Б. Ляпунов
РАЗВЕДЧИКИ БОЛЬШИХ ВЫСОТ

© Б. Ляпунов, 1959
Ляпунов Б. Открытие мира: Изд. 2, перераб. и дополнен. - М.: Мол. гвардия, 1959. - С. 24-55.
Пер. в эл. вид Ю. Зубакин, 2007

Назад   В начало   Вперёд

 

 

НА НОВЫХ ВЫСОТАХ

 

          ...Что это? Работает экспедиция астрономов, которые готовятся наблюдать солнечное затмение? Телескоп направлен в небо. Перед его окуляром – кинокамера. Сидящий в кресле наблюдатель смотрит во второй телескоп. И вся эта установка, повинуясь управляющему ею оператору, поворачивается, шаря по небу.

          А может быть, это ученые наблюдают за путешествием радиоволн в атмосфере? Или они следят за полетом метеоров? Вот рядом радиолокационная станция, и на экране локатора заметны отраженные сигналы.

          Можно подумать и другое: не стараются ли здесь радиотехники поймать сигналы с неведомой планеты? На приемной станции приборы ведут запись каких-то таинственных сигналов. Когда проявят кинопленку, увидят серию неровных полосок с извилинами и зазубринами, идущими одна за другой. Это чьи-то радиоголоса, пойманные и записанные на пленку. Радиосигналы несутся к нам от Солнца и из глубин вселенной. Не их ли слушают здесь астрономы?

          Но нет. Оператор у телескопа держит в поле зрения снаряд, несущийся в стратосферу со скоростью около двух километров в секунду. За ним следят и локаторы. Вычислительный Центр непрерывно получает данные от этих всевидящих «радиоглаз». Счетно-вычислительные машины мгновенно обрабатывают их, давая полную картину полета. Приемная станция ведет запись радиосигналов с ракеты.

          Расшифрованные, эти записи расскажут о космических лучах, о давлении и температуре воздуха, о поведении ракеты и ее двигателей. Так люди, не поднимаясь с Земли, узнают все подробности полета на сотни километров ввысь.

          Уже давно было известно, что над нами царство вечного холода. Солнце греет Землю, от Земли нагревается воздух. Но земная поверхность – не настолько жаркая печка, чтобы прогреть на всю толщину газовое одеяние нашей планеты. Опыт летчиков, альпинистов, стратонавтов, метеорологов показывает: чем выше, тем холоднее. Каждый километр подъема дает понижение температуры на шесть градусов. На высоте десяти с небольшим километров мороз достигает шестидесяти градусов. Здесь мы вступаем в стратосферу. Дальше температура не падает. Думали, что так будет и выше, пока где-то очень высоко не исчезнут последние следы воздуха и не наступит пустота мирового пространства.

          Впервые усомниться в этом заставили наблюдения за звуками взрывов. В первую мировую войну бывали случаи, когда канонаду слышали на расстоянии до семисот километров, и в то же время где-нибудь вблизи от места стрельбы она была не слышна. Такие же странные явления наблюдались и при случайных взрывах пороховых складов или извержениях вулканов.

          Почему возникают подобные «зоны молчания»?

          Известно, что звук распространяется во все стороны. Чем дальше от места взрыва, тем он слышен слабее, пока, наконец, слышимость не исчезает вовсе – звуковая волна как будто замирает. И если звук на далеком расстоянии появляется вновь, это значит, что путь волны, идущей вверх, по какой-то причине искривляется и она снова возвращается на Землю.

          Окончательно причина этого явления еще не разгадана и сейчас, но именно оно натолкнуло на мысль о теплых слоях в стратосфере. Ученые предположили, что там есть слой теплого воздуха, менее плотного, чем холодный. Поэтому, попадая в стратосферу, звук преломляется и отражается подобно лучу света, переходящему из более плотной среды – воды – в менее плотную – воздух.

          И все же тепло в стратосфере казалось невероятным: предположение решили проверить. Но как это сделать, если наиболее действенное средство разведки больших высот – шар-зонд – поднимается всего на сорок километров?

          На помощь пришла ракета. Она помогла разгадать тайну больших высот. На высоте около шестидесяти километров оказалось примерно семьдесят градусов тепла. Через двадцать километров – опять мороз в полсотню градусов. Здесь плавают серебристые облака, возможно состоящие из ледяных кристалликов. А затем снова теплый пояс, и с высотой температура поднимается. Как показали измерения, сделанные с помощью ракет, на высоте ста двадцати километров – сто градусов тепла.

          Тепло на больших высотах не выдумка. Подтвердилось многое, о чем раньше говорили наблюдения за звуком и сумеречным светом, метеорами и серебристыми облаками. Сначала температура понижается плавно и неуклонно, пока не перестает ощущаться теплое дыхание Земли. Затем начинается холодный пояс – стратосфера, и температура держится примерно постоянной – в среднем шестьдесят градусов ниже нуля. Но выше тридцати километров появляется первый теплый пояс. Здесь расположен озоновый слой, который образуется и нагревается солнечными лучами.

          Озон – тот же кислород, только в его молекуле не два атома, а три. Свежесть в воздухе после грозы – это запах озона, рожденного электрическими разрядами молний. В высоких слоях атмосферы невидимые ультрафиолетовые солнечные лучи дробят молекулы кислорода на атомы, которые вновь соединяются, но уже не попарно, а по три. Образуется озон. Часть его под действием тех же лучей снова распадается на атомы, из них получаются молекулы кислорода. Солнце же опять делает из них озон. Поэтому озоновый слой и сохраняется в атмосфере постоянно.

          Озона в атмосфере очень мало. Если можно было бы собрать весь атмосферный озон в один слой у поверхности Земли, то его толщина оказалась бы равной всего трем миллиметрам. Но, несмотря на это, он служит чудесной газовой броней, защищающей все живое – растения, животных, человека – от ультрафиолетовых солнечных лучей. Благодаря ему до Земли доходит та их часть, которая не только не вредна, но даже полезна человеку.

          О том, что Солнце, источник жизни, посылает в пространство и ультрафиолетовые лучи, могущие погубить жизнь, знали уже давно. Но вот проявлена пленка. На снимке – солнечные спектры, сфотографированные с ракеты на разных высотах. Чем выше был сделан снимок, тем длиннее их ультрафиолетовая часть. У самой Земли спектр как бы «обрезан». Это озоновый слой задерживает часть ультрафиолетового излучения.

          Каким же он был там, до путешествия сквозь атмосферу, солнечный луч, пришелец из мирового пространства?

          И об этом принесли вести с больших высот приборы, поднятые на ракетах.

          Из чего состоит воздух на больших высотах? Атмосферу составляют разные газы, тяжелые и легкие. Не естественно ли думать, что они выстраиваются по рангу: тяжелые – ближе к Земле, легкие – дальше от нее. Атмосфера слоиста – так считали одно время.

          Пробы, взятые при подъемах стратостатов и шаров-зондов, поколебали такое мнение. С величайшей осторожностью доставлялись на Землю драгоценные кубические сантиметры воздуха стратосферы. Анализ говорил одно и то же: состав воздуха всюду почти одинаков – кислород, азот, редкие газы.

          А что делается выше сорока километров, каков воздух там? Самое простое доставить пробу оттуда. Но на чем?

