Б.Ляпунов ОТКРЫТИЕ МИРА 1954 |
Памяти знаменитого деятеля науки, основоположника звездоплавания — Константина Эдуардовича ЦИОЛКОВСКОГО посвящаю эту книгу.
Автор |
Автор выражает благодарность за помощь, оказанную в работе над книгой, академику Б. Н. Юрьеву, члену-корреспонденту Академии наук СССР Г. А. Тихову, действительному члену Академии наук УССР Н. П. Барабашеву, кандидату технических наук М. К. Тихонравову, ученому секретарю комиссии по разработке трудов К. Э. Циолковского Б. Н. Воробьеву, инженерам Я. М. Колтунову, П. И. Иванову, В. А. Штоколову, С. В. Ревзину, писателям И. Я. Маршаку (М. Ильину) и М. П. Ивановскому
Книга Б. В. Ляпунова «Открытие мира» принадлежит к той ветви научно-художественного жанра, которая с большим правом может называться научной фантастикой чем многие научно-фантастические романы. В таких романах обычно гораздо больше фантастики, чем науки. Достаточно вспомнить хотя бы многие произведения Уэллса, увлекательные по своей фабуле, но не выдерживающие критики с точки зрения науки, да и не претендующие на научность.
Советская научно-художественная литература в противоположность пессимистическим произведениям таких писателей Запада, как Уэллс, полна оптимизма и веры в будущее.
Она вся устремлена вперед. Поэтому даже в тех наших научно-художественных книгах, которые говорят о сегодняшнем дне, мы всегда находим главы о будущем. Каждый прожитый день, каждая новая пятилетка — это новый шаг к коммунизму. Вся наша работа — это построение коммунизма, построение будущего,
Но если так, то вполне закономерно и необходимо появление в нашей научно-художественной литературе книг о будущем — книг научно-фантастических. От мечты — к плану, от плана — к его осуществлению — таков путь, которым мы идем. На наших глазах воплощается в жизнь то, что считали несбыточной мечтой люди прошедших времен. И если прежде слово «мечтатель» произносилось нередко с оттенком пренебрежения, мы говорим о мечте, о фантазии совсем по-другому.
Наша мечта основана на науке. Мы верим в будущие победы, потому уже немало их одержали в прошлом и одерживаем в настоящем.
Вот почему был назван «знаменитым деятелем науки» Циолковский, которого кастовая наука прошлого зачислила в разряд «чудаков», «фантазеров». Вот почему наша страна так высоко ценит труды великого ученого и смелого мечтателя Мичурина.
Изобретательство приняло у нас характер массового движения. А зерно, из которого вырастает всякое изобретение — это мечта.
Но мечтать надо уметь. Только тот умеет мечтать, кто держит свое воображение в узде, кто управляет им и проверяет его научным расчетом.
Книга Б. В. Ляпунова учит молодого читателя мечтать. На примере деятельности Циолковского читатель видит, как фантазия может и должна сочетаться с глубоким знанием законов природы.
Самая смелая мечта должна всегда опираться на незыблемые законы науки.
Эта книга ведет читателя по таким путям, на которых могла бы закружиться толова, — к другим планетам, к другим планетным системам. Но от этого головокружения все время спасает строгий научный анализ. Вместе с читателем автор взвешивает все «за» и «против» на весах современного знания. И молодой человек, читающий о полете к звездам, знакомится попутно с тем, что уже открыто учеными на нашей планете и в нашей стране.
В «открытии мира» с помощью реактивных кораблей должны будут участвовать люди самых различных специальностей: авиастроители и металлурги, энергетики и геофизики, биологи и астрономы.
Сама тема потребовала от автора комплексного подхода к проблеме. Он не может ограничиваться одной какой-либо областью знания. Все науки встречаются, когда речь идет не об изучении отдельно взятой грани природы, а о завоевании природы. Мир — единое и неделимое целое. И наука о мире — едина. Мы вынуждены делить ее на множество областей для удобства изучения. Но о ее единстве никогда не надо забывать.
В книге «Открытие мира» весь космос рассматривается как единое целое. И в этой комплексности, энциклопедичности еще одно ее достоинство.
Наши юноши и девушки должны стать мастерами своего дела, знатоками своей специальности. Но им нужны не только узкоспециальные книги. Им нужны и книги широкого охвата, помогающие строить марксистское мировоззрение. Им надо рассказать и о космосе и о полетах в космос.
Книга, воспевающая мечты и дерзания человека, должна быть поэтической. Иначе она не справится со своей задачей. А поэзия — не в красивых словах. Поэзия там, где знание гармонирует с воображением, где мысль, облеченная в единственно необходимую ей форму, сочетается с большим и глубоким чувством.
Такая поэтичность есть в книге Ляпунова. Она написана горячо, со страстью, с верой в осуществление мечты Циолковского и, больше того, с верой в безграничные возможности человека, человеческого разума. Эта вера заражает читателя. Чем бы ни занимался потом этот читатель, он не забудет о волнении, которое он испытал, читая об «открытии мира».
И ему еще сильнее захочется отдать все силы великому делу познания и преобразования природы, делу служения своей Родине.
«Мы живем в эпоху, когда расстояние от самых безумных фантазий до совершенно реальной действительности сокращается с поразительной быстротой» М. Горький |
Как-то раз, когда я был еще школьником, почтальон принес мне бандероль с обратным адресом: «Калуга, улица Жореса, 3. К. Э. Циолковский». Это был ответ на мое письмо. Маленькие брошюрки со множеством таблиц, выкладок и странных формул, в которых вместо алгебраических символов стояли сокращенные слова, открыли для меня новый мир. Многое было непонятно сначала, но, читая и перечитывая эти книжки, с годами проникая в них все глубже и глубже, я увидел картины, захватывающие воображение: мир, где человек может плавать в воздухе, ничего не веся, где достаточно малейшего толчка, чтобы странствовать тысячи километров, где Солнце и звезды такие, какими их никто никогда не наблюдал.
Перед глазами проносились фантастические пейзажи иных миров, ставших доступными человеку. Люди в скафандрах вступают на поверхность Луны, Марса, наблюдают то, что считалось навсегда скрытым от нас, — невидимую с Земли сторону нашего спутника, разгадывают тайну марсианских каналов, видят своими глазами Землю из глубин мирового пространства, Землю-планету...
С чувством гордости за человеческий гений, за русский гений, открывший безграничные перспективы познания мира, закрывал я маленькие книжки, полученные из Калуги.
Вот и теперь, много лет спустя, когда я пишу о покорении вселенной, это чувство целиком владеет мною.
Двадцатый век -— век величайших изобретений и открытий. Он принес победы электротехники, в которой человек нашел, по выражению Столетова, ключ к решению самых фантастических задач своего ума; триумф электроники и радио; завоевание воздуха.
Но есть другие открытия, с иной судьбой. Они принадлежат будущему. Воплотить их сразу в жизнь трудно, доказать правоту идей нелегко, если нет других доказательств, кроме веры и расчета. Не потому ли встречали в штыки, замалчивали, пытались опорочить, наконец просто объявляли ересью многое, что не укладывалось в рамки привычных категорий, представлений, понятий?
История жизни Циолковского хорошо известна. Большая часть ее — сражение, борьба с тупостью власть имущих, с консерватизмом «официальной» науки. «Горе и гений» — так красноречиво назвал он одну из книг, написанную незадолго до революции.
Какой горечью веет от таких строк: «Тяжело работать в одиночку, многие годы, при неблагоприятных условиях, и не видеть ниоткуда ни просвета, ни содействия... Я истощил все усилия...»
У Циолковского были все основания так писать. Глухая стена равнодушия, заговор молчания окружали новатора. Лишь немногие разделяли веру в осуществимость того, о чем так страстно мечтал ученый.
К тому времени он уже создал основы теории и техники межпланетных путешествий, и было ясно, что им принципиально решена труднейшая техническая задача. Но напрасно ученый добивался признания и поддержки. Ему никто не хотел помогать, и неизвестно, что сталось бы с одним из величайших открытий современности, если бы не Великая Октябрьская социалистическая революция. Она открыла дорогу Циолковскому, его смелым идеям.
Чтобы правильно понять значение трудов знаменитого деятеля науки, надо уметь смотреть в будущее.
Он не только дал технический эскиз межпланетного корабля, но и с исчерпывающей для своего времени полнотой разработал и двигатель, и управление, и навигацию, старт, спуск, энергетику ракетного полета, рассмотрел условия жизни в мировом пространстве.
Было бы нелепо требовать от него рабочих чертежей ракеты. «Более, чем кто-нибудь я понимаю бездну, разделяющую идею от ее осуществления», — говорил он.
Неоспоримы заслуги Циолковского как идейного руководителя будущих покорителей межпланетных пространств, создателя новой науки — звездоплавания. Но ограничиться только этим нельзя, ибо ценность наследства ученого неизмеримо больше. Ведь межпланетные путешествия и завоевание межпланетных пространств будут новой вехой на пути открытия мира.
Циолковский в плоть и кровь облек дерзкую мечту и блестяще доказал возможность ее осуществления. Недаром его называют «первым гражданином вселенной». В этом отношении его судьба сходна с судьбой «отца русской авиации» Н. Е. Жуковского, который, не построив ни одного самолета и ни разу не поднявшись в воздух, предсказал многое в развитии авиации, подкрепив смелую мысль изобретателей и ученых строчками формул, массой выкладок и таблиц.
Богатейшую россыпь идей находим мы в сочинениях основоположника звездоплавания. Многие из них станут достоянием техники грядущего. По собственным словам Циолковского, он никогда не претендовал на полное решение вопроса. Это вполне понятно: он лишь первым осветил тьму незнания. «Вы зажгли свет, и мы будем работать, пока величайшая мечта человечества не осуществится...» — писал Циолковскому профессор Оберт, признав приоритет патриарха звездоплавания. Французское общество астронавтики посмертно присудило Константину Эдуардовичу Циолковскому медаль в ознаменование его выдающихся заслуг.
Проходит немного времени, и в разных странах разные ученые приходят к тем же выводам, что и он: французский инженер Эсно-Пельтри — через десять лет, немецкий профессор Оберт — через двадцать, американский профессор Годдард — через шестнадцать.
Русский механик Юрий Кондратюк разрабатывает теорию космических путешествий, не только повторяя сделанное Циолковским, но и внося новое. Энтузиаст межпланетных сообщений инженер Цандер отдает все силы любимому делу, стремясь соединить теорию с практикой. Еще неосуществленная мечта уже уносит жертвы. Гибнет при испытании ракетного автомобиля страстный поборник идеи полета в мировое пространство немецкий инженер Макс Валье, взрывом ракеты убивает инженера Рейнгольда Тиллинга. Однако жертвы и трудности не пугают «работников великих намерений». Их усилиями развивается и крепнет ракетная техника, с каждым днем приближаясь к решению великой проблемы.
Настало время, когда полеты на Луну из ведения авторов фантастических романов перешли в более ответственное ведение инженеров, когда о путешествиях в космическое пространство говорят как о деле относительно недалекого будущего. Уже обсуждаются конкретные проекты, намечаются примерные сроки первого старта.
Академией наук СССР учреждена золотая медаль имени К. Э. Циолковского, присуждаемая за выдающиеся работы в области межпланетных, сообщений. Ею будут отмечаться лучшие исследования советских ученых, работающих в области астронавтики.
«Открытие мира» — рассказ об идеях знаменитого деятеля науки, который первым указал человечеству путь в космос, о том, насколько современная наука и техника приблизились к осуществлению мечты о межпланетных путешествиях, и о том, что даст это человеку, познающему и покоряющему природу.
Эта книга знакомит с принципиальными основами, перспективами, и значением освоения мирового пространства для науки и практики..
Задача «Открытия мира» — показать грандиозность проблемы, которая впервые поставлена К. Э. Циолковским полвека назад в скромной журнальной статье, названной «Исследование мировых пространств реактивными приборами».
Мы, жители Земли, ее пленники, прикованы к планете цепями, которые пока еще не в силах разорвать. Никто не избавлен от власти земного притяжения, и каждая попытка преодолеть эту непокорную силу природы дается нелегко.
Два метра тринадцать сантиметров — мировой рекорд прыжка в высоту.
Трудно оторваться от земли. Ценой большого спортивного мастерства, тренировки, напряжения воли даются новые сантиметры высоты.
Еще труднее совершить полет. Здесь мускулы не помогут. «Человек полетит, опираясь не на силу своих мускулов, а на силу своего разума», — говорил великий русский ученый Николай Егорович Жуковский. Механические птицы — самолеты и планеры, дирижабли и воздушные шары, — таковы были до недавнего времени наши средства в борьбе с земным тяготением.
Вот успехи, достигнутые в этой борьбе: восемнадцать километров высоты — самолет, двадцать два — стратостат. Много или мало? Атмосфера простирается на сотни километров. До наиболее близкого нашего соседа во вселенной — Луны — триста восемьдесят четыре тысячи километров. Значит, еще очень далек путь и за пределы воздушного океана и к соседнему небесному миру. Но все же и двадцать два километра — это много, ибо почти исчерпаны возможности, какими мы еще недавно располагали.
Далеко простирается власть Земли. Земное тяготение действует на огромном пространстве. Оно удерживает Луну и заставляет наш спутник обращаться вокруг Земли.
До сих пор из-за него ни один летательный аппарат не смог покинуть родную планету.
Ракета -— новое средство завоевания высот -— поднимается намного выше самолета, но и она пока еще не стала межпланетной путешественницей.
...Ракета установлена на пусковом столе. В баки залито топливо, начинают работать топливные насосы, запускается двигатель. В какое-то мгновение язык пламени появляется у хвоста ракеты.
Стратостат. |
Она еще неподвижна, еще не может бороться с притяжением, не пускающим ее ввысь. Но сила тяги растет: сначала она меньше веса ракеты, затем сравнивается с ним. Вес тянет вниз, сила тяги — вверх. В единоборстве побеждает тяга, и ракета на неуловимую долю секунды как бы повисает в воздухе, затем медленно, словно нехотя, начинает подниматься и устремляется в небо. Оглушительный вначале рев двигателя постепенно затихает. Уже слишком высоко ракета, и звук теряется в воздушных просторах.
Наблюдающим взлет кажется, будто какой-то огненный смерч уносит стальную сигару. Все быстрее и быстрее мчится она. Теперь уже за ракетой невозможно уследить простым глазом: лишь яркая полоска выхлопных газов чертит путь по небосводу.
Самолет. |
Постепенно баки пустеют, и двигатель кончает работать. С разгона снаряд еще продолжает подъем, но сила тяжести берет свое. Замедляется полет... последние метры... остановка на мгновение... и спуском, неудержимым падением на Землю заканчивается путешествие в стратосферу.
Сила тяжести — главный противник межпланетных перелетов. Чтобы покинуть нашу планету и отправиться в мировые дали, нужно прежде всего победить тяжесть, вырваться из ее оков. Как это сделать? Обратимся к опыту артиллеристов. Снаряд со сравнительно небольшой начальной скоростью пролетит десяток-другой километров. Снаряд дальнобойного орудия, вылетевший из дула со скоростью полтора километра в секунду да еще «выпрыгнувший» за атмосферу, может проделать в десять раз более длинный путь.
С ростом начальной скорости дуга, по которой летит снаряд, будет все более и более вытягиваться. При скорости около восьми километров с секунду снаряд никогда не упадет на Землю. Он полетит вокруг земного шара по замкнутой кривой — эллипсу и станет маленькой луной, спутником нашей планеты.
Так случилось с незадачливыми артиллеристами из романа Жюля Верна, которые не попали в цель потому, что заставили снаряд слишком быстро вылететь из пушки и своим выстрелом подарили Земле крошечную искусственную луну.
Из-за действия сил земного тяготения снаряд не может удалиться со своего замкнутого пути в глубины мирового пространство. Он не может упасть на Землю — его удерживает центробежная сила, неизбежный спутник вращения. Сила эта уравновешивает земную тяжесть. В результате не освобождение от власти земного притяжения, но первый шаг к нему — вечное движение вокруг Земли.
Если скорость возрастает, эллипс, один из фокусов которого совпадет с центром земного шара, будет все более вытягиваться. Когда скорость превысит 11,2 километра в секунду, корабль полетит по параболе. Однако солнечное притяжение не даст ему удалиться по этой незамкнутой кривой в бесконечность, а заставит его стать самостоятельным небесным телом, но уже не спутником Земли, а ее братом, таким же, как и она, спутником Солнца, членом планетной семьи.
Наконец, достигнув скорости 16,6 километра в секунду, снаряд, полетевший в сторону движения Земли по орбите, освобождается не только от власти родной планеты, но и от власти Солнца. Он покидает солнечную систему и отправляется к другой земле.
На разных планетах сила тяжести различна. На Юпитере она придавила бы человека, так что он мог бы двигаться лишь с большим трудом. На малых планетах — астероидах — прыжок поднимет на несколько сот метров или даже унесет в межпланетное пространство. Чтобы освободиться от власти Луны, надо иметь скорость около 2,5 километра в секунду, от власти Марса — 5, Венеры — 10,3 километра в секунду.
Мы не знаем еще природы тяготения — силы, действующей во всей вселенной, хотя наука и идет по пути раскрытия ее сущности. Выдумкой романиста остается "броня" против тяжести, — укрыться от силы тяжести невозможно.
Нельзя и приказать Земле вращаться быстрее, чтобы центробежная сила и вступила в единоборство с земным притяжением. А если бы и удалось это сделать, с планеты словно невидимой рукой сорвало бы воздушную оболочку, улетучилась бы вода, рассеявшись в мировом пространстве. В межпланетную среду унеслось бы все, потерявшее вес и не прикрепленное к Земле. Нет, не стоит мечтать о такой победе над тяжестью!
