную НАСА в августе 1969 года (см. Пример страницы); однако нет страниц «Дня 2». Есть и еще один намек: русское имя - в конце страницы написано «Breschnew» в соответствии с немецкой транскрипцией; английская версия, однако, должна быть "Brezhnev". - Этот пример и вся книга показывают, как легко подделать документы!
    то же страница документа (на английском) в pdf - 100 кб
Статьи в иностраных журналах, газетах 2019 года

Статьи в иностраных журналах, газетах 2017 года (июль - декабрь)