          Помогла опять ракета, поднявшись на недосягаемые ранее высоты.

          Лучи на Землю посылает не только Солнце.

          Внимание человека давно уже привлекли таинственные лучи, приходящие из космоса. Охотники за ними побывали глубоко под землей и высоко над нею.

          Многое уже удалось узнать о лучах, идущих к нам из глубины вселенной. Но, как и солнечные, они доходят к нам сквозь атмосферу, претерпевая в ней различные превращения, так что мы имеем дело лишь с отдаленными потомками «настоящих» космических лучей. Чтобы узнать их, познакомиться с подлинно космическими лучами, приборы надо поднять еще выше, не на десяток-другой, а на сотню и больше километров.

          И счетчик космических частиц совершил путешествие на ракете на высоту, не доступную ни стратостатам, ни шарам-зондам, туда, где плотность воздуха в миллион раз меньше, чем у поверхности Земли.

          Плотность воздуха в миллион раз меньше, чем у поверхности Земли! Но ведь и об этом мы до недавнего времени знали лишь из теоретических расчетов да наблюдений за метеорами, сгорающими в воздушной броне планеты, за полярными сияниями, сумеречным светом, серебристыми облаками, плавающими очень высоко над Землей.

          Астрономы заметили, что вспышки на Солнце, за полтораста миллионов километров от нас, отражаются на состоянии атмосферы Земли, на погоде. Но механизм таких воздействий еще не ясен. Крайне важно было бы раскрыть и эту загадку.

          Ракеты, поднимая приборы туда, где солнечные лучи встречаются с воздушной оболочкой Земли, помогают узнать истину и в дальнейшем дадут возможность совершенствовать методы прогнозов погоды.

          На больших высотах имеются слои заряженных частиц – электронов и ионов. Отсюда и название этой области: «ионосфера». Об ионосфере нам очень важно знать как можно больше – она броня для радиоволн, от нее зависит дальняя радиосвязь, в том числе и при космическом полете. Ее изучают с Земли, наблюдая за отражением посланных локатором радиоволн. Но только ракета, забравшись в ионосферу, позволила точнее узнать, как распределяются заряженные частицы в атмосфере и каковы они. Сейчас благодаря ракетным полетам мы гораздо лучше представляем себе то, что происходит на высотах почти в 500 километров – почти на половине высоты всей воздушной оболочки Земли!

          А разве не интересно географу посмотреть, как выглядит наша планета с огромной высоты? У нас есть превосходные снимки Луны. Телескоп приблизил лунную поверхность, и на фотографиях так отчетливо видны все подробности рельефа, как если бы мы наблюдали его из окна ракеты, с высоты всего нескольких сотен километров. Стратостаты привозили нам фото Земли с высоты двух десятков километров. На этих снимках Земля плоская, и надо подняться гораздо выше, чтобы убедиться в том, что наша планета – шар, что мы жители земного шара. Фотоаппарат на ракете сделал снимки земной поверхности с высоты двухсот и более километров. Сквозь вуаль атмосферы видна Земля, как на крупномасштабной рельефной карте. И ясно видно, что перед нами кусочек поверхности шара.

          Поставлены были и другие интереснейшие опыты в «стране загадок», как можно справедливо назвать верхнюю атмосферу.

          Давно известно о свечении ночного неба. Солнце зашло, но полной темноты нет. И в этом не повинны звезды, не только благодаря им светится небо. Предполагали, что виновник свечения – кислород. На большой высоте солнечные лучи расщепляют кислородные молекулы на атомы, а потом начинается обратный процесс, при котором выделяются свет и тепло. Но так ли это на самом деле? Окись азота ускоряет переход кислорода из атомарного в молекулярный. Ее и послали в баллоне на ракете в верхние слои атмосферы. Как только газ был выпущен из баллона, яркая вспышка озарила небосвод. Небо светилось несколько часов. Опыт, поставленный в самой атмосфере, дал ожидаемый результат.

          Удалось с помощью ракеты искусственно вызвать и другое явление – метеорит. В головку ее поместили связку гранат. Взрыв – и осколки с огромной скоростью врезались в атмосферу. Наблюдая за ними с Земли, удается получать интересные данные для космической аэродинамики, которая изучает движение с большими скоростями в сильно разреженных газах.

          Чтобы отмечать крошечные метеориты, множество которых носится в мировом пространстве и залетает в атмосферу Земли, в обшивке ракеты установили специальные приборы – своего рода ловушки мельчайших метеорных частиц. Стоит одной такой частичке удариться о нее – в приборе сейчас же возникают электроколебания, которые тем сильнее, чем сильнее удар. О граде этих ударов радио сообщает на Землю. Оказалось, что на некоторых высотах метеорный дождь особенно силен. Чтобы строить спутники и межпланетные корабли, знать это необходимо.

          Так с появлением ракеты – нового разведчика больших высот – начался новый этап в изучении и покорении воздушной стихии и ближайших к нам областей мирового пространства.

          Конечно, это все еще только начало. Трудности создания летающей лаборатории чрезвычайно велики.

          Плавно поднимается вверх воздушный шар. Стратонавты могут регулировать скорость подъема, заставить стратостат остановиться, чтобы произвести наблюдения. На «потолке», в высшей точке подъема, они находятся час, полтора, два и больше. За это время многое можно успеть сделать.

          Сложнее вести наблюдения с ракеты, которая мчится быстрее снаряда дальнобойного орудия, все ускоряя полет, пока работают двигатели. В распоряжении приборов считанные минуты полета. Они должны мгновенно отзываться на перемену условий. А ведь всякий измерительный прибор обладает инерцией, и его показания могут отставать, когда обстановка быстро меняется.

          Приходится обходить эти трудности. Вместо одной величины, которую трудно прямо измерить, измеряют другую, связанную с нею определенной зависимостью. Так, например, известно, что скорость звука зависит от температуры среды. И вместо того чтобы измерять температуру, можно узнать, как изменяется скорость звука при полете ракеты на разных высотах. Зная это, нетрудно вычислить и температуру.

          Инерцию приборов уменьшают, создавая для них все более чувствительные «органы чувств» – приемники измеряемых величин. Так используют полупроводники, реагирующие – и притом практически мгновенно – на изменение температуры в тысячные доли градуса. Ими уже можно пользоваться при полетах хотя бы и в пять-семь раз быстрее звука – с такими скоростями летают сейчас высотные ракеты.

          Приходится учитывать и то, что случается в полете с самой ракетой. Она нагревается при трении о воздух, а это, несомненно, влияет на показания прибора. На большой скорости возникают воздушные уплотнения. Они могут отразиться на показаниях манометра, приемник которого обтекается сверхзвуковым потоком.

          Ракета может отклониться в полете, а приемник солнечных лучей должен быть обращен все время к солнцу. Автоматическое устройство с фотоэлементом – «искатель Солнца» – помогает непрерывно ловить солнечные лучи.

          Приборы для исследования излучений или автоматические фотоаппараты помещают в головку ракеты, которая отделяется от нее «на потолке» и отдельно на парашюте спускается на Землю.