Законы природы существуют независимо от нашей воли, мы не можем их изменять. Пользоваться же ими — в наших возможностях. Люди могут открывать законы, познавать их, могут овладеть силами природы, научиться применять и использовать в интересах общества и таким образом покорить их, добиться господства над ними.
Уничтожить тяжесть нельзя, но бороться с ней можно. В борьбе за преодоление силы земного притяжения нашим средством будет скорость.
Когда же борьба закончится успехом, когда космический корабль вырвется из-под власти планеты, двигатель ему будет не нужен. Инерция понесет его через просторы вселенной к другим мирам. Не тратя горючего, корабль пролетит миллионы, десятки миллионов километров.
Подчиняясь законам всемирного тяготения, он может направиться по заранее рассчитанным путям к Луне или другим планетам, сможет побывать в любом уголке солнечной системы.
Циолковскому было шестнадцать лет, когда ему показалось, что он сделал великое открытие: нашел дорогу к звездам, придумал центробежную машину для подъема в мировое пространство. Юноша всю ночь бродил по Москве, переживая восторг открытия.
"Я был так взволнован, даже потрясен, что не спал целую ночь... и все думал о великих следствиях моего открытия, — вспоминал он, — Но уже к утру я убедился в ложности моего изобретения. Разочарование было также сильно, как и очарование. Эта ночь оставила след на всю мою жизнь, и через 30 лет я еще вижу иногда во сне, что поднимаюсь к звездам на моей машине и чувствую такой же восторг, как в ту незапамятную ночь". Однако Циолковский не сдался. Неудача не сломила его, а заставила настойчивее искать. Основа верна: только быстрое движение разорвет цепи тяжести, только достигнув космической скорости, можно навсегда освободиться из-под власти Земли и устремится в просторы вселенной.
Но как получить такую скорость? Достижимы ли для человека "заветные" космические скорости, открывающие дорогу в межпланетное пространство? Этот вопрос мучает Циолковского. Он перебирает известные способы и отбрасывает их один за другим.
Воздушный шар? Но это всего два-три десятка километров, и то достигнутых с большим трудом. Хорошо было Эдгару По отправить в путешествие на Луну героя своего рассказа — амстердамского купца, сбежавшего от кредиторов. Писатель думал, что мировое пространство наполнено каким-то очень легким газом, но такого газа в действительности нет.
Может быть, пушка? Теоретически выстрел мог бы сообщить летательному аппарату нужную скорость. Но — увы! — люди в снаряде, выброшенном в мировое пространство исполинской пушкой, были бы раздавлены. Слишком резко набирает скорость снаряд, слишком силен толчок при выстреле. Даже при огромной длине ствола ускорение раздавит все внутри снаряда.
Можно было бы добиться космической скорости с помощью электромагнитной пушки, из которой снаряд выбрасывается не силой пороховых газов, а разгоняется переменным магнитным полем гигантской катушки. Но и здесь удар снаряда при входе в атмосферу будет таким сильным, что человек его вряд ли перенесет. Кроме того, полетев в лишенном двигателя, неуправляемом снаряде, нельзя надеяться на возвращение.
Центробежная сила? И мысль о ней давно пришлось оставить, и она не поможет.
Проекты межпланетных сообщений с помощью гигантских метательных машин также неосуществимы. Лишь с ракетой -— подлинным кораблем вселенной — связаны надежды на осуществление путешествия в космос.
Но прежде чем появилось верное решение, прежде чем были достигнуты «результаты столь замечательные, что умолчать о них было бы недопустимо», творческая мысль проделала путь долгий и сложный.
Надо было ясно представить себе сначала, какие условия придется встретить кораблю среди планет и звезд. Воздуха нет, безвоздушное пространство. Как двигаться в нем, если нет никакой опоры для движения? Движение невозможно без отталкивания. Пешеход отталкивается от земли; винт корабля — от воды; пропеллер самолета — от воздуха.
«Если опоры нет, ее надо взять с собой», — думает ученый. На листке бумаги возникает эскиз аппарата.
«Снаряд для путешествия в свободном пространстве, который я сейчас опишу, будет служить для передвижения человека и различных предметов... без неподвижной опоры и по желаемому направлению», — написано сверху. Ниже — рисунок: шар с людьми, его толкает отдача, возникающая при стрельбе ядрами из пушки.
Конечно, такому шару до настоящего межпланетного корабля еще очень далеко. Это только идея, принцип, первоначальный набросок. Его Циолковский сделал в 1883 году, в рукописи «Свободное пространство».
Через тринадцать лет он встречает брошюру с интригующим заголовком: «Новый принцип воздухоплавания, исключающий атмосферу, как опорную среду». Прочел — и разочаровался: расчетов никаких, принцип же был ему уже известен. Впоследствии ученый вспоминал, что брошюра все же дала толчок мысли, подтвердила верность избранного пути. Он начинает вычисления, серьезную работу.
В поисках аппарата, несущего опору для движения в себе самом, Циолковский останавливается на ракете. Но не сразу увидел он в ней прообраз будущего космического корабля.
Были и раньше люди, предлагавшие применить ракету для полета человека. Проект первого в мире порохового ракетного летательного аппарата принадлежит Кибальчичу. Известны и многочисленные изобретатели всевозможных воздухоплавательных приборов реактивного типа — прошлый век изобилует подобными примерами.
Идеям ракетного полета также отдавали дань поэты и писатели. Вспомним путешествие Сирано де Бержерака на Луну, описанное Ростаном, произведения Жюля Верна и множество других. Смутное сознание истины руководило ими. Истина же была не близко, и велика заслуга того, кто приподнял завесу времени и разглядел в игрушке, рассыпающей по небу разноцветные звездочки фейерверка, завтрашнего победителя тяжести, который раздвинет для человечества границы познанного мира.
Никто до Циолковского так ясно, четко, неопровержимо не доказал, что ракета — — давно искомый корабль вселенной. И никто так полно и всесторонне не раскрыл ее возможности, поистине изумительные по грандиозности будущих применений.
Схема небесного корабля-ракеты Циолковского |
Циолковским выведены основные формулы. Они объясняют закономерности полета ракеты, утверждая основу основ -— возможность достижения космических скоростей. Ему сразу же хочется представить себе, как это будет, и он берется за перо, чтобы не только математическими выкладками, а взором писателя проникнуть в будущее. У мечты есть теперь прочный фундамент. Повесть «Вне Земли», начатая им еще в 1896 году, тем и характерна, что точный расчет определяет ее содержание. Фантастика стала подлинно научной.
Небесный корабль — ракета приобрела для ученого, наконец, конкретные формы. В 1903 году он публикует первое в мире исследование, посвященное проблеме ракетного полета. В нем он дает описание будущей межпланетной ракеты.
«Звездолет» Циолковского. |
Длинный обтекаемый корпус — нельзя забывать, что в начале пути сотни километров воздушной среды. Двойная обшивка с жидким кислородом внутри, чтобы охлаждать стенки, раскаленные трением о воздух. Герметически закрытая пассажирская каюта со всем необходимым для жизни и наблюдений. Хранилища жидкого топлива, насосы, подающие топливо в камеру сгорания, и расширяющаяся труба — сопло. Через него вытекает поток газов — та опора, отталкивание от которой движет ракету. Наконец, рули из несгораемого тугоплавкого материала, поставленные на пути газовой струи. Поворот руля отклоняет струю и вызывает поворот самого корабля. Вот устройство ракеты, уносящей человека во вселенную.
Ракетой можно управлять — это не снаряд, который, вылетев из пушки, становится беспомощной игрушкой тяготения. Скорость, направление полета, ускорение при взлете — все в руках пилота.
Более полувека назад опубликовал Циолковский описание своего корабля
Техника за полвека шагнула далеко вперед. Еще нет пассажирской каюты в современной ракете, но эта ракета, предугаданная Циолковским, уже поднялась почти в мировое пространство. Пусть пока она совершает не настоящий межпланетный полет, даже не путешествие вокруг Земли, а только прыжок с приборами за атмосферу. Но осуществилась мечта: ведь с короткого взлета, с прыжка в воздух начинала свою историю и авиация, теперь покорившая воздушный океан.
Современная наука и техника осуществили то, что предначертал Циолковский.
Необходимы автоматические приборы, управляющие по заранее намеченному плану движением ракеты и силой взрывания, писал ученый. Они созданы теперь: ракеты-автоматы стали частыми гостями в высоких слоях атмосферы.
Необходимо также найти наиболее подходящие вещества для взрывания, указывл Циолковский. Такие вещества найдены, но химия ракетных топлив еще не сказала своего решающего слова. И в перспективе — ядерная энергетика, обещающая ракете невиданные космические скорости.
Опыты должны руководить нами, подчеркивал ученый, говоря о двигателе и материалах. И то и другое создано, правда, пока еще для стратосферных ракет. Но металлургия и ракетная техника не стоят на месте и тоже не сказали еще своего решающего слова.
Много трудностей предстоит одолеть, так говорил Циолковский. Мы знаем это, но мы помним и другие его слова: все данные науки за то, что победа рано или поздно будет одержана!
Языком математических символов выразил Циолковский величайшей важности открытие. Он установил непреложный закон, которому подчиняется движение ракеты: скорость ее возрастает до огромных величин, если запас топлива достаточно велик.
Сколько, однакоже, понадобится топлива ракете, чтобы превратиться в спутника Земли? Сколько его требуется для перелета на Луну? В первом случае топливный запас должен в пятьдесят раз превышать вес самой ракеты, во втором — в двести. Таковы результаты приближенных расчетов. На практике эти цифры еще более возрастут. Кроме того, нельзя забывать о возвращении на Землю — для этого тоже нужно топливо. Оказывается, цифры угрожающе велики.
В современном ракетном самолете, предке будущего межпланетного корабля, топливо весит столько же, сколько машина, — единица на единицу. В современной крупной ракете — примерно три к одному. Разница, как видим, огромная. Казалось бы, опять безнадежный тупик! Ибо вместить такое колоссальное количество топлива не в состоянии никакая ракета, как бы велика она ни была.
Крупнейший в мире самолет весит сто восемьдесят тонн, из них на долю горючего приходится примерно половина. Океанский теплоход берет на борт топлива всего десятую долю своего водоизмещения, и лишь на рекордных скоростных самолетах удавалось запасать его в количестве двух третей от полетного веса,
Примеры, пожалуй, не очень удачные, так как самолет, корабль и ракета друг на друга не похожи. Но примеры показывают, каков может быть относительный запас топлива у транспортных сооружений двадцатого века. Сколь бы легкими материалами мы ни располагали, никакие ухищрения не помогут построить гигант, сверх всякой меры начиненный горючим.
Есть, правда, и другой путь, который подсказывает тот же основной закон механики ракетного полета. Оказывается, наибольшая скорость ракеты зависит еще и от того, как быстро вытекают газы из двигателя. Она тем больше, чем быстрее движение газовой струи.
Борьба за скорость в воздухе. |
Стоит увеличить вдвое скорость истечения газов по сравнению с полученной в современных ракетах и равной двум тысячам — двум тысячам пятистам метрам в секунду, как ракета достигнет круговой скорости при запасе топлива, сниженном в семь раз. В десять раз снизится запас топлива, необходимый для перелета на Луну. Запаса в пятьдесят раз большего, чем вес конструкции, вполне хватит тогда для вылета из солнечной системы, для полета к звездам, вдогонку за светом.
Так теория межпланетных путешествий подходит к решению проблемы скорости.
Работы Циолковского дали результаты столь грандиозные, что о них ранее не могли даже и думать. Человечество — накануне полета во вселенную. Ясна задача, намечены средства решения ее, готов эскиз межпланетного корабля.
Казалось бы, трудности позади, инженерам остается только воплотить эскизы в чертежи, чертежи — в металл. И топливо для ракет есть — ведь ракетный двигатель создан давно, и люди будут готовы к опасному рейсу. Летают же они с огромными скоростями на реактивных самолетах! Но громадный запас топлива, который надо взять с собой, лишает всякой надежды достигнуть заветной цели. Она остается такой же далекой, как и раньше, словно не было мучительных поисков, словно не помогали математика и механика найти единственно верное решение, словно не преодолевались человеком одно за другим препятствия, поставленные природой.
Все дело в мощном источнике энергии. И хотя энергетика ставит на службу человеку скрытые природой колоссальные силы, ведет наступление на атомное ядро, атомной ракеты пока еще нет.
Те, кто складывал оружие без боя, говорили: забудьте о дороге к звездам, ждите, пока сила, скрытая в недрах атома, не будет поставлена на службу технике. Но те, кто верил в могущество разума, продолжали поиски.
Почти четверть века назад инженер Цандер, последователь Циолковского, предложил смелую идею — соединить межпланетную ракету с самолетом, который поднимет ее, а потом будет отдан в жертву во имя скорости. Части самолета, расплавленные в особом котле, добавятся к топливу и пойдут в пищу ракетному двигателю. Металлическое топливо даст возможность сэкономить общий запас горючего, необходимый для вылета в мировое пространство.
Позднее им был разработан проект межпланетной ракеты, соединенной с двумя самолетами. Один из них, большой, должен был бы поднять ракету с Земли и послужил бы частично в качестве дополнительного топлива. На другом, малом, путешественники возвратились бы на Землю.
Цандер пробовал сжигать металлы, измельченные в порошок, искал способы практически доказать осуществимость своей идеи. На страницах его сочинений, за сухими выкладками, скрыта страстная уверенность в правоте дела, ставшего делом всей жизни ученого и инженера. «По моему убеждению, — пишет он, — ракеты, использующие большую часть своей конструкции в качестве горючего, будут первыми, при помощи которых удастся... отделиться от земного шара...»
Нельзя забывать, что эти слова писались в начале тридцатых годов нашего века, когда только начинали по-настоящему крепнуть крылья у самолета, а до ракеты, которая совершила бы прыжок за атмосферу и стала чемпионом скорости, было еще далеко. Новаторская идея Цандера и до сих пор остается в арсенале ракетостроения. Время покажет, что даст она технике космического транспорта.
Поиски продолжаются. Юрий Кондратюк первым предлагает проект станции -— спутника Луны, базы межпланетных кораблей, облегчающей завоевание вселенной. Ракеты без людей, выстреливаемые гигантской пушкой, несут службу связи с Землей. Для полетов на планеты такая станция принесла бы, несомненно, большую пользу.
Новые идеи выдвигал и Циолковский. После Великой Октябрьской социалистической революции к нему пришло заслуженное признание. Советское правительство окружило ученого заботой и вниманием. Работая, он продолжает поиски, ищет ответа на вопрос, как преодолеть трудности, связанные с получением космических скоростей.
В двадцатом году, вернувшись к повести «Вне Земли», он написал: «От простой ракеты перешли к сложной, составленной из нескольких простых». Громадная ракета разделена на отдельные ячейки, в каждой из которых есть свой ракетный двигатель и запас топлива. Работать они могут все одновременно или поочередно. Так уже легче: груз как бы разбит на части. Но... облегчение весьма относительное -— ведь отработавший отсек ракеты остается мертвым балластом, его надо тащить с собой, а для этого понадобится горючее.
Что, если сбрасывать ненужный балласт, облегчая движение всему кораблю? Через девять лет Циолковский выпускает книгу «Космические ракетные поезда».
«Одиночной ракете, чтобы достигнуть космической скорости, надо давать большой запас горючего, — отмечает он. — Поезд же дает возможность или достигать больших космических скоростей, или ограничиться сравнительно небольшим запасом составных частей взрывания».
Поезд -— название не вполне удачное. В ракетном поезде нет вагонов; он состоит из одних паровозов — это соединение одинаковых ракет. Каждая способна тянуть или толкать остальные.
Как эстафету, передают ракеты друг другу право везти весь составной межпланетный корабль. Скорость его постепенно возрастает. Сделав свое дело, ускорители отделяются и возвращаются на Землю. Последняя оставшаяся ракета, с пассажирами и полезным грузом, побеждает силу тяжести, и ее скорость достигает космической.
Выводом основного закона ракетного полета Циолковский наметил два пути повышения скорости ракеты: увеличение запаса топлива и увеличение скорости истечения газов. Идеей составной ракеты от подсказал еще одну возможность: чем больше число ракет в поезде, тем больше окончательная скорость.
Теоретически восьмиракетный поезд, снабженный топливом, какое мы имеем или получим в ближайшем будущем, мог бы вырваться в мировое пространство. Вдобавок, ракеты-ускорители не пропадают даром: их можно использовать снова и снова, чтобы отправить в путешествие сколько угодно поездов.
Конечно, составную ракету построить не так-то просто. Однако теперь, спустя четверть века после рождения идеи, жизнь начала подтверждать верность найденного Циолковским пути. Четыреста километров высоты, скорость два с лишним километра в секунду — четверть круговой — таковы результаты, достигнутые ракетным поездом благодаря успехам современной ракетной техники.
Циолковский прекрасно отдавал себе отчет в том, насколько все-таки сложное и дорогое дело ракетные поезда. Поэтому он до конца своих дней, даже будучи тяжело больным, настойчиво ищет более простых путей достижения космической скорости.
И вот, наконец, он сообщает о новом открытии:
«Сорок лет я работал над реактивным полетом, в результате чего дал — по общему признанию, первый в мире — теорию реактивного движения и схему реактивного корабля. Через несколько сотен лет, — думал я, -— такие приборы залетят за атмосферу и будут уже космическими кораблями. Непрерывно вычисляя и размышляя над скорейшим осуществлением этого дела... я натолкнулся на новую мысль относительно достижения космических скоростей.
Последствием этого открытия явилась уверенность, что такие скорости гораздо легче получить, чем я предполагал. Возможно, что их достигнут через несколько десятков лет, и, может быть, современное поколение будет свидетелем межпланетных путешествий».