          Мы сказали, что ракетные исследования верхней атмосферы еще только начинаются. Это и верно и неверно в одно и то же время. Верно, так как не в пример шарам-зондам подъемы ракет еще не слишком часты и недостаточно систематичны. Ведь каждый полет ракеты – дорогое и сложное дело. Но они поднимаются все выше и чаще, их потолок достиг многих сотен километров, и сотни высотных полетов уже совершены во всем мире.

          Можно думать, что со временем геофизики станут регулярно зондировать ракетами атмосферу, систематически изучая самые высокие области воздушного океана. Это расширит наши знания о «кухне погоды». Человек будет не только наблюдателем, но и хозяином воздушной стихии, повелителем грозных сил природы.

 

ЧЕТЫРЕСТА СЕМЬДЕСЯТ ТРИ КИЛОМЕТРА

 

          До недавнего времени выше стратостатов забирались лишь маленькие воздушные шары-зонды. Шарик всплывал в воздушном океане, оставляя под собой девяносто девять сотых всей массы воздуха. Поднимаясь в стратосферу, во все более разреженные слои, он рос и рос от раздувающего оболочку газа, пока, наконец, не лопался как мыльный пузырь.

          Огромный воздушный шар-стратостат в самые последние годы сделал новую попытку угнаться за своим собратом – крошечным шариком-зондом. Американцы поднялись на нем на высоту в тридцать с половиной километров. И это, вероятно, не предел, можно было бы еще улучшить рекорд. Но и так высотные подъемы людей стоят пока огромных усилий и жертв. Трагически погиб экипаж советского стратостата в 1934 году. Последний американский стратостат также потерпел аварию.

          Теперь на вооружении исследователей атмосферы, появилось новое могущественное средство. Ирония судьбы: его развитие оказалось связанным с войной. История техники знает подобные примеры. Вспомним хотя бы, что покоренный атом был прежде всего использован для массового уничтожения людей. Радиолокация, ныне обогатившая науку, пришла в нее с полей сражений. На военную службу призвали сначала и ракету.

          Пятнадцать лет назад впервые в истории человечества летательный аппарат поднялся на высоту в сто километров. На нем был установлен самый мощный на свете двигатель, который на максимальной скорости развивал мощность в полмиллиона лошадиных сил. Автоматические механизмы и приборы управляли движением этой машины, летевшей по заданному пути.

          Но не было зрителей на старте. В глубокой тайне, прячась от посторонних взглядов, готовили ракету к полету люди в защитной военной форме. Никто не стремился к месту ее падения, там происходил взрыв. Смерть и разрушение несло с собой через стратосферу очередное достижение ракетной техники гитлеровской Германии. Ракета, впервые совершившая стратосферный перелет, закончила его разрушительным взрывом в далеком тыловом английском городе, населенном мирными людьми.

          Гонка вооружений в капиталистическом мире продолжалась и в послевоенные годы. Рос интерес к изучению больших высот – этих «белых пятен» в науке о Земле и... областей, где пройдут пути далеко летающих боевых снарядов будущего. На американских полигонах привезенные из-за океана немецкие специалисты начали приспосабливать трофейные немецкие ракеты к полетам не на дальность, а в высоту. Вместо тонны взрывчатки в них помещали арсенал всевозможных измерительных приборов, радиопередатчики, фотоаппараты, а потом и камеры для подопытных животных.

          Можно было подумать, что возобновилась война: при первых пусках ракет гремели взрывы, снаряды, падая, оставляли огромные воронки. Неполадки и неудачи следовали одна за другой. Вот несколько эпизодов из практики американских инженеров.

          Был случай, когда взлет произошел удачно, но через несколько секунд ракета начала так быстро вращаться вокруг своей оси, что один из стабилизаторов оторвался и упал. На стабилизаторе была прикреплена антенна радиопередатчика. Когда все это полетело на Землю, радиосигналы с ракеты должны были, конечно, прекратиться. Но они продолжались! Оказалось, что кусок антенного провода зацепился за корпус, и корпус сам сделался антенной, излучателем радиоволн. Так ракета и продолжала сигналить все время полета.

          В другой раз ракета поднималась, как казалось с Земли, прямо вверх. Запуск происходил ночью. Сначала, пока работала стартовая ракета, видна была широкая огненная струя, выбивавшаяся из ее двигателя, затем, уже на большой высоте, узкая полоска, струя из двигателя самой ракеты. Потом двигатель кончил работать. Однако огненный след продолжал подниматься вверх!

          Оказалось, что графитовый руль, установленный в потоке газов, раскаляется и, даже когда двигатель уже не работает, продолжает еще долго чертить в небе огненную линию.

          Обратно ракета спускалась тоже строго вертикально... и очутилась за добрый десяток километров от места запуска. Пока она поднималась вверх, Земля успела повернуться, и ракета приземлилась западнее ракетодрома.

          При одном из пусков ракета, вместо того чтобы подниматься вертикально вверх, вдруг полетела по какой-то причудливой кривой и опустилась за двести километров от места вылета! Как оказалось, причиной этого был графитовый руль. При пуске его, видимо, повредило куском зажигательного устройства, вылетевшим через сопло. Кусочек руля отскочил, а весь руль поворачивался до тех пор, пока не оторвался. Тогда ракета и перестала выдерживать правильное направление полета.

          После этого случая графитовые рули стали незадолго перед пуском просушивать в печи, тщательно просвечивать рентгеном, много раз испытывать под большой нагрузкой. Чтобы руль не повреждался вылетающими частями зажигательного устройства, на него стали надевать прочные картонные футляры, которые потом сгорают в струе раскаленных газов.

          В полете ракета вращается вокруг продольной оси, что затрудняет фотографирование земной поверхности и солнечного спектра. Пришлось сконструировать специальное следящее устройство, которое сохраняет постоянную ориентировку спектрографа относительно Солнца. Для борьбы с вращением пар из турбонасосов стали выпускать через боковые отверстия в корпусе в сторону, противоположную вращению.

          Не обошлось на первых порах без неприятностей и с приборами. Ракета «вихлялась» в полете, и механизм продергивал пленку перед окошечком спектрографа быстрее, чем нужно. Уже на половине пути вся пленка была израсходована. Кассету, выброшенную из ракеты, нашли через несколько дней.

          Помехи искажали показания приборов, передаваемые на Землю по радио. Долго не могли найти истинную причину этих помех. Ее помогли открыть установленные на ракете фотокамеры: на снимках видно было, что связи мешала газовая струя, выходящая из двигателя вблизи передающих антенн.

          Проходя через стальную оболочку приборного отсека, космические лучи сильно изменялись, что искажало результаты наблюдений. Чтобы избежать этого, приборный отсек пришлось делать из алюминия, свободно пропускающего космические частицы.

          Сложной задачей являлся спуск с больших высот. Чтобы получить записи показаний приборов ракеты, их устраивали так, что приборный отсек отделялся от ракеты и опускался на Землю на двух парашютах, раскрывающихся последовательно один за другим. Иногда приборы помещали в стальные камеры, прикрепленные к корпусу болтами, которые по радиосигналу с Земли взрывались. Камера начинала свободно падать, затем ее падение в плотных слоях воздуха замедлялось парашютом. Таким путем прибывали из стратосферы на Землю приборы, записи измерений, снимки спектров, фотографии земной поверхности. Спуск самого корпуса ракеты ввиду его значительного веса осуществить было труднее.