Взлет первой советской ракеты на жидком топливе в 1933 году. |
Переливание горючего в полете -— вот этот новый прием достижения высоких космических скоростей. С Земли стартует не поезд, а несколько соединенных бок о бок ракет. Их двигатели работают одновременно, все они набирают скорость, пока не израсходуют половину топливного запаса. Тогда часть ракет пополняет свои баки за счет остальных. Пустые отделяются и возвращаются на Землю, оставшиеся продолжают лететь, уже полностью заправленные топливом.
Этот прием повторяется несколько раз, и в конце концов остается последняя, пассажирская ракета, разогнанная остальными уже почти до космической скорости. Но ракета теперь не бессильна, ее баки полны; еще одно, решающее усилие — и на циферблате указателя скорости стрелка доходит до заветной цифры.
В ракетном поезде ускорители берут на себя тяжесть огромного запаса топлива, который не под силу нести одной ракете. Однако каждый ускоритель должен толкать весь поезд и, значит, иметь двигатель с чрезвычайно большой тягой.
В новом варианте составной ракеты ускорители не только делят между собой топливный запас, но и соединенными усилиями, работой всех своих двигателей, а не какого-нибудь одного, помогают достигнуть космической скорости.
Есть проекты, идеи, мысли, которые принадлежат будущему, и оценить их по достоинству может только время,
Более четверти века прошло от рождения первого в мире самолета до торжества авиации. Десятилетия ждала воплощения идея реактивного двигателя. Столетие понадобилось, чтобы набросок совершенного теплового двигателя — газовой турбины — превратился в инженерный проект, а затем в реальную машину.
Ракета на жидком топливе, предложенная Циолковским в начале нашего века, поднялась в воздух лишь в тридцатых годах. Но разве мог кто-нибудь тогда, глядя на ее робкий взлет, оказать, что еще десятилетие спустя она будет совершать, полеты на сотни километров!
Так и сейчас трудно оценить полностью все значение трудов Циолковского и других ученых, решающих проблему достижения космической скорости. Вероятно, развитие техники внесет то новое, чего нельзя было ранее предугадать. Возможно, будут предложены другие проекты, намечены иные, более короткие и менее сложные пути.
В энергии сейчас ключ, которым открывается дверь в межпланетное пространство.
Представим себе, что ракетный корабль построен. Дан старт, и он, борясь с притяжением Земли, устремляется ввысь. Уже отделились ракеты-ускорители. Еще немного, и первая космическая скорость достигнута. Корабль освободился от власти земного тяготения и теперь будет вечно кружиться вокруг нашей планеты: он никогда не вернется обратно и не улетит дальше. Но на этом нельзя остановиться; надо не только выбраться за атмосферу, стать спутником Земли,-надо проложить пути к другим мирам. Однако корабль не может продолжать полет. Иссякли его силы: в баках остался лишь аварийный запас топлива, а нужно еще увеличить скорость почти в полтора раза, чтобы выйти полным победителем из схватки с тяжестью.
Откуда же взять энергию для путешествия на планеты?
В мировом пространстве мы, казалось бы, не найдем пищи ракетному двигателю. Раньше думали, что на Луне, лишенной атмосферы, все же есть лед, а где-нибудь в глубоких ущельях, куда не проникают лучи солнца в двухнедельный жаркий лунный день, сохранились твердые «куски воздуха»: жидкие, а затем затвердевшие газы, когда-то составлявшие газовую оболочку нашего спутника. Лед -— это вода, это кислород и водород, это топливо для ракетного корабля. Разложив воду на составные части, сгустив их в жидкость, можно было бы снова наполнить баки, чтобы стартовать на Землю или лететь дальше — к Марсу, Венере, к малым планетам. Недавно в одном метеорите нашли воду. Разумеется, она была не в свободном состоянии, а химически связанной -— входила в состав метеоритного вещества. Все же это -— водород и кислород — топливо для ракетного корабля. К сожалению, лед на Луне и метеорная вода в большом количестве внушают сильные сомнения.
Думают, что химия, творящая чудеса, поможет путешественникам добыть для далеких космических рейсов нужное сырье — источник энергии — в поясе астероидов между Марсом и Юпитером и на планетах. Возможно, и на Луне будут найдены породы, которые послужат сырьем для получения топлива.
Но нельзя питать несбыточные надежды. Пополнение запаса топлива во время полета крайне сложно, кроме того, до Луны, планет и астероидов надо еще добраться!
Естественно, что в поисках энергии в мировом пространстве взор невольно обращается к Солнцу. Свет и тепло солнечных лучей — вот о чем мечтают энтузиасты межпланетных путешествий.
Великий русский физик Петр Николаевич Лебедев открыл давление света. Сила светового давления ничтожна: всего несколько долей миллиграмма на квадратный метр поверхности. Однако из малого складывается большое. И набрасываются эскизы кораблей с огромными зеркалами, на которые «давит» свет. Но точный расчет разрушает иллюзии. Слишком мала сила света, слишком велико должно быть зеркало, слишком долог будет разгон до нужной скорости. Как ни заманчива идея, она пока несбыточная фантазия.
Когда же удастся обосноваться за атмосферой, можно будет вспомнить и о давлении света. В свободном от тяжести пространстве огромные размеры зеркал уже не препятствие. Так думали Циолковский и Цандер.
Замечательный русский физик Александр Григорьевич Столетов открыл другое свойство света: способность рождать электрический ток. Прибор, в котором свет выбивает с металлической поверхности электроны, создавая ток, стал одним из важнейших электронных приборов современности. Его назвали фотоэлементом. Не обратиться ли за помощью к нему?
Ракета с гигантским зеркалом. |
...Ракета пролетела плотные слои земной атмосферы. Она вылетела навстречу солнечным лучам — туда, где воздух уже не в силах задержать часть их энергии. Тогда раскрываются по бокам ракеты «веера» из фото-элементов. Начинает работать ракетная гелиоэлектростанция. Фотоэлементы дают ток, ток дробит молекулы водорода на атомы. Атомы снова собираются в молекулы, выделяя при этом тепло. Тепло нагревает жидкий водород, и из ракетного двигателя вылетает газовая струя с огромной скоростью, почти до двенадцати километров в секунду. Не нужно кислорода, ибо нет сгорания, уменьшается топливный запас, энергия берется прямо у Солнца. Оно будет участвовать в победе над тяжестью, не только своим могучим притяжением увлекая корабль в путешествие между планетами, но и сообщая ему силы для освобождения от власти Земли.
Идея электроводородной ракеты очень заманчива.
Фотоэлемент, несомненно, займет свое место в заатмосферной энергетике. Найдут применение и фотоэлементы, чувствительные к невидимым солнечным лучам — ультрафиолетовым и инфракрасным, интенсивность которых за атмосферой особенно велика. Но современные фотоэлектрические приборы недостаточно совершенны для этих целей. Пока еще силы фототока едва хватит для вращения крохотного моторчика настольного вентилятора.
Как и фотоэлемент, энергетике будущего принадлежит термоэлемент — простой прибор из двух спаянных пластинок разных металлов. Достаточно нагреть место спая, чтобы получить электродвижущую силу. Слишком низок пока коэффициент полезного действия такого прибора — тысячными долями вольта измеряется в нем напряжение тока. Но можно надеяться, что в будущем применение новых материалов и более высокого нагрева с помощью солнечных лучей превратит сегодняшний измерительный прибор в преобразователь энергии.
Как видим, станция с термоэлементами и фотоэлементами была бы предельно проста — от тепла и света солнечных лучей прямо к электрическому току.
В последнее время появилась идея водородной ракеты иного типа — атомно-водородной. В ней для получения тепла предлагают воспользоваться не электрическим током, а атомным реактором.
Но вернемся к Солнцу. Речь шла о солнечном свете. А можно ли использовать солнечное тепло?
Для этого надо тепло и холод заставить работать вместе. Тепло рождает пар, холод сгущает его в жидкость, снова и снова происходит круговорот: пар-жидкость-пар. Раз есть пар, легко получить ток — турбогенератор честно служит в энергетике более полувека. Итак, на ракете можно установить гелиотеплоэлектростанцию.
Пар — посредник между лучом Солнца и электрическим током. А нельзя ли обойтись без посредника? Оказывается, высокую температуру в межпланетном пространстве получить легко — стоит поставить собирающее зеркало. Тогда можно обойтись без пара и турбины и даже без тока, нужного для нагрева водорода, вместо него будет работать непосредственно солнечное тепло. Итак, ракета несет с собою нагреватель, заменяющий атомный реактор.
Наши поиски энергии в пустом мировом пространстве, как видим, увенчались успехом. Энергия есть, и овладение ею зависит лишь от времени, от успехов техники завтрашнего дня.
Так же обстоит дело и с применением для целей межпланетных сообщений атомной энергии, которая откроет со временем новые грандиозные перспективы в области получения космических скоростей и изучения вселенной.
Ничтожно малый атом и бесконечно большая вселенная — что общего между ними? Это миры, в познании которых нет конца и края. И хотя наш вооруженный глаз все глубже проникает и во вселенную и в недра вещества, мы сейчас так же далеки от конца этого путешествия, как и в начале его.
К чему же, однако, путешествовать, если известно наперед, что никогда не достигнешь цели? Да и познаем ли мы мир вообще? Не обман ли чувств все, что доносят нам приборы? Слабый луч света, пришедший откуда-то издалека, — вот единственный источник наших знаний о бесконечно далеких небесных светилах. Не обманывает ли он нас? Мы не видим глазом даже молекул, лишь приборы говорят о мельчайших частичках — атомах и электронах. Как знать, насколько правдив их рассказ?
Так или примерно так рассуждают некоторые зарубежные ученые-идеалисты, отрицающие возможность познания мира.
Но жизнь блестяще опровергает тех, кто не верит в могущество разума. Истинность познания проверяется практикой. И часто то, что происходит невообразимо далеко от нас, вдруг оказывается частью нашей жизни.
Атом и вселенная — превосходный пример.
Наука, изучая атом, нашла пути для атаки атомного ядра. Открылась новая эпоха, открылась перспектива такого энергетического могущества человека, перед которой бледнеет самая смелая фантазия.
В наших лабораториях взрыв атома «доставил» космос на Землю — температуры в миллионы градусов, господствующие на звездах, получены человеком. Мы говорим теперь об освобождении атомной энергии, об атомных двигателях, кораблях, самолетах и электростанциях, которым не нужны бензин, уголь и нефть.
Атомная техника только еще рождается. В будущем атом обещает покорение вселенной.
Самое лучшее топливо, которое может представить химия, даст скорость истечения газов из ракетного двигателя примерно четыре тысячи метров в секунду. Вероятно, на практике, с учетом потерь, — а без них не бывает никакой машины, — получим еще меньшую скорость: около трех с половиной тысяч. Возможно, применение металлических топлив несколько увеличит эту цифру.
Даже лунный перелет, пока нет атомной ракеты, представляет большие трудности для техники межпланетных путешествий.
Что же остается сказать о далеких космических рейсах с высадкой на планеты? Неужели они навсегда останутся лишь мечтой?
Нет. Потому-то и хотят устроить склад горючего в мировом пространстве — внеземную станцию.
Потому-то мы и хотим поставить на ракету атомные двигатели. С ними не страшны препятствия, которые сейчас стоят на пути во вселенную.
В самом деле, расчеты говорят, что энергия атома даст скорость истечения газов не два, а шесть, десять, двенадцать и более километров в секунду.
Чтобы оценить совершенство двигателя и иметь возможность сравнивать различные силовые установки, моторостроители пользуются понятием об удельной тяге. Они определяют, какая тяга развивается при сгорании одного килограмма топлива в секунду. И если подсчитать, какую удельную тягу может дать атомный ракетный двигатель, то и тогда превосходство его будет разительным — примерно в тысячу раз.
Конечно, это подсчеты теоретические, и практика внесет свои поправки. Можно предполагать, что в действительности выигрыш в тяге будет не столь велик, но все же весьма значителен.
Не только Луна, не только ближайшие к Земле Марс и Венера, но и далекие Юпитер, Сатурн, Уран, Нептун, Плутон, о которых мы так мало знаем, стали бы доступны для межпланетных кораблей.
Ядерное горючее могло бы полностью обеспечить энергией будущие межпланетные корабли. Оно даст возможность совершать полеты даже с высадкой на планеты и спутники планет и повысит надежность межпланетных сообщений. Путешественники не будут испытывать недостатка в энергии. Отсюда — свобода маневра, что особенно важно в космическом рейсе, в котором могут встретиться всякие неожиданности и трудно рассчитывать на пополнение запасов топлива в пути.
Предполагают, что использование атомной энергии позволит сильно сократить сроки межпланетных путешествий. Например, по одному из предварительных расчетов, полет на Луну займет всего около четырех часов. За четыре часа атомная ракета преодолеет расстояние триста восемьдесят четыре тысячи километров. Полет на Марс занял бы сорок девять часов, в течение которых было бы пройдено около восьмидесяти миллионов километров. Путешествие на Венеру, за сорок миллионов километров, продолжалось бы тридцать шесть часов. Конечно, это подсчеты сугубо приближенные, но они показывают, насколько сможет в будущем возрасти скорость полета. Каждая минута будет означать сотни тысяч и даже миллионы километров!
Примерно в два миллиона раз больше энергии, чем при сгорании бензина, выделяется при распаде атомов такого же количества урана. Тепла же получается столько, что для охлаждения работающего уранового котла нужно прогонять целую реку воды.
При термоядерной реакции, превращающей ядра атомов водорода в ядра атомов гелия, когда происходит не распад, а рождение новых атомных ядер, выделяется еще больше энергии — примерно в восемь-десять раз по сравнению со взрывом атомов урана. Ядерные реакции являются неисчерпаемыми источниками энергии.
Если сопоставить теплотворную способность обычных топлив, которые ныне применяются в ракетных двигателях, с ядерным горючим, то разница будет огромной — в десять миллионов раз.
Три — три с половиной тысячи градусов — такова наивысшая температура в камере сгорания современного ракетного двигателя. В куске же урана при расщеплении атомов — десятки миллионов градусов. Фантастическая цифра! Мгновенное испарение ракеты — вот что это значит.
Тепло надо использовать так, чтобы газ вытекал через сопло с наивысшей возможной скоростью. При этом двигатель не должен перегреваться. Вот две задачи, и их необходимо решить конструктору атомной ракеты.
Самое простое решение такое: тепло испаряет жидкость, образующийся пар стремится расшириться и устремляется наружу. Высокая температура и давление делают свое дело. Из камеры газовый поток вытекает со скоростью в три, пять, шесть раз большей, чем удается достичь сейчас. Путь простой и логичный и, как полагают, пока что единственный.
В качестве рабочей жидкости наиболее пригоден водород. Он хорошо поглощает тепло. Пройдя через атомный реактор, жидкий водород быстро испаряется, нагревается и покидает двигатель.
Различные типы ядерных реакторов можно будет, невидимому, использовать в ракетах.
Мы хотели избавиться от необходимости иметь в ракете колоссальный запас топлива. Но если прикинуть, сколько водорода — переносчика тепла — понадобится атомной ракете, цифра получается весьма солидная: несколько сотен тонн! Уменьшить это количество, найти более удобную рабочую жидкость — дело будущего.
Едва ли не более сложна борьба с теплом, которого «слишком много выделяется при атомном распаде.
Хотя и можно управлять выделением энергии, регулируя доступ к атомам урана тех частичек, которые проникают в атомное ядро и разлагают его, все же температура будет чрезвычайно велика.
Из чего построить двигатель, какой сплав выдержит столь высокий нагрев — на этот вопрос не может ответить современный металлург.
Теплотехник подскажет выход. Надо устроить стенки из пористого материала, скажет он. Множество мельчайших трубочек-капилляров пронизывают такой материал. Их общая длина огромна, как и площадь стенок, омываемых горячим газом. Они поэтому лучше, быстрее отводят тепло, не нагреваясь до опасной температуры. Пропустив водород через такие соты, можно нагреть его до нужной температуры без риска расплавить двигатель.
Проблема борьбы с нагревом важнейшая для транспортной атомной техники. Может быть, найдут способы превращения в электромагнитную энергию тепла, попадающего на стенки двигателя, чтобы таким образом добиться эффективного охлаждения.
Вероятно, и другие пути борьбы с нагревом найдет техника будущего.
К двум задачам конструктора атомной ракеты надо добавить третью — защиту от вредных радиоактивных излучений при атомном распаде путем применения специальных экранов. Думают даже, что при взлете и посадке атомного корабля придется пользоваться обычными ракетными двигателями, а атомные включать лишь в стратосфере.
Для разгона межпланетной ракеты принципиально возможно применить не только ракетные, но и воздушно-реактивные двигатели, в которых для сгорания горючего используется кислород окружающего воздуха. Здесь пригодится опыт авиационной техники, успешно применяющей такие двигатели для полетов с большими скоростями.
Надо заметить, что атомная энергия открывает широкие перспективы и для скоростной авиации. Атомные двигатели дадут возможность создавать самолеты, пролетающие огромные расстояния за сравнительно небольшое время.
Как будет устроена атомная ракета, ответ даст будущее. Все, что о ней здесь сказано, еще лишь первые, предварительные соображения. Но уже появляются первые проекты межпланетных ракетных кораблей с атомными двигателями. Расчеты говорят, что можно было бы построить подобную ракету весом в несколько сот тонн. Это во много раз больше, чем весит самая большая современная ракета. Практика покажет, удастся ли осуществить постройку гигантского атомно-водородного (или не водородного, а другого) ракетного корабля.
Возможны и другие способы создания направленного потока частиц большой скорости без участия тепла, например путем разгона ионов электрическими полями.
В мире мельчайших частиц, из которых состоит вещество, самые большие скорости. Десятки тысяч километров в секунду делают осколки, вылетающие из радиоактивного атома. Почти до скорости света разгоняем мы заряженные частицы в наших ускорителях. Порции света — фотоны — несутся с предельной возможной в природе скоростью — триста тысяч километров в секунду.