          Так постепенно совершенствовалось новое оружие науки. Для высотных исследований начали создавать специальные ракеты. Для запуска этих ракет строились специальные полигоны.

          Десятки фирм, тысячи инженеров и ученых занимаются ныне ракетостроением за рубежом. Было создано много образцов высотных ракет: целая серия «Викингов», «Аэроби», «Вак Капрал» – в Америке, «Вероника» – во Франции. Получено много новых интересных данных.

          Появились новинки в самой технике ракетных подъемов. Наряду с жидкостными начали запускать на не слишком большие высоты дешевые и простые пороховые ракеты. Запуск производили не только с пусковых столов и других устройств на земле или палубе корабля, но и с борта самолета, с аэростатов – своеобразных летающих стартовых площадок. Отработаны способы записи и передачи показаний приборов, сохранения фотопленки, спуска головки, слежения за полетом.

          Неуклонно повышался потолок ракет: десятки километров, сто, двести, наконец, девять лет назад, – почти четыреста. В десять раз выше бывшего рекордсмена – шара-зонда! Иностранным ученым, безусловно, было чем гордиться, тем более что они считали свои достижения единственными и не превзойденными никем. И вдруг...

          На конференции по управляемым снарядам и ракетам, состоявшейся в 1956 году в Париже, никто этого не ожидал. «У русских есть высотные ракеты! Они осуществили уже много подъемов! Они во многом ушли вперед!» Доклады членов советской делегации произвели потрясающее впечатление. А они только просто, по-деловому рассказали о том, что сделано у нас. Несколько лет в Советском Союзе велись исследования при помощи ракет. Первая поднялась на сто десять километров. Высота росла, рос и вес приборов, поднимаемых в верхние слои атмосферы. Он дошел до полутора тонн! Самые разнообразные и важные исследования удалось произвести геофизикам нашей страны.

          Советские ученые и инженеры сумели добиться того, что ракеты благополучно снижались и могли потом снова отправиться в полет. Они разработали остроумную систему взятия проб воздуха и производства измерений не на самой летящей с огромной скоростью ракете, а при помощи «выстреленных» мортиркой приборов, которые свободно падают в «невозмущенном» движением ракеты пространстве. Они регулярно посылали на сто, двести километров собак и получали ценнейшие сведения для науки.

          Таково было содержание их докладов на международной конференции 1956 года. Теперь их можно еще дополнить.

          21 февраля 1958 года советская одноступенчатая ракета поднялась на четыреста семьдесят три километра. Давление воздуха было измерено до высоты двести шестьдесят километров. Ионосфера разведана почти до пятисот километров. Это не удавалось до сих пор еще никому. Проведена также «глубокая разведка» метеоров в окрестностях Земли.

          И число, поставленное в заголовке этой главы, конечно, недолго останется постоянным. Ему расти и расти. Несомненно, это далеко не последний рекорд!

 

ПЕРВЫЕ ПАССАЖИРЫ

 

          С этими маленькими шустрыми собачками я впервые познакомился во дворе института, куда их привели показать приезжим гостям. Конечно, никто из нас не ожидал увидеть каких-то необычайных животных, каких-то особенных представителей собачьей породы, вроде увешанных медалями знаменитых чемпионов выставок. И все же, когда мы думали о том, что перед нами окажутся первые путешественники в космос, право, хотелось особенного! А особенного не было. Обыкновенные, отнюдь не породистые собачонки. Очутившись на улице, они сразу же затеяли возню и чуть не передрались между собой. На незнакомых людей они обращали мало внимания. Лишь когда стрекотал киноаппарат, то одна, то другая собака удивленно оглядывалась вокруг и на мгновение успокаивалась, будто нарочно позируя оператору. Такой потом она и смотрела с экрана: живая, выразительная мордочка, одно ухо вверх, другое – книзу.

          А потом мы увидели этих собак тоже на экране, но в совсем иной обстановке. Люди в белых халатах надевали на Альбину или Козявку, Малышку или Модницу костюм с прозрачным шлемом вокруг головы. К такому облачению собаки, видимо, уже привыкли. Да и не мудрено: некоторые из них не раз совершали в скафандрах рекордные подъемы. Приходилось им летать и в герметической, наглухо закрытой кабине. Вот и сейчас аппарат заснял четвероногого путешественника в «пассажирском» помещении небольшого ракетного корабля. Собака привычно занимает свое место. Не зря проведено столько тренировок еще на Земле.

          Звук работающего ракетного двигателя трудно с чем-нибудь сравнить. Не свист, не грохот, а мощный гул, словно вырвалась на свободу огромная скрытая сила. С высоты птичьего полета снят клуб дыма и верхушка странного на вид сооружения из решетчатых ферм и мачт. Похожая издали на карандаш с заостренным передним концом, выскальзывает оттуда ракета. Гул скоро стихает. На экране – внутренность кабины и уже знакомый нам пассажир. Однако что это? Собака ловит раскрытым ртом муху? Откуда она здесь? Диктор поясняет: нет, совсем не то! По кабине плавает случайно забытая и ставшая невесомой гайка, собака же принимает ее за насекомое. Очевидно, невесомость не причиняет собаке вреда. Ускорение при взлете она тоже перенесла хорошо. И спуск также: когда кабина после долгого полета касается земли и рядом с нею ложится купол парашюта, путешественница ласкается к людям и с удовольствием угощается сахаром, как все ее никуда не летающие собратья...

          История утверждает, будто первым пассажиром пороховой ракеты был баран, поднявшийся, однако, всего лишь на метры над землей. Впрочем, и это сомнительно: летать на пороховой ракете – все равно, что сидеть на зажженной бочке с порохом. Кошки тем не менее ездили на такой ракете, точнее – на ракетной дрезине. Это было лет тридцать назад, во времена исканий и опытов, зачастую рискованных, но, безусловно, нужных. По треку мчался тогда, извергая огонь, ракетный автомобиль, по снегу с невероятной скоростью неслись сани-ракета, в воздух поднялся ракетный планер, и пилот Штаммер едва не сгорел на нем при взрыве своей батареи пороховых ракет. Но уже тогда создавалась новая, жидкостная ракета, предугаданная Циолковским. Она помогла повести штурм высот.

          Постепенно на высотных ракетах, в камерах для подопытных животных, все чаще стали подниматься мыши, обезьяны и, как сообщали зарубежные журналы, даже... черепаха. Интересные наблюдения сделали над мышами: их фотографировали, чтобы узнать, как ведут себя живые существа в мире без веса. Оказалось, что мышь сначала, словно растерявшись, потеряла «чувство» направления и не могла найти кормушку. Затем растерянность прошла. Видимо, потеря веса не помешала мыши чувствовать себя нормально.

          Но не произойдет ли чего-нибудь плохого с животным, устроенным посложнее, – с обезьяной, например? Американцы отправили в полет обезьян, предварительно усыпив их. Снова тот же результат: и перегрузка и невесомость не слишком повлияли на организм. Журналы обошел снимок обезьяны в особом шлеме, готовой к прыжку на сотню миль вверх. Однако наркотизированная обезьяна мало помогла науке. Нужно было существо высокоорганизованное, но не усыпленное, а в нормальном состоянии, в обычных, ничем не искаженных условиях. Ученые обратились к испытанному другу человека – собаке.