Могла бы струя заряженных частиц или фотонов двигать ракету? Может ли быть построена электронная, ионная, протонная ракета?
Пока еще нет. Но это «нет» не означает невозможность решения подобной проблемы в будущем. Ведь и само разложение атома сравнительно недавно казалось утопией, как и превращение элементов, как и возможность полетов вне Земли.
Конструктору будущих самолетов, которые за час пролетят тысячу, две, три, десять тысяч километров, нужно знать, что встретит его корабль в неизведанных высотах стратосферы.
Через атмосферу проходит начальная часть пути в космос. Не преодолев панцыря атмосферы, нельзя вырваться в мировое пространство. Поэтому знание ее свойств необходимо и создателям космических кораблей.
Сделать это помогут ученым и конструкторам ракеты, поднимающие приборы на высоту в сотни километров.
...Похоже, что здесь работает экспедиция астрономов, которые готовятся наблюдать солнечное затмение. Телескоп направлен в небо. Перед окуляром телескопа — кинокамера. Сидящий в кресле наблюдатель смотрит во второй телескоп. И вся эта установка, повинуясь управляющему ею оператору, поворачивается, шаря по небу.
А может быть, это физики наблюдают за путешествием радиоволн в атмосфере? Ведь рядом — радиолокационная станция, и на экране локатора заметны отраженные сигналы. Возможно, что ученые следят за полетом метеоров.
Можно подумать и другое: не стараются ли здесь радиотехники поймать сигналы с какой-нибудь неведомой планеты? На приемной станции приборы ведут запись каких-то таинственных сигналов. Когда проявят кинопленку, увидят серию неровных полосок с извилинами и зазубринами, идущими одна за другой. Это чьи-то радиоголоса, пойманные и записанные на пленку. Радиосигналы несутся к нам от Солнца и из глубин вселенной. Не их ли слушают здесь астрономы?
Но нет, не ради Солнца, звезд или метеоров направлены в небо телескопы и радиолокаторы.
Оператор у телескопа держит в поле зрения снаряд, несущийся в стратосферу со скоростью около двух километров в секунду. За ним следит и локатор. Рядом приемная станция ведет запись радиосигналов с ракеты.
Когда расшифруют записи, они расскажут о космических лучах, о давлении и температуре воздуха, о поведении ракеты и ее двигателей. Так люди, не поднимаясь с земли, узнают все подробности полета на сотни километров ввысь.
Горячее дыхание Солнца греет воздух. На высоте около шестидесяти километров примерно семьдесят градусов тепла. Через двадцать километров — опять мороз в полсотню градусов. Здесь плавают серебристые облака, возможно состоящие из ледяных кристалликов. А затем снова теплый пояс, и чем выше, тем он становится жарче. Как показали измерения, сделанные с помощью ракет, на высоте ста двадцати километров температура достигает ста градусов тепла.
Подтвердилось и то, что было известно по косвенным данным о давлении воздуха на больших высотах. Манометры показали падение давления по мере подъема: пятьдесят километров — пять десятых миллиметра ртутного столба, семьдесят пять километров — пять сотых, девяносто километров — пять тысячных.
Уже давно известно, что над нами царство вечного холода. Солнце греет Землю, Земля — воздух. Но земная поверхность — не настолько сильная печка, чтобы прогреть на всю толщину газовое одеяние нашей планеты. Опыт летчиков, альпинистов, стратонавтов, метеорологов показывает: чем выше, тем холоднее. Каждый километр подъема дает понижение температуры на шесть градусов. На высоте десяти с небольшим километров мороз достигает шестидесяти градусов. Здесь мы вступаем в стратосферу. Дальше температура не падает. Думали, что так будет и выше, пока где-то, где исчезают последние следы воздуха, не наступит холод мирового пространства.
Впервые усомниться в этом заставили наблюдения за звуками взрывов. В первую мировую войну были случаи, когда канонаду слышали на расстоянии до семисот километров и в то же время ее не слышали где-нибудь вблизи от места стрельбы. Такими же странными явлениями сопровождались случайные взрывы пороховых складов или извержения вулканов.
Почему возникают подобные «зоны молчания»?
Известно, что звук распространяется во все стороны. Чем дальше от места взрыва, тем он слышен слабее, пока, наконец, слышимость не исчезает вовсе — звуковая волна как будто замирает. Раз звук на далеком расстоянии появляется вновь, значит путь волны, идущей вверх, искривляется и она снова возвращается на Землю.
Окончательно это явление еще не разгадано, но именно оно натолкнуло на мысль о теплых слоях в стратосфере. Ученые предположили, что там есть слой теплого воздуха, менее плотного, чем холодный. Попадая в стратосферу, звук преломляется так же, как свет, переходящий из более плотной среды — воды — в менее плотную — воздух.
Все же тепло в стратосфере казалось невероятным, и предположение решили проверить. Но как это сделать, если наиболее мощное средство разведки больших высот — шар-зонд поднимается всего на сорок километров?
На помощь пришла ракета. Она помогла разгадать тайну больших высот.
Тепло на больших высотах не выдумка. Подтвердилось многое о чем раньше говорили наблюдения за звуком и сумерками, метеорами и серебристыми облаками. Сначала температура понижается плавно и неуклонно, пока не перестает ощущаться теплое дыхание Земли. Затем наступает холодный пояс, начинается стратосфера, и температура держится примерно постоянной — в среднем пятьдесят шесть градусов ниже нуля.
Но после тридцати километров появляется первый теплый пояс. Здесь расположен озоновый слой, образуемый и нагреваемый Солнцем.
Озон тот же кислород, но только в его молекуле не два кислородных атома, а три. Свежесть в воздухе после грозы — это запах озона, рожденного электрическими разрядами — молнией. В высоких слоях атмосферы невидимые ультрафиолетовые солнечные лучи дробят молекулы кислорода на атомы, которые вновь соединяются, но уже не попарно, а по три. Образуется озон. Часть его снова распадается на атомы, из них получаются молекулы кислорода. Солнце же опять делает из кислорода озон. Поэтому озоновый слой сохраняется в атмосфере постоянно.
Озона в атмосфере очень мало. Если собрать весь атмосферный озон в один слой у поверхности земли, то его толщина получилась бы всего три миллиметра. Несмотря на это, он служит чудесной газовой броней, защищающей все живое — растения, животных, человека — от губительных лучей. До Земли доходит только та их часть, которая не вредна для нас. Исчезни озоновый слой — и Земля через несколько минут обратилась бы в выжженную пустыню.
Проявлена пленка. На снимке — солнечные спектры, заснятые фотоаппаратом с ракеты на разных высотах. Чем выше был сделан снимок, тем длиннее ультрафиолетовая полоса. У самой Земли спектр как бы «обрезан». В этом виноват озоновый слой: он задерживает часть ультрафиолетовых лучей — наиболее энергичных, наиболее опасных для жизни на Земле.
Ракета в полете. |
Из чего состоит воздух на больших высотах? Разные газы, тяжелые и легкие, составляют атмосферу. Не естественно ли думать, что они выстраиваются по рангу: тяжелые — ближе к Земле, легкие — дальше от нее. Атмосфера слоиста — так считали одно время.
Пробы, взятые при подъемах стратостатов и шаров-зондов, поколебали такое мнение. С величайшей осторожностью доставляли на землю драгоценные кубические сантиметры воздуха стратосферы. Анализ говорил одно и то же: состав воздуха всюду почти одинаков — кислород, азот, редкие газы.
А что делается выше сорока километров, каков воздух там? Самое простое — привезти пробу оттуда. Но на чем?
Помогла опять ракета, поднявшаяся на недосягаемые ранее высоты.
Уже давно знали о том, что Солнце, источник жизни, посылает в пространство и ультрафиолетовые лучи, могущие погубить жизнь.
Солнечный луч, в котором не только видимый свет, но и невидимое ультрафиолетовое излучение, пришел к нам из мирового пространства. Каким же он был там, до путешествия сквозь атмосферу, можно узнать, только поднявшись высоко вверх.
И об этом принесли вести с больших высот приборы, поднятые на ракете.
Но не только Солнце посылает свои лучи на Землю.
Внимание человека давно уже привлекли таинственные лучи из космоса. Их назвали космическими. Охотники за ними побывали глубоко в земле и высоко над нею. Шары-зонды поднимали приборы, а радио и автоматика помогали следить за их показаниями во время полетов в стратосферу.
Многое уже удалось узнать о лучах, идущих к нам из глубины вселенной. Но, как и солнечные, эти лучи доходят к нам сквозь атмосферу. В ней терпят они различные превращения, так что имеем мы дело в конце концов с потомками «настоящих» космических лучей. Чтобы узнать о настоящих космических лучах, приборы надо поднять еще выше, не на десяток-другой, а на сотню и больше километров.
И счетчик космических частиц совершил путешествие на ракете туда, где плотность воздуха в миллион раз меньше, чем у Земли, куда не заберутся ни стратостаты, ни шары-зонды.
Плотность воздуха в миллион раз меньше, чем у поверхности Земли! Но ведь и об этом мы до недавнего времени знали лишь из расчетов да наблюдений, которые нам давала природа: метеоры, сгорающие в воздушной броне планеты, полярные сияния, сумеречный свет, серебристые облака, плавающие очень высоко над землей.
Замечено, что вспышки на Солнце, за полтораста миллионов километров от нас, отражаются на состоянии атмосферы Земли, на погоде. Но механизм таких воздействий еще не ясен. Крайне важно было бы раскрыть и эту загадку.
Ракеты, поднимая приборы туда, где солнечные лучи встречаются с воздушной оболочкой Земли, помогают узнать истину и в дальнейшем дадут возможность совершенствовать методы прогнозов погоды.
Разве не интересно для географа посмотреть, как выглядит наша планета с огромной высоты? У нас есть превосходные снимки Луны с высоты всего нескольких сотен километров. Телескоп приблизил лунную поверхность, и на фотографиях так отчетливо видны все подробности рельефа, как если бы мы наблюдали его из окна ракеты. Стратостаты привозили нам фото Земли с высоты двух десятков километров. На этих снимках Земля плоская, и надо подняться гораздо выше, чтобы лишний раз убедиться в том, что наша планета — шар, что мы жители земного шара. Снимков же нашей планеты «со стороны» не было до последнего времени. Ракеты привезли такие интереснейшие снимки земной поверхности, заснятой фотоаппаратом с высоты около двухсот километров. Сквозь вуаль атмосферы видна Земля, как на крупномасштабной рельефной карте. И ясно, что перед нами кусочек поверхности шара.
Так с появлением ракеты — нового разведчика больших высот — начался новый этап в изучении и покорении воздушной стихии.
Конечно, это все еще только начало. Трудности создания летающей лаборатории чрезвычайно велики.
Плавно поднимается вверх воздушный шар. Стратонавты могут регулировать скорость подъема, заставить стратостат остановиться, чтобы произвести наблюдения. На «потолке», в высшей точке подъема, они находятся даже не короткие минуты, а час, полтора, два. За это время многое можно успеть сделать.
Сложнее вести наблюдения с ракеты, которая мчится быстрее снаряда дальнобойного орудия, все ускоряя полет, пока работают двигатели. Приборам нужно в считанные минуты полета «поспеть» за стремительным бегом стратосферной ракеты. Манометры и термометры должны мгновенно отзываться на перемену условий полета. Всякий же измерительный прибор обладает инерцией, и его показания могут отставать, когда обстановка быстро меняется.
Приходится обходить эти трудности. Вместо одной величины, которую трудно прямо измерить, измеряют другую, связанную с нею математической зависимостью. Так, например, известно, что скорость звука зависит от температуры среды. И вместо того чтобы измерять температуру, можно узнать, как изменяется скорость звука при полете ракеты на разных высотах. Зная это, нетрудно вычислить и температуру.
Стараются уменьшить инерцию приборов, создавая для них еще более острые «органы чувств» — приемники измеряемых величин. Так, есть вещества, реагирующие — и притом практически мгновенно — на изменения температуры в тысячные доли градуса. Ими уже можно пользоваться при полетах хотя бы и в пять-семь раз быстрее звука — с такими скоростями летают сейчас ракеты.
Отделилась головная часть ракеты, где находятся приборы. |
Приходится учитывать и то, что случается в полете с самой ракетой
Она нагревается от трения о воздух, а это влияет на термометр, установленный снаружи. На большой скорости возникают воздушные уплотнения. Они могут отразиться на показаниях манометра, приемник которого обтекается сверхзвуковым потоком. Ракета вращается в полете, колеблется, а приемник солнечных лучей должен быть обращен все время к Солнцу. Автоматическое устройство с фотоэлементом — «искатель Солнца» — помогает постоянно ловить солнечные лучи. Иногда приборы для исследования излучений или автоматические фотоаппараты помещают в камеру, которая выбрасывается из ракеты на «потолке» и отдельно на парашюте спускается на Землю.
Немногочисленны все-таки и кратки пока подъемы ракет в стратосферу и выше, в еще более разреженные воздушные слои — ионосферу. Но чем дальше, тем выше и чаще будут подниматься ракеты. Уже на четыреста километров поднимались они, уже не один, а десятки полетов совершили ракеты, хотя каждый полет — дорогое и сложное дело.
Можно думать, что со временем метеорологи станут регулярно зондировать атмосферу ракетами, систематически изучая самые высокие области воздушного океана. Это расширит наши знания о «кухне погоды». Человек будет не только наблюдателем, но и хозяином воздушной стихии, повелителем грозных сил природы.
До недавнего времени выше стратостатов забирались лишь маленькие воздушные шары-зонды. Шарик всплывал в воздушном океане, оставляя под собой девяносто девять сотых всей массы воздуха. Поднимаясь в стратосферу, во все более разреженные слои, он рос и рос от раздувающего оболочку газа, пока, наконец, не лопался, как мыльный пузырь.
Десять лет назад впервые в истории человечества поднялся на высоту в сто километров летательный аппарат. На нем был установлен самый сильный на свете двигатель, который на максимальной скорости развивал мощность в полмиллиона лошадиных сил. Автоматические механизмы и приборы управляли полетом этой машины, летевшей по заданному пути.
Казалось бы, таким рекордным полетом нужно гордиться. На старте ракету должны были бы провожать восхищенные взоры зрителей, а после спуска к ней устремились бы инженеры, ученые, журналисты, желающие увидеть результаты новой победы в борьбе, которую так давно ведут люди, — борьбе за высоту, за поднятие «потолка мира».
Но не было зрителей на старте. В глубокой тайне, прячась от посторонних взглядов, готовили ракету к полету люди в военной форме лягушачьего цвета. Никто не стремился к ракете после спуска, ибо за ним следовал взрыв. Смерть и разрушение несло с собой через стратосферу очередное достижение ракетной техники гитлеровской Германии. Ракета, впервые совершившая стратосферный перелет, закончила его разрушительным взрывом в далеком тыловом городе, населенном мирными людьми. Это закономерно в странах капитала, где все то, что могло бы служить миру, империалисты ставят на службу войне.
А если бы такая ракета вместо тонны взрывчатки подняла ввысь человека? Что бы это дало?
Мы говорим о ракетных полетах в другие миры, но мы не имеем опытных данных о том, как скажется на состоянии пассажиров ракеты, например, отсутствие тяжести.
— Ничего опасного, — утверждают одни.
— Головокружение, морская болезнь, паралич, — говорят другие.
Как будет чувствовать себя там человек, покажет лишь опыт. Можно испытать ощущение невесомости при падении. Свободно падающие тела невесомы, утверждает физика. Но только ракета может поднять человека для грандиозного опыта, для репетиции полета во вселенную.
Свободно падающая кабина ракеты, отделившаяся от корпуса в самой высокой точке подъема, — это маленькая лаборатория, где довольно длительное время можно изучать действие невесомости.
Никто не знает, что еще случится с человеком, осмелившимся выбраться за атмосферу. Не ждет ли его там смерть от беспощадно палящих лучей Солнца, не ослепнет ли он от нестерпимо яркого света? Конечно, эти опасения преувеличены. Не беззащитным полетит человек на неизведанные высоты. Однако истину все же откроет нам опыт.
Сколько интереснейших наблюдений — и не только над самим собой — проведет пилот стратосферной ракеты! С помощью приборов он посмотрит на солнечную корону, на Землю из глубины неба, поймает спектрографом первозданный луч Солнца, не ослабленный воздушной оболочкой, услышит по радио речь с Земли, заставив радиоволны пробиться через невидимую преграду ионизированного слоя... и мало ли еще какие наблюдения можно будет провести во время путешествия за атмосферу!
Представим себе большую ракету. Вместо боевой головки со взрывчаткой у нее герметическая кабина, вместо взрывателей — парашют. В баках — запас топлива, который позволит подняться на много десятков километров.
Пилот полулежит в откидном кресле. Так легче переносится усиление тяжести, перегрузка. Перед летчиком расположен щит управления. Лежа в кресле, он может управлять полетом и держать связь с Землей.
Ракета поворачивается в полете, но система вертящихся зеркал поможет пилоту видеть все вокруг, как из неподвижной кабины. Это устройство «остановит» вращение, сделает неподвижным достаточно обширное поле зрения.
В струе вытекающих из ракетного двигателя газов установлены графитовые рули. Они позволят управлять ракетой, после того как она пройдет плотные слои воздуха и полетит практически в полной пустоте, где непригодны стабилизаторы и крылья.
Кабина устремляется к Земле. |
Ракета — это летательный аппарат, похожий по форме на снаряд,— такой же заостренный спереди, утоньшенный и срезанный сзади. Именно ему суждено повести осаду больших высот и поднять туда человека — разведчика стратосферы
Когда двигатель кончит работать, ракета очутится в сильно разреженных слоях воздуха. Графитовые рули станут бессильными — нет больше потока газов. Ракета начнет вращаться. Ее кабина прикрыта обтекателем, похожим на сложенные лепестки цветка. Быстрое вращение заставит лепестки раскрыться и освободить кабину.