          Около десяти лет назад в Советском Союзе начались ракетные подъемы собак на сто, двести километров и даже выше. Первый пассажир искусственного спутника Земли – Лайка удалялась от Земли на тысячу семьсот километров! Позднее, после знаменитого путешествия Лайки, еще выше поднимались в американских ракетах мыши и обезьяны. Предстояло добыть многие сведения, интересующие биологов и врачей, специалистов новой, космической медицины, которая нарождается сейчас. Как отражаются на животных необычные условия сверхвысотного полета?

          Ускорение еще можно создать искусственно, никуда не летая: при вращении центробежная сила воспроизводит эффект тяжести любой нужной величины. Циолковский проводил опыты с мелкими животными на самодельной «карусели» – и увеличивал перегрузку во много раз. Летчики тренируются на центрифуге – тоже подобии карусели, позволяющем получать увеличенный вес. А как быть с невесомостью, которая появляется лишь при свободном полете? Правда, ее может испытать и летчик, но очень ненадолго, самое большее – на несколько десятков секунд. Есть единственный способ проверки, единственный путь узнать истину о том, что ожидает людей в космическом полете: сам полет – хотя бы и в миниатюре, опыт на животных – хотя бы собаках, не раз уж помогавших человеку проникнуть в тайны его собственного организма.

          Цель ясна, но достигнуть ее оказалось крайне трудно. Ведь речь шла не о механизмах, не о ракете, а о пассажирах, которые должны были жить там, где жить нельзя – в разреженном воздухе стратосферы. Надо было суметь задать многочисленные вопросы и получить на них ответ. Каково самочувствие собаки – кровяное давление, дыхание, как работает сердце? Как собака поведет себя, очутившись в условиях, совершенно необыкновенных?

          Наконец животное необходимо благополучно вернуть на Землю, что тоже не так-то просто при огромных высотах и скоростях. Еще никто не покидал самолет на верхней границе стратосферы, не падал со скоростью около четырех тысяч километров в час!

          Сконструирована герметическая кабина. В нее помещен автоматический киносъемочный аппарат – он запечатлит на экране все, что произойдет с собаками при взлете и свободном падении, вплоть до раскрытия парашюта. Тела собак облеплены крошечными приборами, от которых не скроется даже малейшее изменение дыхания, пульса, температуры. Показания приборов записываются, конечно, тоже автоматически. Их можно передать и по радио – если преобразовать запись в электрические сигналы, которые затем радиоволны донесут до Земли. Так, кстати, и поступали, когда следили за беспримерным путешествием уже подлинно космического путешественника – Лайки. Оставалось только расшифровать полученное из космоса донесение, чтобы узнать о происходившем за сотни километров от Земли.

          Словно заправские пилоты, собаки долго и упорно тренировались. Их поднимали на самолете изо дня в день, приучали к герметической кабине, к тесной, неудобной обстановке, приборам, жужжащей кинокамере. Наиболее выносливых отобрали для полетов.

          Наступил день, когда поднялась первая пара собак. Со ста десяти километров ринулась кабина к Земле. Три минуты полной невесомости: они прошли вполне благополучно. Такого затяжного прыжка не совершал еще ни один парашютист мира: десятки километров неудержимого падения, наконец – плавный спуск с едва ощутимым толчком. Полет закончен.

          Но он повторялся снова и снова. Значительную перегрузку, невесомость иногда в течение шести минут, три часа пребывания в закрытой кабине испытали собаки при многих подъемах. Теперь, если человек полетит на высотной ракете, он будет знать, что ему предстоит пережить. Ну, а если ему в таком путешествии вдруг придется покинуть ракету или совершить сверхвысотный парашютный прыжок? Что может случиться тогда?

          Животные одеты в скафандры. Катапульта взрывом порохового патрона поочередно, одну за другой, выбрасывает тележки с сидящими на них собаками. Это делается при спуске, когда ракета уже не летит прямо как стрела. Однако «выстрел» и тут удается. Бывало, что тележка летела больше часа, прежде чем приземлиться под куполом парашюта. Но и в этом случае, даже с теми собаками, которые несколько раз прыгали с высоты в десятки километров, ничего опасного не случилось. Значит, если человек спустится на парашюте с таких же огромных высот – ему не угрожает гибель.

          Ну, а когда понадобятся не минуты, а часы и дни провести у границ космического пространства, скажем при полетах вокруг Земли, и позднее – в будущем межпланетном полете?

          Снова кабина, только приспособленная под сравнительно долговременное жилье и притом в мире без веса: воздух очищается и вентилируется, вода или жидкая пища подаются особым устройством. Снова ракета, только рассчитанная не на короткий подъем, а на множество кругосветных путешествий, на превращение в спутника Земли. На ней Лайка отправилась в полет, чтобы пожить – пожить, а не побывать! – в космосе. Невесомость для нее длилась несколько дней! И Лайка с честью выдержала испытание. Радио сообщило: взлет, выход на орбиту, участилось сердцебиение, дыхание стало поверхностным и частым, но серьезных нарушений в организме не произошло. Потом – вес потерян, но сердце и легкие работают в норме, хотя и не так, как всегда.

          Самое основное: опыт удался! Собака – первый астронавт – перенесла все, с чем встречается живой организм в космическом рейсе. Когда в такой рейс отправится человек, он уже не полетит туда вслепую.

          Рекорды в штурме высот следуют один за другим. Все выше и выше поднимаются на ракетах и их первые пассажиры – собаки.

          В августе 1958 года предыдущее достижение было перекрыто более чем вдвое.

          В герметической кабине собаки достигли высоты 450 километров и благополучно опустились на Землю. С такой высоты еще не спускалось ни одно живое существо! Недаром зарубежные ученые писали, что Россия сделала еще один важный шаг – добилась преодоления величайшей трудности: возвращения ракеты в атмосферу. Они справедливо подчеркивали: все это – этапы на пути к полету в космос человека.

          Стоит сказать и о самой ракете: вес аппаратуры на ней составлял около 1 700 килограммов. И эта цифра также красноречиво говорит о том же – пассажирами ракеты скоро будут не одни только собаки!

 

КАК БЫ ЭТО БЫЛО

 

          Сколько интереснейших наблюдений – и не только над самим собой – проведет пилот высотной ракеты! С помощью приборов он посмотрит на солнечную корону, на Землю из глубины неба, поймает спектрографом первозданный луч Солнца, не ослабленный воздушной оболочкой, услышит по радио людскую речь, заставив радиоволны пробиться через невидимую преграду ионизированного слоя... и мало ли еще что можно будет увидеть и узнать во время путешествия за атмосферу!

          Представим себе большую ракету. Она похожа по форме на снаряд – заострена спереди, сужена и срезана сзади. Именно ей суждено повести осаду больших высот и поднять туда человека – разведчика атмосферы. У нее герметическая кабина. В баках – запас топлива, который позволит подняться на несколько сотен километров.

          Пилот полулежит в откидном кресле. Так легче переносится усиление тяжести, перегрузка. Перед летчиком расположен щит управления. Лежа в кресле, он может управлять полетом и держать связь с Землей.

          Ракета поворачивается в полете, но система вертящихся зеркал поможет пилоту видеть все вокруг, как из неподвижной кабины. Это устройство «остановит вращение», сделает неподвижным достаточно обширное поле зрения.