В это мгновение включатся механизм, отделяющий пилотский отсек от корпуса, и автомат, который впоследствии раскроет парашют ракеты, предоставленной теперь самой себе. Радиостанция переключается с корпусных антенн на те, что запрятаны под полом кабины.
Сейчас с головокружительной высоты снаряд с человеком ринется в бездну. Продолжая вращаться, он устремится к Земле, похожей на огромную чашу, подернутую туманной облачной дымкой. Если пилот включит вспомогательные двигатели, он сможет остановить вращение, и тогда в кабине предметы потеряют вес. Стратонавт на время как бы превращается в межпланетного путешественника, ибо происходит свободное падение в пустоте — то, что составит в будущем главную часть межпланетного перелета.
Начнет работать двигатель — и снова воцаряется тяжесть. Уже нет свободного полета, «возвращается» вес. Кабина влетает в плотные слои воздуха. Близка Земля, всего в десятке километров, и атмосфера ощутительно дает знать о себе. Она тормозит падение, появляется перегрузка, пилоту приходится вновь лечь в кресло. Вступает в свои права кабинный парашют. Проходит усиленная тяжесть.
И, наконец, кабина плавно опускается на землю или на воду. Амортизатор смягчает толчок. Радио извещает о месте приземления стратонавта.
Так мог бы совершиться полет на высотной ракете.
Может быть, несколько по-другому пройдет полет. Но так или иначе, он близок, и уже где-то летает — пока на реактивном самолете, родственнике ракеты, — тот человек, который отправится в беспримерный рейс на разведку больших высот.
Прыжок из стратосферы, с высоты в несколько десятков километров, — зачем он, да и возможен ли такой необычный опыт?
Вспомним сначала несколько случаев из истории советского парашютизма и воздухоплавания.
Это случилось незадолго до Великой Отечественной войны. Жаркий летний день. По небу плывут легкие белые облака, ненадолго закрывая солнце. Поле, лес вдали, и вдруг тишину разрывает резкий свист. Из облака стремительно вылетает голубой шар. Он падает так быстро, что едва можно уловить момент, когда от шара отделяется черная точка.
Шар несется к земле, как метеор. Мгновение — он скрывается за лесом. А над черной точкой вспыхивает белый шелковый купол.
Что же произошло? Оказывается, шар-гондола стратостата оторвалась от баллона и понеслась вниз. Двое членов экипажа выбросились на парашютах еще на большой высоте. Командир остался и выпрыгнул, когда гондола прорезала облака.
Не одна только авария вынуждает к прыжку. Прыжки с парашютом со стратостата не раз совершали наши стратонавты. Парашютисты-испытатели участвуют в борьбе за высоту наряду с воздухоплавателями и летчиками, авиационными врачами и конструкторами. «На какой бы высоте и в каких бы условиях ни начинали летать наши самолеты, вслед за ними на эти высоты обязательно проникали парашютисты-испытатели», — говорит известный рекордсмен-парашютист, заслуженный мастер спорта В. Г. Романюк.
Самолет штурмует стратосферу. С земли видно, как крошечный самолетик, сверкающий на солнце, вскоре исчезает где-то в бездонной синеве. И только белый след тянется за ним, уходя все выше и выше. Если нет сильного ветра, долго стоит в небе эта белая полоска.
Рядом с летчиком-высотником в кабине самолета — парашютист. В тяжелой меховой одежде, с кислородной маской и парашютом он ждет, когда самолет достигнет «потолка».
Нелегко оставить кабину на большой высоте, где каждое движение требует сильного напряжения, где низкое давление заставляет сердце биться чаще, где без струи кислорода нельзя дышать.
Начинается падение. Рывок — и раскрытый купол парашюта несет человека к земле через стратосферу — царство вечного холода и безмолвия.
В. Г. Романюк совершил прыжок с высоты тринадцати тысяч четырехсот метров, откуда до него никто еще не спускался с парашютом. Много раз прыгали из стратосферы другие советские рекордсмены-парашютисты.
И когда поднимутся на разведку недосягаемых ныне высот воздушного океана пилоты стратосферных ракет, совершится оттуда путешествие и под куполом парашюта. Представим себе, как может произойти такой прыжок.
Между небом и землей... Так говорят, когда хотят показать ощущение оторванности, неустроенности, неопределенности.
Это образное выражение. Но сейчас оно было бы справедливо буквально.
Небо над головой — темносинее, совсем не такого нежноголубого цвета, каким мы привыкли его видеть. На нем сверкает Солнце — столь яркое, что нестерпимо больно взглянуть на его ослепительный диск.
Земля так далеко, что потеряла свой привычный «земной» вид, когда при взгляде сверху отчетливо видны узкие извилистые полоски рек, массивы леса, пересеченные дорогами и тропинками, ниточки-рельсы, игрушечные домики, жучки-автомашины. Смутно видна лишь гигантская рельефная карта, но без подробностей, без ощутимо ясных знакомых очертаний.
Один сплошной серозеленый фон, подернутый местами белыми громадами облаков. С земли облака иногда кажутся в такой недосягаемой вышине, что ее трудно даже представить. А сейчас облака, как огромные горные хребты, громоздятся далеко-далеко внизу.
И чудится, что там, за ними — неведомая планета, которая ревниво охраняет свои тайны.
Здесь, над облаками, царство вечного безмолвия. Ни один звук не доносится сюда. Бывает и на земле тихо, но такой полной, такой идеальной тишины там не встретишь никогда. Она давит, эта мертвая тишина.
Время как будто остановилось. Все так же сияет Солнце, все так же далеко внизу, не приближаясь и не удаляясь, клубятся острова облаков.
Кажется, что так вот было всегда и не будет этому конца. Земля все так же недосягаемо далека, так же, как и Солнце, неподвижно повисшее в небе.
Ничто не выдает движения. Полный покой. Никаких новых впечатлений. Мысль невольно обращается к недавнему прошлому, кажущемуся сейчас столь далеким.
Последние приготовления закончены.
Через узкий люк с трудом протискивается человек, закутанный в мех и кожу, с кислородной маской на лице. Он опутан ремнями парашютного ранца.
До старта одна минута... полминуты... Заработали насосы, подающие топливо в двигатель. Шум усиливается. Тело наливается тяжестью.
Полетом управляют автоматы. Они не дают ракете подниматься слишком быстро, иначе большая перегрузка сдавит, лишит сознания, сомнет человека.
Ощущение подъема давно знакомо по тренировочным полетам, по барокамере, где, не поднимаясь в воздух, можно побывать на любой высоте. И все же оно бывает новым каждый раз.
Чаще бьется сердце. Несмотря на теплую одежду, становится холодно. Но автоматы стоят на страже, и по их команде закрывается люк герметической кабины.
В иллюминаторе — голубое, постепенно темнеющее небо. Подъем продолжается. Стрелка альтиметра проходит мимо цифр 15 000, 20 000, 30 000 метров... И ракета попадает в ту область воздушной оболочки планеты, где только ей открыта свободная дорога.
Земли не видно. Лишь кусочек неба в иллюминаторе, темнеющий все сильнее и сильнее, да стрелка прибора, упрямо ползущая вправо, говорят, что ракета идет вверх.
Еще немного — и шум двигателя смолкает. Но ракета с разбегу продолжает подъем. Тяжесть, давившая грудь, исчезла.
Пора! Все тело напрягается, готовясь к удару. Толчок... Еще толчок... Это кабина отделилась от ракеты. Теперь она предоставлена самой себе. В памяти осталась стрелка у цифры 70 000. Семьдесят километров!
Странное ощущение! Оно отдаленно напоминает быстрый спуск на лифте или растянутый во времени воздушный «ухаб», когда самолет теряет высоту.
Прыжок из стратосферы. |
Легкое головокружение. Пол кабины уходит из-под ног, тело как будто повисает в воздухе... Но нет, это только кажется, все на месте, лишь стрелка прибора стремительно ползет вниз. Раскрывается кабинный парашют, и скорость падения уменьшается.
Выполнена программа наблюдений. Надо экономить силы — впереди еще большее напряжение. Мысль работает четко, все движения, повторенные столько раз на земле, следуют одно за другим.
Проверить кислородный аппарат. Открыть люк. Струя воздуха мешает, но, справившись с нею, удается выбраться из кабины. Рывок, очень сильный, как удар. Начинается свободное падение.
Но вот уже раскрыт купол парашюта над головой. Дышится легко — кислородный прибор действует исправно. Почти не чувствуется жестокого мороза стратосферы,
Кабины уже не видно, она падает быстрее. Лишь небо да далекая земля, и между ними «висит» одинокая фигурка под шелковым куполом. Наконец заметно приблизились облака, ощутимее стали ориентиры.
И вот уже видно, как тень парашюта скользит по белым грядам облаков. Земля, родная земля близко! Долой кислородную маску. Грудь жадно вдыхает «земной» воздух. Еще немного — и прыжок из стратосферы закончен. Ложится белый купол. Под ногами земля. Снова привычное голубое небо над головой, жаркое солнце, дыхание ветра, шум деревьев в ближнем лесу...
Такой спуск даст много ценных сведений конструкторам, летчикам, врачам.
В стальном метеоре, подобии кабины будущего межпланетного корабля, парашютист начнет прыжок из стратосферы. Здесь он оставит кабину и раскроет свой парашют.
В нашем описании необыкновенного прыжка не пришлось особенно много фантазировать. Ведь еще пятнадцать лет назад уже предложен был энтузиастами интересный проект спуска из стратосферы.
Стратостат поднимает на высоту около тридцати километров гондолу, напоминающую по форме авиационную бомбу. Оболочка стратостата рвется, а гондола-бомба устремляется к земле. Двадцать пять километров свободного полета — и раскрывается парашют, замедляющий падение гондолы. Ближе к земле парашютист покидает гондолу и прыгает.
Проект тогда осуществлен не был. Теперь же ракеты завоевывают стратосферу. Вместо гондолы стратостата устремляется ввысь кабина ракеты, и не на тридцать километров, а много выше поднимет она смелого парашютиста-стратонавта.
Самолет на старте. Заняли места пассажиры. В окна видно уходящее вдаль летное поле, крыло и пока неподвижные воздушные винты. И вдруг они оживают. Тишина сразу обрывается ревом моторов, переходящим в ровный гул. Лопасти винтов сливаются в блестящие круги.
Машина еще некоторое время стоит на месте, как будто набирает силы, готовясь к прыжку. Старт дан, и самолет медленно начинает двигаться. Побежало в окнах поле аэродрома, быстрее, быстрее... Момента взлета ждешь — и все равно пропустишь. Только что колеса прикасались к земле, и вот она уже отдаляется, незаметно опускается вниз. Легкий толчок, самолет еще ступенькой выше, потом еще и еще. Наконец закончено восхождение по невидимой воздушной лестнице и набрана высота. Машина ложится на курс.
Тень самолета бежит по земле — ложится на зеленые пятна лесных массивов, пересекает полоски рек, ленты дорог. Скорость почти неощутима, а ведь воздушный корабль пролетает сейчас больше трехсот километров в час — восемьдесят метров в секунду!
За несколько десятков часов он может перелететь из одного конца страны в другой. Но это не предел, ибо сбылось предвидение Циолковского: за эрой аэропланов винтовых наступает эра аэропланов реактивных.
Советская ракетная техника давно уже работает над воплощением в жизнь идей Циолковского.
В 1932 году Цандер построил первый в стране ракетный двигатель на жидком топливе.
В 1933 году поднялась в воздух первая советская ракета на жидком топливе конструкции М. К. Тихонравова.
Инженеры, объединенные в группы изучения реактивного движения, вели работы по всем ведущим направлениям современного ракетостроения.
В 1940 году состоялись летные испытания планера конструкции С. П. Королева с жидкостным ракетным двигателем. Их проводил летчик-испытатель В. П. Федоров.
Достоянием истории стало и другое событие — первый в мире полет человека на ракетном самолете. Его совершил в 1942 году советский летчик Г. Я. Бахчиванджи, возвестивший этим открытие эпохи авиации будущего, эпохи больших скоростей.
Ракетный самолет стал действительностью.
Мы уже начинаем привыкать к стремительному полету новых самолетов, к их необычным формам. Когда смотришь, как мчатся стальные ласточки с отогнутыми крыльями, олицетворяя собой радостное чувство скорости, мысленно переносишься туда, в машину, которая догоняет звук. Пилот смотрит, как проносится, а не плывет земля под самолетом, и испытывает это ощущение громадной скорости, подвластной человеку.
Наступает время больших скоростей в авиации не только военной, но и транспортной. Уже сейчас появляются многомоторные реактивные воздушные корабли. Не триста, а восемьсот-девятьсот километров в час станут крейсерской скоростью гражданского самолета.
В немногих словах трудно описать то, с чем пришлось бороться создателям скоростных машин, В первую очередь надо указать на сопротивление воздушной стихии — воздух мешает движению, и тем сильнее, чем быстрее полет. Недаром появилось название «звуковой барьер» — воздух, сжимаясь, уплотняется, образуя своеобразную преграду, которую надо преодолеть.
Для этого ищут такие формы крыльев, фюзеляжа, оперения, при которых меньше сказывается вредное влияние сжимаемости воздуха. Самолету дают более мощный — реактивный — двигатель. Он помогает справиться с возросшим сопротивлением среды, штурмовать эвуковой барьер.
Как нередко бывает, нашлись маловеры, заявлявшие при встрече с трудностями: звуковой барьер непреодолим. Смотрите, самолеты рассыпаются в куски, едва начинают подходить к опасной зоне скоростей. Не выдержат машины — не хватит мощности мотора, не вынесет пилот сверхчеловеческих нагрузок, предупреждали они.
Однако современные самолеты вошли в опасную зону, почти вплотную подошли к скорости звука, и появилась не только околозвуковая авиация. В последние годы состоялись первые испытательные полеты самолетов сверхзвуковых скоростей.
Но мы будем говорить не о том, что существует сейчас, сегодня, а о завтрашнем дне, когда самолет и ракета сольются воедино, дав новую машину — крылатую управляемую ракету, прообраз межпланетного корабля.
Над проектами и опытными сверхзвуковыми самолетами работают конструкторы разных стран. Нет еще сведений о результатах, достигнутых ими. Прежде чем человек полетит на крылатой ракете, необходимо всесторонне исследовать, что творится за звуковым барьером.
Строятся модели машин. В аэродинамических трубах их продувают потоком большой скорости, изыскивая наилучшие формы, с наименьшим сопротивлением. Полетные испытания управляемых по радио моделей, броски через звуковую скорость помогают накопить материал, который использует инженер, производственник, технолог.
Уже вырисовываются контуры самолета будущего — с длинным заостренным фюзеляжем, тонкими стреловидными крыльями и оперением.
Обыкновенно идут от известного к неизвестному. «Так и мы думаем перейти от аэроплана к реактивному прибору — для завоевания солнечной системы», — говорил Циолковский. И он набрасывает план завоевания межпланетных пространств.
Безвинтовой ракетный самолет с герметической кабиной покорит стратосферу. Высота и скорость его полета ограничены только запасом топлива. Постепенно поднимаясь все выше и выше, туда, куда ранее проникали одни стратостаты да шары-зонды, человек совершит первые робкие взлеты в область больших высот. Пополнится драгоценная сокровищница опыта, окрепнут крылья ракеты, из воздушного корабля она начнет превращаться в корабль заатмосферный.
Разбежавшись по земле с помощью ускорителей, разогнавшись в разреженном воздухе больших высот, крылатая ракета совершит чудовищный прыжок в тысячи километров длиной.
Начало и конец ее пути будут лежать в атмосфере. Середина — главная, неизмеримо более длинная часть путешествия — пройдет в межпланетном пространстве.
Почта, грузы, пассажиры за час перенесутся от Балтики к берегам Тихого океана, за несколько минут — из Москвы в Ленинград.
Такие корабли будут совершать короткие визиты в межпланетную бездну — миниатюрные космические рейсы, с переходом из обычного состояния к усиленной тяжести, затем к полной ее потере и, наконец, к возвращению в привычный мир.
Корабль может двигаться с той же скоростью, с какой вращается Земля. Тогда Солнце для него станет неподвижным и наступит вечный день. Свершится и другое «чудо»: для экипажа крылатой ракеты, обогнавшей Землю, дневное светило двинется назад, восходя на западе и заходя на востоке.
Кстати, уже теперь летчику реактивного самолета, летящего со скоростью одной тысячи километров в час по параллели Москвы, покажется, что Солнце движется по небу не так, как обычно, а наоборот, с запада на восток. Он перегонит Землю, полетит «быстрее Солнца».
Когда скорости достаточно возрастут и полеты за атмосферу будут так же обычны, как теперь дальние перелеты самолетов, люди смогут начать реальную борьбу за достижение космических скоростей.
У ракетного самолета и межпланетной ракеты много общего: и самолету и ракете лететь в пустоте, где гибнет все живое. Поэтому и у самолета и у небесного корабля должна быть герметическая кабина с искусственной атмосферой, подобной той, что создается в гондолах стратостатов и кабинах высотных самолетов.
Двадцать лет назад на советских заводах построили стальной шар — гондолу стратостата, который поднялся на громадную высоту. В нем наши инженеры и техники, мастера и рабочие сумели создать стратонавтам все необходимые для работы условия.
Ради нескольких часов, которые нужно было провести в поднебесье, многие месяцы шла напряженная работа.
В историю авиации навсегда вошли стратосферные полеты советских летчиков и воздухоплавателей как непревзойденный образец мужества, героизма, настойчивости в достижении поставленной цели. Трудно в кратких словах передать эпопею этих полетов в неизведанное. Многие помнят те дни, когда весь мир ждал вестей из стратосферы, когда слово «стратостат» было у всех на устах. Успех в воздухе готовился еще на земле. Была создана специально сконструированная гондола, оборудованная всем необходимым для плавания в заоблачных высотах.
Не только стратонавтам, но и подводникам и летчикам-высотникам приходится работать в изолированных от внешнего мира помещениях. У нас уже есть опыт создания нормальных условий для жизни человека там, где жизнь невозможна, — в глубинах океана и в разреженном воздухе больших высот.
Только зная историю героических полетов в стратосферу, можно оценить сложность предстоящих работ. Нужно предусмотреть все мелочи, от которых зависит жизнь экипажа. Представьте, насколько возрастут трудности, когда речь пойдет не о часах, а о днях, проведенных за атмосферой, не о десятках, а о сотнях тысяч и миллионах километров пути, не о плавании в воздушном океане, а о полете в неведомый мир.
Надо полагать, что техника справится с такой сложной работой.
Ракетному самолету предстоит подняться выше озонового слоя, навстречу потокам ничем не ослабленных ультрафиолетовых лучей. С ними же встретится и межпланетная ракета. Поэтому иллюминаторы у них должны быть закрыты специальным стеклом. Подобно слою озона, оно защитит пассажиров от палящих лучей солнца.
На большой высоте нет воздушной брони — атмосферы, и самолету, как и ракете, грозит случайная встреча с метеором. Поэтому обоим нужна броня, о которой придется позаботиться конструкторам стратосферных и межпланетных кораблей.
Ракетный двигатель, топливо, материалы, управление, приборы, средства связи с Землей у самолета и ракеты будут во многом схожи.
О сверхзвуковых самолетах говорится уже в учебниках как о ближайшей перспективе авиационной техники. Думают, что составной самолет-ракета осуществит мечту о беспосадочном кругосветном перелете за несколько часов.
Разрабатывался проект перелета на расстояние в пять тысяч километров за три четверти часа на основе уже существующих конструкций далеко летающих ракет. Наибольшая скорость была бы три с половиной километра в секунду — почти половина первой космической скорости!
Авиация стремится выйти еще выше в стратосферу, потому что там мало сопротивление воздуха, доставляющее так много неприятностей при полете у земли.
Самолет, летающий на огромных высотах с огромными скоростями, и ракета, прорезающая верхние слои атмосферы, отчасти будут напоминать метеор. Их движение станет изучать одна и та же наука — космическая аэродинамика, в ведении которой — сверхбыстрое движение в сильно разреженном газе.
На больших скоростях происходит усиленный нагрев от трения о воздух. Чем быстрее полет, тем сильнее нагревается обшивка. У ракеты, развивавшей скорость полтора километра в секунду, она раскалялась до девятисот градусов. Здесь, пожалуй, никакая теплоизоляция не поможет. Если лететь еще быстрее, самолет сгорит. Поэтому и ищут спасения на больших высотах, где плотность воздуха ничтожно мала.
А как же быть с чудовищной, почти тысячеградусной жарой, которая, как предполагают, царит там? Как это ни странно звучит, мы не почувствовали бы эту жару, так как плотность воздуха там мала. Хотя частицы его движутся с огромными скоростями, но самих частиц значительно меньше чем у земли. Поэтому и тепло неощутимо. Лкшь с помощью приборов можно измерить температуру в очень разреженном воздухе.
Передача тепла произойдет так медленно, что самолет не успеет нагреться сколько-нибудь заметно. Только прямые солнечные лучи сыграют свою роль, но они не страшны,— от такого нагрева защититься всегда можно.
Однако надо кратко сказать и об отличии ракеты-межпланетного корабля от ракеты-самолета, вернее о том, что предстоит сделать для перехода от одного к другому.
Для топливного запаса, определяющего достижение космической скорости надо создавать составную ракету — пока нет еще в нашем распоряжении более мощных источников энергии. Лишь ракета-одиночка с атомным двигателем сможет вылететь в мировое пространство.
Межпланетный полет продолжителен, и нужно обеспечить экипаж всем необходимым для жизни в пустоте не на часы, а на дни и недели. Понадобится усовершенствовать герметическую кабину, приборы, радиоаппаратуру, позаботиться о питании, о костюмах, в которых можно выйти из ракеты, о приспособлениях для спуска на Землю и другие планеты.
Так смыкаются авиация и ракетная техника, так воздушный транспорт станет транспортом заатмосферным и воздушные дороги — небесными дорогами.
НА РАКЕТЕ
ВО
ВСЕЛЕННУЮ
ВЕРНЫЕ ПОМОЩНИКИ ПИЛОТА
С земли уже давно не видно взлетевшей ракеты — она скрылась из виду, растворилась в ночной темноте. В почти космической пустоте, глотая пространство, с огромной скоростью несется стальная сигара. Теперь о ней говорит только зубчик на экране локатора да светящаяся линия на темном фоне неба, словно прочерченная невидимой рукой. Яркий след упрямо тянется кверху, но вдруг изгибается, поворачиваясь все круче и круче. Это рули, обжигаемые огненным дыханием двигателя, послушные чьему-то приказу, повернули снаряд на новый курс. Даже когда исчезла горячая газовая струя, рули не успели остыть и тоненькой черточкой светятся во мраке ночи.
Кто же повернул рули? Ведь в ракете нет пилота!
Нелегко сохранить взятый курс, когда ракета предоставлена самой себе. Всего нельзя предусмотреть — легкие колебания тяги, сильные порывы ветра в атмосфере и другие случайные причины могут столкнуть ее с намеченного пути. Надо все время поправлять ракету, не допускать уклонений с намеченной дороги. За этим следит автопилот, заменивший человека. Важнейшая часть автопилота — быстро вращающийся волчок.
Волчок не зря называют упрямым. Когда он вертится, то ось его всегда сохраняет определенное положение в пространстве. Более бдительного, более верного стража трудно найти. Стоит, например, самолету чуть качнуться, уступая силе ветра, волчок тут как тут. Его ось невозмутимо остается на месте, но рамка прибора, соединенная с корпусом самолета, сдвигается. Этого достаточно, чтобы появился тревожный сигнал. И вот уже идет приказ моторчикам рулей: повернуть их так, чтобы машина вернулась обратно, на прежний курс! Так автопилот ведет машину вместо летчика.
Два волчка кружатся в приборном отсеке ракеты. Их обязанность наблюдать за отклонением ее корпуса в ту или другую сторону, и то, что не замечает один, заметит сразу же другой. Заметил — и рамкой замкнул контакты в электрической цепи. Возник ток, слабый, почти незаметный, бессильный что-нибудь сделать.
Тогда на помощь приходит электронная лампа-усилитель. Сигнал усиливается во много раз. Теперь у него хватает силы включить моторчик, отклоняющий руль. Руль делает свое дело — ракета возвращается на правильный путь, и тревожный сигнал замирает до следующего опасного случая. Все это совершается очень быстро, чтобы не дать ракете сильно уклониться от верного курса.
Когда же курс надо не сохранить, а изменить, используют опять все тот же волчок. Он поворачивается специальным механизмом, также включенным в электрическую цепь. Механизм этот работает точно по установленной программе, поворачивая ось волчка в заданное время на заданный угол. Эти повороты вызывают в конце концов сигналы-команды рулям, и, повинуясь автомату, ракета меняет курс.
Устройство автоматического пилота весьма сложно. Описанное — лишь простейшая схема, объясняющая, как без вмешательства человека управляют многотонной ракетой. Гироскоп-волчок, электронные, электрические и гидравлические приборы, точные, надежные устройства подчиняют движение расчету, заранее определяющему, как будет происходить полет.
Так воплотились в жизнь слова Циолковского, предвидевшего автоматическую ракету. Да и могло ли быть иначе? В век больших скоростей, огромных мощностей, высокой точности обойтись без множества автоматов невозможно. И невозможно представить себе без них стратосферные и космические рейсы. Современные высотные ракеты, как мы уже знаем, несут с собой целую автоматическую лабораторию для взятия проб воздуха, фотографирования солнечного спектра, регистрации космических частиц.
Чтобы исследовать солнечное излучение на больших высотах, нужно поднять на ракете прибор — спектрограф и направить его на Солнце.
Но тут-то и возникает неожиданное препятствие. Ракета не летит прямо. Поднимаясь вверх, она в то же время быстро вращается вокруг своей оси, да еще медленно поворачивается, наклоняясь вбок. Эти замысловатые «пируэты» мешают спектрографу уследить за Солнцем. Что же делать? Призвали на помощь автоматику. Автоматы заставили прибор все время «смотреть» на Солнце, какие бы фигуры ни выделывала в полете сама ракета.
Вот она пролетела атмосферу. В головке ракеты автоматически открывается маленькое окошечко, против которого помещается «искатель Солнца» с фотоэлементом. Солнечные лучи, собранные линзой, направляются на чувствительную к свету поверхность фотоэлемента. Эта поверхность имеет форму диска. Когда спектрограф направлен на Солнце, световое пятно попадает в центр диска фотоэлемента, и тока нет.
Но стоит только прибору хотя бы немного уклониться, смещается и световое пятно. Возникает ток. Усиленный усилителем, он заставляет электромоторчики поворачивать спектрограф до тех пор, пока пятнышко вновь не окажется в центре искателя.
Все это совершается так быстро, что следящее устройство успевает направлять щель прибора постоянно на Солнце, несмотря на вращение самой ракеты.
Если же искатель совсем потеряет Солнце, то автомат заставит его вращаться с очень большим числом оборотов до тех пор, пока световое пятнышко не будет поймано вновь.
Прибор для слежения за Солнцем автоматически отделяется от ракеты и спускается на парашюте. И другие приборы тоже помещают в специальную камеру, которая выбрасывается в полете автоматическим устройством.
Автоматически управляемые самолеты существуют уже сейчас. В течение всего полета от взлета до приземления пилот не вмешивается в поведение машины. Пусть пока еще только зарождается беспилотная авиация, но мы вступили на путь, ведущий к транспорту будущего, где будет максимально облегчен человеческий труд.
Автоматы понадобятся для регулирования тяги, чтобы ускорение не превзошло опасного предела — вспомним о перегрузке. Они нужны для контроля исправности механизмов двигателя и работы всех его частей. Но этим не исчерпывается их роль.
Ракетный двигатель развивает огромную мощность — у стратосферной ракеты, например, на максимальной скорости — до полумиллиона лошадиных сил. Значит, еще больше — миллионы сил — потребуется для заброски корабля в космос. Управление таким двигателем на летящем с большой скоростью космическом корабле требует быстроты и точности действий. Помочь пилотировать корабль должны будут автоматы.
Приведем один лишь пример. Авиационная турбина, установленная на современном скоростном реактивном самолете, работает на грани возможного. Материал двигателя выдерживает предельные нагрузки. Стоит только летчику, управляя двигателем, сделать слишком резкое движение, и он рискует сжечь лопатки турбины, хотя они и сделаны из очень жаростойкого сплава. С потоком сильно нагретых газов, бушующих в турбине, шутить опасно. Поэтому здесь «на часах» поставлен автомат, который не позволяет перегреть турбину и вывести ее из строя. Автоматически включаются также противоперегрузочные устройства, когда ускорение при маневрах реактивного самолета превосходит допустимый предел.
Итак, автоматы безопасности нужны ракете, чтобы стрелка прибора не перешла аварийной красной черты, за которой чрезмерная перегрузка грозит гибелью.
Для точного выполнения программы полета понадобится другой автомат. Ведь наперед будет известно, как станет ракета выбираться за атмосферу, какую надлежит держать скорость и направление. Программный регулятор поведет корабль по курсу взлета.
И другие автоматы будут на ракете. В их обязанность входит следить за составом и давлением воздуха в кабине, предупреждать о его утечке, если случайная встреча с метеором повредит обшивку, наблюдать за температурой и вовремя включать отопление или охлаждение — словом, оберегать жизнь путешественников.
То, что здесь рассказано об автоматике ракеты, лишний раз убеждает нас: решение проблемы межпланетных путешествий возможно только в содружестве многих отраслей науки и техники наших дней.
Роль автоматики в управлении ракетным кораблем трудно переоценить. Но иногда можно встретить и такие романы о межпланетных полетах, в которых кнопки решают все. Пилоту остается только их нажимать. Нажал раз — ракета трогается, нажал два — взлетает, нажал три — набирает скорость... А если вдобавок связать друг с другом автоматы так, что они будут включаться по очереди, то и вообще можно обойтись одной-единственной «генеральной» кнопкой. Ведь существуют же, скажем, автоматические станки и линии станков, где рука рабочего не прикасается к изделию при обработке. Наконец построены целые заводы-автоматы. Что же говорить о самолетах и ракетах!
Нет, не заменят автоматы человека. Верно, что исправный автомат никогда не ошибается. Но чтобы он был исправным, за ним надо следить, его надо регулировать, его работу проверять. И на «безлюдном» автоматическом заводе для этого есть люди. С автоматикой легче трудиться, и в ней видим мы основу техники коммунизма. Но техника без людей мертва. Человек — «надзиратель» и «регулятор», как говорил Маркс, человек — командир машин остается. От него требуется больше знаний, смекалки, уменья, больше творчества, ибо автоматическая техника сложна.
В нашей стране новая техника непрерывно заменяется новейшей. В совершенстве владея ею, поведут межпланетные корабли капитаны космических рейсов, которым будут помогать автоматы — верные помощники пилота.
Голос в наушниках произносит:
— Внимание! Петля Нестерова!
Летчик берет ручку на себя, и горизонт встает дыбом. Земля, обычно неподвижная, вдруг сдвигается с места и всей своей громадой ползет вверх.
Поблескивая крыльями, самолет, похожий издали на игрушку, взмывает в небо, делает полукруг, растворяется в безбрежной синеве, а затем, сверкнув на солнце, устремляется вниз.
В это время в какие-то доли секунды, пока длится фигура высшего пилотажа, пилот, сидящий в кабине скоростного реактивного самолета, переживает необычайные ощущения.
Ускорение — это невидимое чудовище, как назвал его один летчик-испытатель, — прижимает пилота к сиденью. Тело тяжелеет. Кровь отливает от головы, нельзя поднять веки, они опускаются сами собою. Каждое движение дается с трудом. Туман застилает глаза. Нарушается деятельность сердца. Дыхание затрудняется. Мозг перестает четко работать, сознание притупляется, быстрота реакций — так врачи называют ответ на внешние раздражения — падает. Слабеют мускулы.
Вот что делает чрезмерное ускорение! Даже когда оно уменьшается, летчик не сразу приходит в себя: примерно минуту он еще чувствует последствия перегрузки.
Следует оговориться: не всегда, не при всяком фигурном полете так бывает. То, что описано здесь, — результат действия кратковременных больших ускорений. Но сейчас, когда реактивные самолеты летают почти со скоростью звука, когда высший пилотаж связан с многократной перегрузкой, с этим нельзя не считаться.
Во время второй мировой войны в авиации одной из воюющих стран фашистской оси испытывался новый ракетный — самолет-перехватчик. Молнией взлетев с пусковой башни, он должен был внезапно настигнуть самолет и выпустить залпом ракетные снаряды. Такой сверхскоростной истребитель, по замыслу его создателей, решил бы судьбу воздушного боя одним ударом.
При первом же испытании самолет разбился, летчик погиб. Слишком большое ускорение сломало позвоночник человеку, смяло и расплющило его, словно каким-то прессом.
Как видим, чрезмерно большая перегрузка убивает, и от нее, казалось бы, нет спасения. А между тем наступает эра больших скоростей и вместе с ними — больших ускорений.
При скоростях быстрее звука, при перелетах крылатых ракет еще чаще будет встречаться необходимость быстрого набора скорости, быстрого уменьшения ее, а значит, и значительного роста ускорения. Этот опасный враг будет проявлять себя уже не долю секунды, как при высшем пилотаже, а значительно дольше, что, конечно, неизмеримо опаснее.
Вот как описывает свои переживания герой одного научно-фантастического рассказа, совершивший стратосферный рейс на ракете. Испытывал «адскую» тяжесть он всего минуту, за которую его корабль успел набрать скорость, достаточную для гигантского прыжка через атмосферу.
«...Я внезапно был придавлен со страшной силой к своему ложу. Мне едва не сделалось дурно от этого усиленного движения. Кровь стучала в ушах; казалось, меня поборол какой-то великан. Сила, с которой напирала на мою грудь сетка, мешала мне свободно дышать, пот выступил на лбу, а связка ключей в кармане чувствительно вдавливалась в бедро. Костюм сразу стал чересчур тесен, рубашка стягивала туловище. Я сделал попытку двигать членами: рука, протянутая к карманным часам, — потому что протекшие секунды казались мне чересчур долгими, — сразу отяжелела; казалось, она весила центнер. Потея и кряхтя, я едва мог достать свои часы. Но, не привыкший к усиленной тяжести, я захватил их слишком слабо: с силою вырвались они из моей руки, проскользнули через ячейки сетки и со звоном ударились о противоположную стену. Обескураженный, я отказался от дальнейших попыток к движению и предоставил себя на волю судьбы».
Учтите, что ускорение, которое испытывал рассказчик, было не слишком велико — лишь в пять-шесть раз больше земного.
Теперь посмотрим, что произойдет во время межпланетного полета.
«Подан знак; началось взрывание, сопровождаемое оглушительным шумом. Ракета дрогнула и двинулась в путь. Мы чувствуем, что страшно отяжелели. Четыре пуда моего веса превратились в 40 пудов. Я повалился на пол, расшибся вдребезги, может быть, даже умер; тут уже не до наблюдений!» Так описывает Циолковский переживания пассажира космической ракеты, перенесшего в течение двух минут тяжесть в десять раз более земной. Десять раз! Уже при шести-восьми у летчика наступает временное расстройство центральной нервной системы, хотя действие перегрузки продолжается всего считанные секунды. Пожалуй, прав Циолковский, считая межпланетного путешественника едва ли не смертником.