          В струе вытекающих из ракетного двигателя газов установлены графитовые рули. Они позволят управлять ракетой, после того как она пройдет плотные слои воздуха и полетит практически в полной пустоте, где стабилизаторы и крылья станут непригодными.

          Когда двигатель кончит работать, в сильно разреженных слоях воздуха графитовые рули станут бессильными – не будет больше потока газов. Ракета начнет вращаться. Ее кабина прикрыта обтекателем, похожим на сложенные лепестки цветка. Быстрое вращение заставит лепестки раскрыться и освободить кабину.

          В это мгновение включится механизм, отделяющий пилотский отсек от корпуса ракеты, и автомат, который впоследствии раскроет парашют ракеты, предоставленной теперь самой себе. Радиостанция переключается с корпусных антенн на те, что запрятаны под полом кабины.

          Сейчас с головокружительной высоты снаряд с человеком ринется в бездну. Продолжая вращаться, он устремится к Земле, похожей на огромную чашу, подернутую туманной облачной дымкой. Если пилот включит вспомогательные двигатели, он сможет остановить вращение, и тогда в кабине предметы потеряют вес. Человек на время как бы превратится в межпланетного путешественника, испытает свободное падение в пустоте, которое составит главную часть будущего межпланетного перелета.

          Начнет работать двигатель – и снова воцарится тяжесть. Уже нет свободного полета, всему «возвращается» вес. Кабина попадает в плотные слои воздуха. Близка Земля, она всего в десятке километров, и атмосфера дает себя знать весьма ощутительно. Воздух резко тормозит падение, появляется перегрузка, пилоту приходится вновь лечь в кресло. Раскрывается кабинный парашют. Проходит усиленная тяжесть. И, наконец, кабина плавно опускается на землю или на воду. Амортизатор смягчает толчок. Радио извещает о месте приземления стратонавта.

          Так мог бы совершиться полет на высотной ракете по проекту английских инженеров.

          Может быть, это произойдет несколько по-другому. Но так или иначе такое событие близко, и уже где-то летает пока на реактивном самолете, родственнике ракеты, тот человек, который отправится в беспримерный рейс на разведку больших высот.

 

* * *

 

          Прыжок из стратосферы, с высоты в несколько десятков километров, – зачем он? Да и возможен ли такой необычный опыт?

          Вспомним несколько случаев из истории советского парашютизма и воздухоплавания.

          Это произошло незадолго до Великой Отечественной войны. Представьте себе жаркий летний день, поле, лес вдали. Тишину вдруг разрывает резкий свист. Из облака стремительно вылетает голубой шар. Он падает так быстро, что едва можно уловить момент, когда от шара отделяется черная точка.

          Шар несется к земле, как метеор. Мгновение – и он скрывается за лесом. А над черной точкой вспыхивает белый шелковый купол.

          Что же произошло? Шар-гондола стратостата оторвалась от баллона и понеслась вниз. Двое членов экипажа выбросились на парашютах еще на большой высоте. Командир остался и выпрыгнул, когда гондола уже прорезала облака.

          Не одна только авария вынуждает к прыжку. Прыжки с парашютом со стратостата не раз совершали наши стратонавты. Парашютисты-испытатели участвуют в борьбе за высоту наряду с воздухоплавателями и летчиками, авиационными врачами и конструкторами. «На какой бы высоте и в каких бы условиях ни начинали летать наши самолеты, вслед за ними на эти высоты обязательно проникали парашютисты-испытатели», – говорит известный рекордсмен-парашютист, заслуженный мастер спорта В. Г. Романюк.

          Самолет штурмует стратосферу. С земли видно, как крошечный самолетик, сверкающий на солнце, вскоре исчезает где-то в бездонной синеве. И только белый след тянется за ним, уходя все выше и выше. Если нет сильного ветра, долго стоит в небе эта белая полоска.

          Рядом с летчиком-высотником в кабине самолета парашютист. В тяжелой меховой одежде, с кислородной маской и парашютом он ждет, когда самолет достигнет потолка.

          Нелегко оставить кабину на большой высоте, где каждое движение требует сильного напряжения, потому что низкое давление заставляет чаще биться сердце, где нельзя дышать без кислородного аппарата.

          Начинается падение. Рывок – человек под раскрытым куполом парашюта несется к земле через стратосферу – царство вечного холода и безмолвия.

          И когда поднимутся на разведку недосягаемых ныне высот воздушного океана пилоты ракет, совершится и оттуда путешествие под куполом парашюта. Представим себе, как может произойти такой прыжок.

          Закончены последние приготовления.

          Через узкий люк в ракету с трудом протискивается человек, закутанный в мех и кожу, с кислородной маской на лице. Он опутан ремнями парашютного ранца.

          До старта остается минута... полминуты... Заработали насосы, подающие топливо, заработали двигатели. Ракета оторвалась от земли. Тело наливается тяжестью.

          Полетом управляют автоматы. Они не дают ракете подниматься слишком быстро, иначе большая перегрузка сдавит, лишит сознания, сомнет человека.

          Ощущение подъема давно знакомо по тренировочным полетам, по барокамере, в которой, не поднимаясь в воздух, можно побывать на любой высоте. И все же оно каждый раз новое.

          В иллюминаторе – голубое, постепенно темнеющее небо. Подъем продолжается. Стрелка альтиметра проходит мимо цифр «15000», «20000», «30000» метров... И ракета попадает в ту область воздушной оболочки планеты, где только ей открыта дорога.

          Земли не видно. Лишь кусочек неба в иллюминаторе, темнеющий все сильнее и сильнее, да стрелка прибора, упрямо ползущая вправо, говорят, что ракета идет вверх.

          Еще немного – и шум двигателя смолкает. Но ракета с разбегу продолжает подъем. Тяжесть, давившая грудь, исчезла.

          Пора! Все тело напрягается, готовясь к удару. Толчок... Еще толчок... Это кабина отделилась от ракеты. Теперь она предоставлена самой себе. В памяти осталась стрелка у цифры «70 000». Семьдесят километров!

          Странное ощущение! Оно отдаленно напоминает быстрый спуск на лифте или растянутый во времени воздушный «ухаб», когда самолет теряет высоту.

          Легкое головокружение. Пол кабины уходит из-под ног, тело как будто повисает в воздухе. Но нет, это только кажется, все на месте, лишь стрелка прибора стремительно ползет вниз. Раскрывается кабинный парашют, и скорость падения уменьшается.

          Выполнена программа наблюдений. Надо экономить силы – впереди еще большее напряжение. Мысль работает четко, движения, повторенные столько раз на земле, следуют одно за другим.

          Проверить кислородный аппарат. Открыть люк. Встречный поток воздуха мешает, но, справившись с ним, удается выбраться из кабины. Рывок, очень сильный, как удар. Начинается свободное падение.

          Но вот уже раскрыт купол парашюта над головой. Дышится легко – кислородный прибор действует исправно. Почти не чувствуется жестокого мороза стратосферы.

          Кабины уже не видно, она падает быстрее. Лишь небо да далекая земля, и между ними «висит» одинокая фигура под шелковым куполом.

          Между небом и землей...

          Это образное выражение сейчас было бы справедливо в буквальном смысле.

          Небо над головой темно-синее, совсем не такого нежно-голубого цвета, каким мы привыкли его видеть. На нем сверкает Солнце – столь яркое, что нестерпимо больно взглянуть на его ослепительный диск.

          Земля так далеко, что потеряла свой привычный, «земной» вид, когда при взгляде сверху отчетливо видны узкие извилистые полоски рек, массивы лесов, пересеченные дорогами и тропинками, ниточки-рельсы, игрушечные домики, жучки-автомашины. Смутно видна лишь гигантская рельефная карта, но без подробностей, без ощутимо ясных знакомых очертаний. Один сплошной серо-зеленый фон, подернутый местами белыми громадами облаков. С земли облака иногда кажутся плывущими в такой недосягаемой вышине, что ее трудно даже представить себе. А сейчас облака, как огромные горные хребты, громоздятся далеко-далеко внизу.

          Здесь, над облаками, царство вечного безмолвия. Ни один звук не доносится сюда. Бывает и на земле тихо, но такой полной, такой идеальной тишины там не встретишь никогда. Она давит, эта мертвая тишина.

          Время как будто остановилось. Все так же сияет Солнце, все так же далеко внизу, не приближаясь и не удаляясь, клубятся острова облаков.

          Кажется, что так было всегда, и не будет этому конца. Земля по-прежнему недосягаемо далека, так же как и Солнце, неподвижно повисшее в небе.

          Ничто не выдает движения. Полный покой. Никаких новых впечатлений.

          Наконец заметно приблизились облака, ощутимее стали ориентиры. И вот уже видно, как тень парашюта скользит по белым пушистым грядам. Земля, родная Земля близко! Долой кислородную маску. Человек жадно вдыхает «земной» воздух. Еще немного – и прыжок из стратосферы закончен. Ложится белый купол. Под ногами земля. Снова привычное голубое небо над головой, жаркое солнце, дыхание ветра, шум деревьев в ближнем лесу...

          Такой спуск даст много ценных сведений конструкторам, летчикам, врачам.

          В стальном метеоре, подобии кабины будущего межпланетного корабля, парашютист начнет прыжок из стратосферы. Затем он оставит кабину и раскроет свой парашют.

          В нашем описании необыкновенного прыжка не пришлось особенно много фантазировать. Ведь еще двадцать лет назад предложен был интересный проект спуска из стратосферы. Стратостат поднимает на высоту около тридцати километров гондолу, напоминающую по форме авиационную бомбу. Оболочка стратостата рвется, и гондола-бомба устремляется к Земле. Двадцать пять километров свободного полета – и раскрывается парашют, замедляющий падение гондолы. Ближе к Земле парашютист покидает гондолу и прыгает.

          Проект тогда осуществлен не был. Теперь же ракеты завоевывают стратосферу. Вместо гондолы стратостата устремляется ввысь кабина ракеты, и не на тридцать километров, а много выше поднимет она смелого парашютиста-стратонавта.

          Благополучное возвращение на Землю собак, поднимавшихся на высотных ракетах, говорит о том, что и человек сможет совершить такое путешествие. Собаки спускались или в герметической кабине, над которой открывался парашют, когда она снижалась до высоты в четыре километра, или в скафандрах. В этом случае тележка с собакой в скафандре выстреливалась из свободно падающей негерметической кабины на высоте в восемьдесят пять километров и над ней раскрывался парашют. Иногда тележка падала свободно (без парашюта) до высоты в четыре километра.

          Расчеты показывают, что человек тоже с успехом может использовать парашют. Можно также применить катапультирование из падающей ракеты или из отделенной от нее кабины. Чтобы иметь в достаточном количестве кислород и сократить время спуска, лучше всего, если человек, одетый в скафандр, будет свободно падать вместе с креслом до высоты в четыре километра, а затем опустится на парашюте.

 

НА ПУТИ К КОСМИЧЕСКОМУ КОРАБЛЮ

 

          Сбылось предвидение Циолковского – за эрой аэропланов винтовых наступает эра аэропланов реактивных.

          Реактивный самолет стал действительностью.

          Мы уже привыкли к стремительному полету новых самолетов, к их необычным формам. Пилотам же стало привычным ощущение громадной скорости, когда под самолетом не плывет, а стремительно проносится земля.

          Наступает время больших скоростей в авиации не только военной, но и транспортной. Уже появились многомоторные реактивные воздушные корабли. Не триста, как еще недавно, а девятьсот, тысяча километров в час стали крейсерской скоростью гражданского самолета.

          В немногих словах трудно рассказать о том, с чем пришлось бороться создателям скоростных машин. В первую очередь это было сопротивление воздушной стихии – воздух мешает движению, и тем сильнее, чем скорость ближе к звуковой. Недаром появилось название «звуковой барьер» – воздух, сжимаясь, уплотняясь, образует перед летательным аппаратом своеобразную преграду, которую надо преодолеть. Чтобы преодолеть ее, найдены были такие формы крыльев, фюзеляжа, оперения, при которых меньше сказывается вредное влияние сжимаемости воздуха. Самолету дали более мощный – реактивный – двигатель. Он помогает справиться с возросшим сопротивлением среды, штурмовать звуковой барьер.

          Как нередко бывает при встрече с трудностями, нашлись маловеры, заявлявшие, что звуковой барьер непреодолим. Смотрите, говорили они, самолеты рассыпаются в куски, едва начинают подходить к опасной зоне скоростей. Не выдержат машины, не хватит мощности мотора, да и пилот не вынесет сверхчеловеческих нагрузок.

          Однако современные самолеты прошли опасную зону, превысили скорость звука, и сверхзвуковая авиация стала буднями наших дней.

          Но мы будем говорить не о том, что существует сейчас, сегодня, а о завтрашнем дне, когда построят крылатую управляемую ракету, прообраз межпланетного корабля.

          Обыкновенно идут от известного к неизвестному. «Так и мы думаем перейти от аэроплана к реактивному прибору – для завоевания солнечной системы», – говорил Циолковский. И он набросал план завоевания межпланетных пространств.

          Безвинтовой ракетный самолет с герметической кабиной покорит стратосферу. Высота и скорость его полета ограничены только запасом топлива. Постепенно поднимаясь все выше и выше, туда, куда ранее проникали одни стратостаты да шары-зонды, человек совершит первые робкие взлеты в область больших высот. Пополнится драгоценная сокровищница опыта, окрепнут крылья ракеты, из воздушного корабля она начнет превращаться в корабль заатмосферный.

          Разбежавшись по земле с помощью ускорителей, разогнавшись в разреженном воздухе больших высот, крылатая ракета совершит чудовищный прыжок в тысячи километров длиной.

          Начало и конец ее пути будут лежать в атмосфере. Середина – главная, неизмеримо более длинная часть путешествия – пройдет в межпланетном пространстве.

          Почта, грузы, пассажиры за час перенесутся от Балтики к берегам Тихого океана, за несколько минут – из Москвы в Ленинград. За рубежом разработан проект почтовой межконтинентальной ракеты.

          Все чаще можно встретить сейчас слова «геокосмический транспорт». «Гео» – земля. При чем же тут космос? Что означает это сочетание слов? До сих пор под космическими полетами мы подразумевали путешествия по крайней мере на Луну, если не дальше.