Но предположим, что взлет, описанный ученым, произошел все-таки благополучно, и подумаем над тем, как облегчить тяжелую участь пассажира ракеты.
Весь опыт скоростной авиации говорит о том, что это сделать можно. Авиационные врачи наблюдали воздействие больших ускорений на летчика при разном положении тела — стоя, сидя, лежа. Оказалось, что, откинувшись в кресле, пилот гораздо легче переносит болезненные явления, описанные нами, и быстрее приходит в себя после них. Вот почему конструкторы предусматривают для скоростных самолетов сиденье со спинкой, наклон которой можно изменять. Специальные противоперегрузочные устройства помогают в борьбе с перегрузкой.
Если к этому добавить еще систематическую тренировку и спортивную подготовку пилотов, станет ясно, что ускорение не такой страшный враг, как могло показаться с первого взгляда.
Советские авиаторы отлично владеют техникой больших скоростей. Они первыми в мире совершили высший пилотаж на реактивных самолетах.
Не оправдались пессимистические предсказания некоторых ученых, говоривших когда-то, на заре эпохи скоростной авиации, что человек не перенесет больших ускорений, с которыми неизбежно придется столкнуться.
Взгляните в небо! Ослепительный каскад фигур делает истребитель, ведомый закаленным, тренированным советским летчиком. За самолетом трудно уследить — так быстро совершается воздушный «танец». Перегрузка велика, но пилоту она не опасна. Конструктор и врач позаботились об этом. Когда на экране мы следим за воздушным парадом, кинооператор показывает нам летчика во время выполнения фигур высшего пилотажа. Что же? Лицо его сосредоточенно, спокойно и совсем не напоминает страшную маску человека, придавленного тяжестью. Значит, можно без вреда для организма летать быстрее звука, — не только машина, но и человек к этому готовы.
Однако не надо и преуменьшать трудности. С ними еще придется серьезно бороться. Межпланетным полетам, да и ракетным перелетам в стратосфере — космическим рейсам в миниатюре — должна предшествовать большая исследовательская работа.
Пилот полулежит в откидном кресле. |
Многое зависит от авиационной медицины. Центробежная сила создаст искусственную тяжесть любой нужной нам величины. Камера, укрепленная на длинном стержне и вращающаяся подобно карусели, заменит в опытах кабину ракеты во время подъема. Как некогда первые стратонавты в высотной камере репетировали полет, переживая то, что им предстояло перенести в отрезанной от мира гондоле стратостата, так и будущие межпланетные путешественники еще на земле создают все ощущения предстоящего перелета. Им тяжелее, чем стратонавтам: те не страдали от ускорения и не знали, что такое потеря веса, невесомость. Но от этих неприятностей пассажиров ракеты сумеют защитить.
Их поместят в специально оборудованные кресла с откидными спинками. Автоматические устройства ракетных двигателей ограничат наибольшее ускорение ракеты пределом, безопасным для человека. В случае же возможной потери сознания пилотом ракета будет управляться автоматически.
Весьма вероятно, что путешественников оденут и в особые костюмы: футляры по форме тела, погруженные в жидкость с приспособлениями для свободного дыхания. Идею такого костюма впервые высказал Циолковский. «Природа... — говорил он, — не пренебрегает свойством жидкости уничтожать разрушительное действие относительной тяжести и потому заботливо погружает все нежные органы животного в особые жидкости, налитые в крепкие естественные сосуды». Таковы мозг в черепе или зародыш в яйце.
Циолковский думал, что можно будет, например, поместить пассажиров в предохранительные масляные ванны.
Однако плотность разных органов человеческого тела неодинакова, плотность же жидкости одна и та же. Только жидкость той же плотности, что и тело, обладает свойством предохранять от вредного действия увеличенной тяжести.
Идея в таком виде непригодна. Современная техника предлагает другой ее вариант.
В наклонном положении летчику легче потому, что тяжесть распределяется более равномерно, на большую площадь. Если поместить его в костюм из прорезиненной ткани, надутый воздухом, площадь соприкосновения тела с опорой сильно увеличится. Действие ускорения будет ослаблено и принесет меньший вред. Подобные костюмы разрабатывались, и если они успешно выполнят свою задачу, их будут применять и в авиации и в заатмосферном транспорте.
Остается сказать несколько слов о действии ускорения на приборы и механизмы, среди которых есть и хрупкие радиолампы. Здесь дело состоит проще. Радиолокационный взрыватель артиллерийского снаряда выдерживает при выстреле ускорение, в двадцать тысяч раз превышающее земное. Большие ускорения для приборов не угроза. Они «выносливее» человека. Со временем, вероятно, научатся отправлять грузы в межпланетное пространство в снарядах, выстреливаемых из электромагнитных соленоидных пушек. Так можно будет наладить «грузовое» движение между Землей и ракетой-спутником, искусственной луной. Уже опыт современной техники показывает, что можно изыскать защиту от перегрузки. Усиленная тяжесть не будет служить препятствием на пути в космос.
Может ли человек плавать в воздухе, нестись в беспредельных просторах, чувствовать себя свободным от невидимых оков, которые держат нас с неумолимой силой? Оказывается, такие чудеса, как это ни удивительно, возможны.
Ракета — в полете. Двигатель ракеты кончил работать — и тяжесть исчезла. Дальше начинается сон, сказка. Достаточно слегка оттолкнуться, чтобы полететь к потолку каюты. Потолок, впрочем, перестал быть потолком: теперь, в мире без тяжести, нет «верха» и «низа». Оттолкнувшись (по привычке скажем все-таки от потолка), вы устремляетесь вниз, к бывшему полу. Вы летаете в любом направлении — здесь действительно царство трех измерений, и нет никаких преград вашему полету.
Трудно передать словами то, что будет твориться в кабине космического корабля. Ведь этого еще никто не испытал! Правда, советские кинематографисты в научно-фантастическом фильме «Космический рейс» показали мир без тяжести.
На экране видно, как отправляется в лунный перелет первая ракета с людьми. Вот она уже за атмосферой. Поднялись шторы иллюминаторов, открыв звездное небо. Переглядываются первые межпланетные путешественники, жмутся к стенкам каюты. Вдруг один, решившись, прыгает... и плавно взлетает в воздух. Вот он уже у другой стены, смеясь, зовет к себе остальных.
Беседуя однажды с режиссером фильма, я узнал, каких трудов стоило все это показать на экране. Артисты «летали», привязанные ремнями к тросам. Сложные кинотрюки создавали впечатление настоящего полета.
Надо думать, что скоро люди познакомятся с невесомостью уже не в кино, а в жизни. Скоро — потому что наше поколение, очевидно, будет свидетелем заатмосферных путешествий.
Повредит ли человеку длительное отсутствие тяжести? Одни отвечали, что невесомость страшна не столько физиологически, сколько психологически: неизвестное всегда пугает! Другие возражали: многие жизненно важные функции организма от тяжести не зависят, а остальное — дело привычки. Ни у тех, ни у других нет доказательств, есть только предположения. Их нужно и можно проверить, тем более, что сейчас существует возможность решить спор самым простым и верным путем — опытом.
Еще Циолковский предложил «падающую лабораторию», где можно изучать невесомость. По рельсам, изогнутым в форме подковы, скользит тележка. На одной стороне она падает, на другой — поднимается. При почти свободном падении вес пропадает — правда, на очень короткое время.
Возникает естественный вопрос: почему так происходит, чем объяснить потерю веса падающими телами? Падающие тела двигаются одинаково — с одной скоростью и в одном направлении, не приближаясь и не удаляясь друг от друга. Попробуйте упасть на пол, если сам он все время удаляется от вас!
То же самое, но не доли секунды, а дни и недели происходит с ракетой, а вместе с нею с пассажирами и всеми вещами внутри каюты. Космический корабль по инерции несется в мировом пространстве. Путь его определен законами механики, одинаковыми для всех тел вселенной — от гигантской планеты до карлика-астероида.
Двигатель ракеты не работает, корабль предоставлен самому себе. Если корабль не смог победить земное притяжение, то неминуемо вернется обратно. Если же скорость его достаточно велика, он освободится от власти Земли и помчится дальше. Начнется свободный полет, и в тот же момент, как по мановению волшебного жезла, в ракете исчезнет ощущение тяжести.
Люди смогут плавать в воздухе.
Вода не льется из стакана, а когда тряхнут им, вылетает водяной шарик. Суп нельзя налить в тарелку, нельзя поджарить котлету на сковородке — она подпрыгнет к потолку. Словом, жизнь, полная неожиданностей и неудобств.
В среде без тяжести пассажиры ракеты должны жить и работать. Пилот или штурман не в состоянии вычислять курс ракеты, вися между полом и потолком, и не могут постоянно пользоваться справочником, карандашом и бумагой, которые, как живые, бродят по каюте. Нужно производить наблюдения, держать связь с Землей, да мало ли дел у экипажа во время самой необыкновенной в истории человечества экспедиции! Питаться тоже необходимо — хотя бы и в такой необычайной обстановке.
Ручки на стенах, полу, потолке, чтобы было удобно передвигаться в каюте; ящики, куда убираются вещи; кресла, прикрепленные к своему месту, и люди, привязанные к креслам; взамен тарелок и ложек — закрытые эластичные сосуды для «выдавливания» из них жидкой пищи; специальная электроплитка, наглухо закрытая посуда — вот черточки быта в условиях невесомости.
Что же, все это не страшно. Конечно, на первых порах человека, буквально потерявшего почву под ногами, утратившего чувство равновесия, ждут переживания скорее комические, чем трагические. Но они пройдут со временем, особенно если еще задолго до первого космического рейса тренировать будущих межпланетных путешественников.
Полеты ракет на большие высоты, за атмосферу, с последующим спуском, значительная часть которого явится свободным падением в безвоздушном пространстве, предоставят нам такую возможность. В кабине, которая отделится от ракеты в высшей точке подъема и ринется затем вниз, пилот переживет то, что впоследствии ждет его в межпланетной ракете. Правда, там — дни и недели, здесь — минуты; там — удаление от Земли, здесь — падение на нее, но разница невелика. И здесь и там — одинакова потеря веса. Она произойдет и тогда, когда ракета полетит в пустоте с выключенным двигателем.
Постепенно вылеты в межпланетное пространство, короткие броски в небо, репетиции космического путешествия приучат его участников переносить состояние кажущейся потери веса. Конечно, на всякий случай и здесь предусмотрят создание искусственной тяжести вращением ракеты, если тяжесть будет нужна.
Есть основание полагать, что авиационная техника и медицина обеспечат экипажу ракетного корабля условия для нормальной жизни и работы.
Циолковский мечтал о «свободном» пространстве, в котором люди, если они того захотят, будут избавлены от цепей тяготения. Там тяжестью они будут управлять сами, создавая ее по своему желанию, в своих интересах. Когда это осуществится, человечество еще раз блестяще подтвердит замечательные слова Энгельса о том, что лишь на практике, вызывая природные явления своими силами и управляя ими, человек в состоянии доказать в полной мере правильность и силу научного мышления.
Часто люди, глядя на небо, видят, как срывается светящаяся точка и стремительно несется вниз, чертя яркий след. Обычно говорят, что это «звезда упала». На самом деле не звезда, а крошечный кусочек вещества, маленький небесный камешек — метеор — со скоростью в несколько десятков километров в секунду влетел в атмосферу Земли, вспыхнул и мгновенно сгорел. Светится же раскаленный воздух, который метеор сжимает на своем пути. Под стремительным ударом этого пришельца из космоса разбиваются молекулы газа. Столб накаленного и ионизированного воздуха тянется за метеорной частичкой. Ее вторжение и гибель наблюдаем мы, глядя на «падающую звезду».
Днем, при ярком солнце, падение метеора незаметно. Но от волшебного глаза современной техники — радиолокации — ему не скрыться. Радиоволны отмечают прилет метеора, отражаясь от шлейфа из наэлектризованных частичек воздуха, сопровождающих его полет. Удалось наблюдать гораздо больше гостей из межпланетного пространства — и днем и ночью, при свете луны и в облачную погоду, — чем раньше, когда располагали только оптическими приборами.
Огромное число ежесуточно падающих метеоров — несколько тонн метеорного вещества, — видимо, грозит неизбежной гибелью ракете, покинувшей планету. Ведь и крупинка весом в доли грамма, летя с колоссальной скоростью, без труда пробьет корпус даже из самой прочной стали. А вокруг — пустота, воздух из кабины улетучится — произойдет катастрофа! Более крупная частичка или камешек выведет из строя приборы, двигатель, баки. Слепой — без приборов, лишенный сердца — мотора и пищи — топлива, корабль обречен на гибель. Столкновение же ракеты с небесной глыбой равносильно взрыву.
Выходит, полет за атмосферу — самоубийство.
Здесь несколько сгущены краски. Однако нередко приходится слышать мнение, что метеорная угроза слишком сильна, чтобы надеяться на благополучный исход межпланетного полета. Поэтому необходимо трезво оценить величину опасности.
Площадь поверхности Земли огромна. Поэтому Земля встречает множество метеоров. В такую мишень попадают без промаха, будто притягиваемые магнитом, тысячи и миллионы небесных странников, блуждающих в солнечной системе.
Ракета по сравнению с Землей невообразимо мала. Площадь поверхности, подвергаемой обстрелу, у нее ничтожна. И во столько же раз, во сколько она меньше земной, уменьшается вероятность столкновения. Не надо забывать: метеоры рассеяны в гигантском пространстве, друг от друга их отделяют сотни километров. Вот почему профессор Оберт, например, считал, что ракета должна пропутешествовать пятьсот лет, прежде чем встретит небесного странника. Такова оценка тридцатилетней давности. Современные данные гораздо менее оптимистичны: они намного увеличивают вероятность встречи с метеорами.
Вероятность — лишь отвлеченное понятие, показывающее только, как часто может произойти столкновение. Но когда именно это случится — неизвестно. И как бы мала ни была вероятность, случай есть случай, и не считаться с ним нельзя.
Надо учесть и то, что радиолокатор не может обнаружить в мировом пространстве, лишенном воздуха, мелкие крупинки — слишком маленькую цель они собою представляют. Крупинку-метеор, влетевшую в земную атмосферу, локатор обнаруживает потому, что радиоволны отражаются от столба ионизированного воздуха, который тянется за метеором. Иное — за атмосферой. И столкновение, если оно произойдет, будет внезапным.
Поэтому обязательно надо бронировать жизненно важные части корабля: пилотскую кабину, баки, двигатель. Прочная двойная обшивка с легкой прослойкой, вероятно, представит достаточную защиту.
Опыт бронирования боевых кораблей подсказывает такое решение. Броня из тонких стальных листов, разделенных воздушной прослойкой или слоями заполнителя, защищает от взрыва мины или торпеды. Воздух и прослойки ослабляют взрывную волну, и она уже бессильна разрушить внутреннюю обшивку. Кроме того, броню располагают так, что она встречает удар под углом и защитное ее действие значительно усиливается. Можно думать, что и для будущих заатмосферных кораблей сумеют сконструировать надежную броневую защиту. Впрочем, окончательное суждение о том, каким должен быть бронированный панцырь межпланетной ракеты, принадлежит будущему.
Можно предполагать, что через пробоины, сделанные метеоритами, воздух не улетучится мгновенно. Будет время заметить утечку, заделать пробоину,
Но время это невелико, от быстрой ликвидации последствий аварии зависит успех дела и, в конечном счете, жизнь экипажа. Обеспечить доступ ко всем ответственным частям корабля, предусмотреть все для скорейшей заделки пробоин — такова обязанность конструкторов и инженеров.
Тщательная предварительная разведка условий полета ракетами без людей, надо думать, поможет уменьшить метеорную опасность.
Но как быть с другой грозной опасностью?
Прежде чем выбраться в межпланетные просторы, где ничто не мешает космическому полету, кораблю предстоят пролететь атмосферу. Эта часть путешествия самая короткая, но не самая легкая. В самом деле, как мы уже знаем, атмосфера гасит космическую скорость метеоров, тормозит их полет, не допуская до поверхности Земли. Лишь очень крупным удается прорваться сквозь воздушную броню. Но в каком виде долетают они к нам — оплавленными, словно побывавшими в доменной печи, глыбами камня или железа! Трение о воздух — причина столь сильного нагрева.
Итак, атмосфера упорно сопротивляется вторжению извне. Того же следует ожидать и в другом случае — когда ракета устремится за атмосферу.
Известно, что докрасна раскалялась обшивка далеко летающей ракеты всего за пятиминутный полет.
При возвращении на Землю космический корабль, имеющий огромную скорость, может сгореть в земной атмосфере. Невеселая перспектива — побывать в неведомых мирах, чтобы, возвращаясь, сгореть заживо в стальной коробке, изобразив собою искусственный метеорит.
Однако нельзя упускать из виду, что в высоких слоях атмосферы, где воздух чрезвычайно разрежен, произойдет и торможение. Таким образом, космическая скорость будет гаситься, — конечно, не полностью, но, во всяком случае, основная доля ее. Поэтому уменьшается опасность перегрева.
Все же в нижних слоях атмосферы нагрев будет значительным, и над системой охлаждения придется потрудиться инженерам.
Страстный энтузиаст космических перелетов Юрий Васильевич Кондратюк предложил интересную идею: превратить кабину ракеты при подходе к Земле в несгораемый посадочный планер. Для этого все лишнее сбрасывается и к кабине присоединяются взятые с собой крыло, хвостовище, заменяющее фюзеляж, и рули из огнеупорного материала с двойными стенками, охлаждаемыми изнутри.
Кроме метеоров и нагрева, путешественников подстерегает еще опасность — короткие ультрафиолетовые лучи Солнца. Природа защищает нас на Земле от них слоем озона.
Можно создать и искусственную защиту от губительных ультрафиолетовых лучей. Специально подобранный сорт стекла в иллюминаторах ракеты устранит опасность. Стекло с примесью редкоземельных элементов, оказывается, совсем не пропускает ультрафиолетовых лучей.
Иногда высказывается опасение, что космические лучи могут повредить людям. Нет недостатка в мрачных предсказаниях. Один пророчит вредное действие на психику, говоря: межпланетные путешественники постепенно сойдут с ума. Другие пугают тем, что «с ума» якобы «сойдет» сама ракета: лучи будто бы вызовут быстрое разложение топлива, двигатель самопроизвольно начнет работать сильнее, ракета, не слушаясь пилота, станет совершать сумасшедшие прыжки.
Справедливы ли подобные опасения? Казалось бы, в них есть доля истины. Интенсивность космических лучей с высотой возрастает. Подъемы шаров-зондов и первые полеты ракет в стратосферу убеждают в этом. А космическая частица несет с собой такую энергию, что может даже разрушать ядра атомов. Кто знает, какие превращения произойдут в живых клетках и, в частности, в нервных, а также в молекулах химических соединений при встрече с частичкой, которая, даже пройдя всю земную атмосферу, способна на поверхности Земли проникнуть через толстый слой свинца?
Однако нельзя забывать, что хотя энергия каждой отдельной частицы велика, они не наделают бед, так как их общее суммарное воздействие в целом мало. Для физиологических или химических процессов его совершенно недостаточно.
Итак, три опасности для межпланетных путешественников — метеоры, короткие ультрафиолетовые лучи, перегрев от трения в атмосфере — существуют. Их значение не нужно ни преувеличивать, ни преуменьшать.
Нет ли в космосе еще чего-нибудь неизвестного, таинственного, опасного, о чем сейчас на Земле мы не знаем? Например, каких-нибудь излучений, пронизывающих мировое пространство и не проникающих сквозь атмосферу. Даже если такая опасность и существует, то предварительные исследования помогут изыскать от нее защиту. Ведь научились же мы защищаться и от ультрафиолетового, и от рентгеновского, и от радиоактивного излучений.
Некоторые зарубежные ученые спекулируют на страхе перед неизвестностью. Вот что говорит один из них:
«Человеческая нервная система была бы далека от способности совладать с напряжением, таинственностью и странностью такого рискованного предприятия, и те, которые подвержены этому, могли бы сойти с ума и погибнуть».
Так могут говорить только те, кто забыл или не хочет вспоминать, как советские люди штурмовали стратосферу, завоевывали Арктику, совершали беспримерные героические перелеты. Бессмертный героизм, мужество и отвага советских воинов и тружеников в годы Великой Отечественной войны доказали всему миру, на что способен наш народ.
Когда придет время осуществления заветной мечты человечества — первого космического рейса — и нужны будут смелые люди, нет сомнения, что они найдутся в нашей стране и сумеют прославить Родину новыми подвигами.
Самолет на взлетной дорожке. Свое место в открытой кабине занимает летчик. На голове его — металлический шлем, поблескивающий стеклянными глазами. Вместо куртки и меховых сапог — прорезиненный костюм, полностью скрывающий тело: ни единой щелочки, ни одного отверстия — ничего, что соединяло бы с окружающим миром.
Нажимается пусковая кнопка на панели управления, запускается двигатель, набирает обороты турбина. Начинает поступать горючее в камеры сгорания. Горячая газовая струя со свистом вырывается наружу, двигатель жадно глотает воздух. Газ обретает упругую силу, все быстрее вращается турбинный диск. Самолет готов подняться в воздух. Набраны обороты, выросла тяга — и вот он уже несется по дорожке, отрывается от земли и вонзается в небо. Стрелка альтиметра упорно ползет вправо, отсчитывая тысячи метров высоты.
Казалось бы, здесь, в стратосфере, где царят холод и низкое давление, летчика в открытой кабине самолета ожидает неизбежная смерть.
Но наш летчик чувствует себя нормально. Его согревает электрический ток. Специальная мазь не дает замерзнуть стеклам очков. Внутри костюма — давление, позволяющее свободно дышать, и живительная струя кислорода, бесперебойно поступающая в легкие. Мозг работает четко. И самолет, подчиняясь воле пилота, упрямо идет вверх.
Скафандр для высотных полетов наряду с герметической кабиной — немалое достижение современной авиационной медицины и техники. Нельзя покинуть самолет, летящий на очень большой высоте, где слишком низко давление воздуха, пользуясь одним лишь кислородным прибором.
В скафандры думали одеть и стратонавтов, находящихся в открытой гондоле стратостата. Тогда потолок подъема увеличился бы до тридцати-сорока километров. Но появилось новое средство полета на большие высоты — ракета, а с ним возможность подняться на десятки, сотни километров.
А как быть с пилотами стратосферных ракет? Их ведь также надо защищать от «воздушной болезни», как называют иногда явления, вызываемые малым давлением и недостатком кислорода.
Нельзя забывать, что подъем на большую высоту сопровождается значительной перегрузкой. В скафандре ее особенно трудно переносить. Поэтому, проектируя высотную ракету, инженеры обязательно предусматривают в ней изолированную от внешнего мира герметическую кабину.
Зато межпланетному путешественнику без скафандра не обойтись. Иначе он будет заперт в металлической коробке своего корабля, лишен всякой возможности выйти в мировое пространство, ступить на Луну и планеты. Необходим скафандр и на случай аварии, которую трудно ликвидировать, оставаясь внутри корабля. Словом, вылазка в пустоту будет неизбежной в космическом полете, а для этого звездоплаватель должен взять с собой специальный костюм, в котором можно дышать, двигаться в пустоте. К такому «пустолазному», а не стратосферному скафандру предъявят особые требования.
Нельзя сделать его из легкой непроницаемой ткани — внутреннее давление, которому не будет препятствовать пустота, раздует костюм, превратит его в пузырь. Надо, чтобы скафандр не стеснял движений и был удобен. В нем путешественник должен иметь запас кислорода, искусственную, бесперебойно очищаемую атмосферу, желаемую температуру. Скафандр должен позволять передвигаться в свободном пространстве, а также иметь средства связи с другими членами экипажа.
Наладить кислородное питание и очищение воздуха не будет чрезмерно сложной задачей — она и сейчас решается авиационной техникой при высотных полетах. Придется только позаботиться об увеличении запасов искусственной атмосферы в скафандре — мало ли какие неожиданности могут встретиться разведчику вселенной!
Ткань с прослойками или металл будет материалом костюма звездоплавателя. Более того, вероятно, в нем будет еще и слой брони — какой, покажет будущее. Метеорная опасность существует не только для ракеты, но и для человека, покинувшего ее. Правда, вероятность попадания метеора в человека еще меньше, чем в ракету. Тем не менее бронировать скафандры или нет — этот вопрос, вероятно, решат, учитывая опыт первых вылетов в мировое пространство.
Регулировать температуру внутри одежды звездоплавателя помогут электрическое отопление и лучи солнца. Циолковский предложил применить плащ из темной материи, который накидывался бы на блестящую поверхность скафандра, когда станет холодно.
Но только этим не решить сложной проблемы. На близких к Солнцу «горячих» планетах — Меркурии и Венере — костюм надо будет охлаждать. На холодных — Плутоне, например, — обогревать, иначе в скафандре можно будет замерзнуть.
Телефон и радио — испытанные средства связи. Они, вероятно, не подведут и в необычайных условиях космического полета.
Представьте себе, что путешественник выбрался через двойной шлюз в пустоту. Тяжести нет, и легкий толчок унесет его прочь, если он не привязан тросом. По тросу же нетрудно вернуться обратно. Ну, а если трос оборвется, что тогда? Останется подчиниться законам небесной механики и превратиться в вечного странника, блуждающего в межпланетном пространстве? Нет, портативный ракетный двигатель в ранце за спиной или отдача при выстреле из пистолета вернут заблудившегося обратно, сообщая ему толчками движение в нужном направлении.
Итак, мы с вами на бумаге очень просто решили проблему создания межпланетного скафандра. Однако из опыта авиации известно, что со скафандром пришлось порядочно повозиться! Здесь же придется потрудиться еще больше. Но как от самого самолета в конце концов перейдут к космическому кораблю, так и от высотного костюма летчика дойдут до костюма звездоплавателя, в котором он побывает за атмосферой и вступит на почву неведомых миров.
Летом 1920 года из Неаполя вышла яхта и взяла курс в открытое море. Это была экспедиция, но не за диковинными рыбами и растениями больших глубин и не за сокровищами погибших кораблей. Огромные антенны изуродовали стройный корпус яхты. Невиданной еще мощности приемник со множеством ламп установлен был в радиорубке. Не корабль, а плавающая радиостанция бороздила воды Средиземного моря.
Уже давно то там, то здесь коротковолновики ловили странные шумы, шорохи, трески... Кое-кому чудилась какая-то правильность в капризном шопоте радиоволн. Любители спешили оповестить мир о сигналах с других планет и прежде всего с Марса. Яхта вышла на охоту за таинственными сигналами, столь смущавшими умы некоторых ученых.
То же повторилось и в год великого противостояния, когда Землю и Марс разделяли «только» пятьдесят пять миллионов километров. А что такое они для радиоволн, не знающих преград в мировом пространстве? И думали, что марсиане, если они только существуют, захотят установить связь со своими соседями.
Горячие головы уже мечтали о регулярном радиообмене депешами с Марсом. Писатели, забегая вперед, описывали воображаемые разговоры с марсианами.
К чему выдумывать сложные системы световых или иных сигналов, «исписывать» лицо планеты разными геометрическими фигурами из лесных насаждений, когда можно пользоваться межпланетным радиотелеграфом? Радиоволнам не страшно расстояние. Со скоростью света пробегут они космические бездны, принеся вести о том, что мы, возможно, не одиноки во вселенной. Уж если слабенькие любительские приемники ловили что-то похожее на сигналы, так сверхмноголамповый приемник их отыщет — в том не может быть сомнений.
Однако, как ни изощряли слух радисты, сигналов обнаружить не удалось. Экспедиция вернулась обратно ни с чем.
Не пришлось экспедиции убедиться и в том, что радиоволны способны совершать межпланетные путешествия. Только много позднее это доказали другим, более правильным путем. Чем ждать, пока кто-то неведомый пришлет сигналы, решили послать их сами. Но здесь сразу же встало препятствие, столь серьезное, что о нем стоит, рассказать поподробнее.
Мы живем в мире электромагнитных колебаний, к которым принадлежат и радиоволны. Бесчисленные передатчики — плавающие, летающие, стоящие на земле — день и ночь посылают их в пространство. Волны совершают замечательные путешествия. Некоторые из них могут несколько раз подряд с головокружительной быстротой обогнуть земной шар.
Но покинуть Землю и вырваться в межпланетные просторы им не удается. Непреодолимая преграда стоит на их пути, и виновником этого является Солнце. Невидимые ультрафиолетовые лучи на больших высотах, где воздух сильно разрежен, обладают особенно большой энергией. Они ионизируют газовые частички, создавая электропроводящие слои, отражающие радиоволны. Кроме того. Солнце посылает потоки заряженных частиц.
Заряженные электрически частицы образуют броню для волн. И на разных высотах, от ста километров и выше, в атмосфере постоянно находятся крепко запертые двери, не дающие радиоволнам покинуть Землю.
Однако и тут нашли лазейку. Короткие волны, несущие большую электромагнитную энергию, могут проникать через первый слой. У них хватает силы пробить электрический панцырь и подняться выше него. Но и они вынуждены в бессилии останавливаться перед другой преградой. Только самые короткие волны, которые посылает радиолокатор мощным пучком, способны прорваться через все отражающие слои атмосферы и пуститься в далекие космические путешествия.
Несколько лет назад радиолуч впервые был послан на Луну и вернулся обратно. Локация Луны, возможность которой еще ранее предвидели советские ученые, — выдающееся событие в истории науки. Его значение не только в том, что удалось прямым, а не косвенным путем точно измерить расстояние до нашего спутника. Прикосновение радиоволнами к другому небесному телу положило начало новому многообещающему методу астрономических исследований — методу активного изучения окружающих нас миров. До сих пор астрономы вынуждены были довольствоваться тем, что расскажет им свет — этот единственный вестник далеких звезд и планет. Теперь настало иное время. Человек находит способы изучать процессы, происходящие вне Земли, далеко за пределами своей планеты, сам, своими силами, посылая разведчиков в глубины космоса.
Локация Луны. |
Радиолокация даст возможность не только проследить за изменениями расстояния от Земли до Луны — оно ведь меняется, бывая то больше, то меньше, — но и узнать о том, какова лунная поверхность. Отраженный луч позволяет судить об этом. Так, наблюдения за отражением радиоволн подтвердили существование слоя пыли, покрывающего Луну. Делались попытки измерять температуру поверхности нашего спутника, улавливая излучаемые им слабые радиосигналы.
Радио выступит в роли небесного топографа и поможет составить подробные карты соседних с нами планет. Радиоволны проникнут туда, куда не может попасть свет, — за густые газовые оболочки планет-гигантов, за облака Венеры. Локация сыграет свою роль и в разгадке многих тайн других планет.
Можно смело сказать, что теперь еще больше раздвинулись рамки мира. Лабораторией человека, изучающего природу, постепенно становится и космос, ибо локация планет — это уже не пассивное наблюдение, а грандиозный научный эксперимент в масштабе не только Земли, а целой солнечной системы. Насколько возрастет размах таких опытов, когда сумеют перенести их за атмосферу, на внеземную станцию!
Радиотехнике по праву будет принадлежать исключительная роль в завоевании межпланетного пространства. Сейчас она уже помогает управлять полетом ракет, поднимающихся в заоблачные высоты, передавать показания приборов, сведения о работе двигателя. Одновременно радио доносит по многим каналам связи несколько сигналов, не мешающих друг другу. Достижения радиотехники последних лет позволяют, не поднимаясь с Земли, побывать в стратосфере: все, что отмечают приборы, сразу же становится известно на земном пункте наблюдений.
Считают, что не за горами составная ракета — спутник Земли. Это будет своеобразный радиомаяк за атмосферой, постоянная автоматическая лаборатория в космосе. Такое техническое чудо — космическую лабораторию — можно осуществить благодаря величайшим завоеваниям техники нашего века.
Металлургия даст легкие, но прочные сплавы, которые не побоятся ни тысячеградусной температуры в работающем ракетном двигателе, ни холода межпланетного пространства. Радиотехника снабдит ракету миниатюрным, но достаточно мощным передатчиком, чтобы посланные им радиоволны смогли пробить «панцырь» атмосферы и принести нам сигналы с космического корабля. Приборы для изучения жизни Солнца и космических лучей создадут приборостроители. И настанет торжественный день старта, за которым будет следить вся Советская страна, весь мир.
Автоматическая ракета-спутник немыслима без радиопередатчика. А ведь всего три такие ракеты нужны, чтобы вести телевизионные передачи из одного пункта для всей планеты. Такие ретрансляционные промежуточные станции увеличили бы дальность телевидения до тысячекилометровых расстояний. Волны, на которых идут передачи, распространяются примерно в пределах прямой видимости — лишь на десятки километров. Если бы ретрансляционную станцию поднять над Землей, возможности телевидения выросли бы необычайно — я говорю о внеземных отражателях, поставленных так, что они всегда будут «висеть» в одном месте, словно поднятые на вершину невидимой горы. Только круговая космическая скорость и выбранное нужным образом расстояние до спутника позволят так сделать. Предлагали использовать для этого Луну. Искусственные луны удобнее. Дальновидение станет действительно дальновидением!
На экране земного телевизора - передача с ракеты-автомата. |
Астрономическая обсерватория, вынесенная ракетой в космос, будет иметь радиолокационные установки такой мощности и таких размеров, какие трудно сегодня представить. Слабая тяжесть, неисчерпаемая энергия, отсутствие атмосферных помех создадут там для них идеальные условия. Расширятся возможности радиоастрономии. Подробная карта Марса, исследование поверхности Венеры и гигантских планет солнечной системы, скрытых облаками ядовитых газов, локация Солнца — эти реальные уже сейчас проблемы получат свое дальнейшее развитие.
Может быть, научатся локировать планеты другими невидимыми лучами. Ведь, например, проникают сквозь туман и возвращаются обратно инфракрасные лучи. Экраны таких локаторов покажут истинное лицо планет, скрытое непрозрачной для света атмосферой. Невидимые лучи вызывают свечение минералов, растений, горных пород. Волшебными красками засияет ожившая чудесная карта далекого мира! С помощью радиотелескопов, возможно, будут улавливать излучения Солнца, звезд, звездных скоплений.
Предполагают, что в мировом пространстве существуют своеобразные природные радиостанции, посылающие сигналы из космоса, говоря о каких-то еще неведомых процессах в скоплениях раскаленной материи. Когда удастся проникнуть в эти тайны, новое слово — радиоастрономия — наполнится еще более глубоким содержанием.
Радиолокация облегчит посадку на планеты и возвращение космического корабля на Землю. Наконец межпланетным сообщениям нужна надежная служба связи — ее тоже обеспечит радио.
Управляемые беспилотные ракеты полетят на разведку к Луне и планетам. Телевизионные передачи с ракет из мирового пространства и вблизи планет, навигация с помощью радиомаяков — спутников планеты, разговор экипажа ракеты с Землей и с другими ракетами — все это будет возможно благодаря великому открытию Попова.
Когда-то люди услыхали голос с неба: «Говорит «Марс»! Высота девятнадцать километров...» Это были позывные рации советского стратостата. Стратонавты рапортовали о подъеме в поднебесье.
Придет время, и люди услышат: «Земля! Говорит Луна! Говорит Марс!» То будет не голос мифических селенитов — жителей Луны — или обитателей Марса, а голос советских людей, впервые совершивших полет к иным мирам.