          Тут имеются в виду полеты не на Луну и планеты, а через космическое пространство, но в пределах Земли, от одной ее точки к другой – возможно, на многие тысячи километров. В космосе пройдут трассы будущих высокоскоростных кораблей, пройдут самые удобные пути, соединяющие континенты.

          Такие корабли будут совершать короткие вылеты в межпланетную бездну – миниатюрные космические рейсы, с переходами из обычного состояния к усиленной тяжести, затем к полной ее потере и, наконец, к возвращению в привычный мир.

          Корабль может двигаться с той же скоростью, с какой вращается Земля. Тогда Солнце для него станет неподвижным и наступит вечный день. Свершится и другое «чудо»: для экипажа крылатой ракеты, обогнавшей Землю, дневное светило двинется назад, восходя на западе и заходя на востоке.

          Кстати, уже и теперь летчику реактивного самолета, летящего со скоростью тысяча километров в час по параллели Москвы, кажется, что Солнце движется по небу не так, как обычно, а наоборот, с запада на восток. Он перегоняет Землю, летит «быстрее Солнца».

          Когда скорости достаточно возрастут и полеты за атмосферу станут такими же обычными, как теперь дальние перелеты самолетов, когда авиация, став «космической», тем самым поднимется на новую ступень, еще больше сократятся сроки перелетов и как бы меньше станет для человека земной шар. Вот тогда можно будет начать реальную борьбу за достижение людьми космических скоростей... Астронавтика сомкнётся с авиацией: от геокосмического транспорта до космического – рукой подать!

          У ракетного самолета и межпланетной ракеты много общего: обоим лететь практически в пустоте, где гибнет все живое. Поэтому и у самолета и у корабля вселенной должна быть герметическая кабина с искусственной атмосферой, подобной той, что создается в гондолах стратостатов и кабинах высотных самолетов.

          Двадцать лет назад на советских заводах построили стальной шар – гондолу стратостата, который поднялся на высоту в двадцать два километра. В нем наши инженеры и техники, мастера и рабочие сумели создать стратонавтам все необходимые для работы условия.

          Ради нескольких часов, которые нужно было провести в поднебесье, многие месяцы шла напряженная работа.

          В историю авиации навсегда вошли стратосферные полеты советских летчиков и воздухоплавателей как непревзойденный образец мужества, героизма, настойчивости в достижении поставленной цели.

          Не только стратонавтам, но и подводникам и летчикам-высотникам приходится работать в изолированных от внешнего мира помещениях. У нас уже есть опыт создания нормальных условий для жизни человека там, где жизнь невозможна, – в глубинах океана и в разреженном воздухе больших высот.

          Тут нужно предусмотреть все мелочи, от которых зависит жизнь экипажа. Представьте, насколько возрастут трудности, когда речь пойдет не о часах, а о днях, проведенных за атмосферой, не о десятках, а о сотнях тысяч и миллионах километров пути, не о плавании в воздушном океане, а о полете в неведомый мир.

          Надо полагать, что техника справится с такой сложной задачей.

          Ракетному самолету предстоит подняться выше озонового слоя, навстречу потокам ничем не ослабленных ультрафиолетовых лучей. С ними же встретится и межпланетная ракета. Поэтому иллюминаторы их должны быть закрыты прозрачной пластмассой, которая, подобно слою озона, защитит пассажиров от губительных солнечных лучей.

          На большой высоте нет воздушной брони – атмосферы, и самолету, как и ракете, грозит случайная встреча с метеором. Поэтому обоим нужна защита, о которой придется позаботиться конструкторам стратосферных и межпланетных кораблей.

          Ракетный двигатель, топливо, материалы, управление, приборы, средства связи с Землей у такого самолета и межпланетной ракеты будут во многом похожи. Возможно, что ракетный самолет, если он сможет развить нужную скорость, станет обитаемым спутником. На таком самолете-ракете люди много раз облетят за атмосферой вокруг Земли, а потом возвратятся обратно. Посадку корабль совершит как обычный самолет, и тут-то ему и пригодятся крылья. Кстати, проект подобного спутника-самолета уже существует и ждет своего претворения в жизнь.

          Ракетные двигатели позволят летать на огромных высотах с огромными скоростями.

          В Германии разрабатывался проект перелета на 5000 километров за три четверти часа. Сейчас в США строится ракетный самолет, рассчитанный на скорость 6000 километров в час и высоту более 75 километров 1. Наибольшая скорость была бы три с половиной километра в секунду – почти половина той, что необходима для превращения в спутник!

          Нельзя, конечно, думать, что путь перехода от самолета к межпланетному кораблю – единственно возможный. Нет, прообразом корабля вселенной является сама ракета, нынешний разведчик высот, носитель искусственных спутников. Но техника межпланетных сообщений, несомненно, воспользуется опытом авиации, ибо отчасти им по пути.

          Авиация стремится выйти еще выше в стратосферу, потому что там мало сопротивление воздуха.

          Самолет, летающий на огромных высотах с огромными скоростями, и ракета, прорезающая верхние слои атмосферы, будут несколько напоминать метеор. Их движение станет изучать одна и та же наука – космическая аэродинамика, в ведении которой находится сверхбыстрое движение в сильно разреженном газе.:

          На больших скоростях происходит усиленный нагрев обшивки от трения о воздух. Чем быстрее полет, тем сильнее она нагревается. У ракеты, развивавшей скорость полтора километра в секунду, она раскалялась до девятисот градусов. Если лететь еще быстрее, самолет сгорит. Поэтому и стремятся летать на больших высотах.

          А как же быть с чудовищной, почти тысячеградусной жарой, которая, как предполагают, царит там? Как это ни странно, но мы не почувствуем этой жары, и все из-за той же ничтожной плотности воздуха. Частицы его движутся с огромными скоростями, но их так мало, что тепло неощутимо, и лишь с помощью приборов можно измерить температуру. Передача тепла происходит так медленно, что только прямые солнечные лучи будут нагревать самолет, но от такого нагрева защититься всегда можно.

          Однако поскольку следы атмосферы там все-таки есть, а скорость полета очень велика, избежать «теплового барьера» при пролете атмосферы нельзя. Жаропрочные материалы, многослойная обшивка, различные способы охлаждения должны будут помочь справиться и с этим барьером.

          Ракета-межпланетный корабль будет, конечно, отличаться от ракеты-самолета. Для размещения топливного запаса, обеспечивающего достижение космической скорости, надо создавать составную ракету – пока нет еще в нашем распоряжении достаточно мощных источников энергии. Лишь с атомным двигателем пассажирская ракета-одиночка сможет вылететь в мировое пространство.

          Межпланетный полет продолжителен, и нужно обеспечить экипаж всем необходимым для жизни в пустоте не на часы, а на месяцы и годы. Понадобится усовершенствовать герметическую кабину, приборы, радиоаппаратуру, позаботиться о питании, о костюмах, в которых можно было бы выйти из ракеты, о приспособлениях для спуска на Землю и другие планеты.

          И тогда – теперь это наступит уже скоро – наряду с воздушным транспортом появится транспорт заатмосферный, наряду с воздушными – космические дороги.

 

          1. См. «Сверхзвуковые самолеты». Сборник переводов и рефератов из иностранной периодической литературы. Изд-во ин. лит-ры, 1958, стр. 7 и стр. 123.

Назад   В начало   Вперёд