Alexander C. T. Geppert/Till Kössler (Hg.)

Obsession der Gegenwart

Zeit im 20. Jahrhundert

V\&R Academic

Geschichte und Gesellschaft

Zeitschrift für Historische Sozialwissenschaft

Herausgegeben von
Jens Beckert/Christoph Conrad/Sebastian Conrad/Ulrike Freitag Ute Frevert / Svenja Goltermann / Dagmar Herzog / Wolfgang Kaschuba
Simone Lässig / Paul Nolte / Jürgen Osterhammel / Margrit Pernau Sven Reichardt / Stefan Rinke/Rudolf Schlögl/ Martin Schulze Wessel Adam Tooze / Hans-Peter Ullmann

Sonderheft 25:
Obsession der Gegenwart. Zeit im 20. Jahrhundert

Obsession der Gegenwart

Zeit im 20. Jahrhundert

Herausgegeben von
Alexander C.T. Geppert und Till Kössler

Vandenhoeck \& Ruprecht

Mit 15 Abbildungen, 9 Diagrammen und 1 Tabelle

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN 978-3-525-36425-3
Weitere Ausgaben und Online-Angebote sind erhältlich unter: www.v-r.de.
Umschlagabbildung: Metropolis, Regie: Fritz Lang, Universum-Film AG (UFA), Deutschland 1925/1926; hier Szenenfoto mit Gustav Fröhlich. © bpk/Stiftung Deutsche Kinemathek/Horst von Harbou
© 2015, Vandenhoeck \& Ruprecht GmbH \& Co. KG, Theaterstraße 13, 37073 Göttingen/
Vandenhoeck \& Ruprecht LLC, Bristol, CT, U.S.A.
www.v-r.de
Alle Rechte vorbehalten. Das Werk und seine Teile sind urheberrechtlich
geschützt. Jede Verwertung in anderen als den gesetzlich zugelassenen Fällen
bedarf der vorherigen schriftlichen Einwilligung des Verlages.
Printed in Germany.
Satz: textformart, Göttingen
Druck und Bindung: \oplus Hubert \& Co, Robert-Bosch-Breite 6, 37079 Göttingen
Gedruckt auf alterungsbeständigem Papier.

Alexander C.T. Geppert

Die Zeit des Weltraumzeitalters, 1942-1972*

Abstract

Through the twentieth century, the continual exploration of outer space and its imaginary colonization in science and fiction has led to a new understanding of the space-time continuum. While the physical space surrounding planet Earth was conceptualized ever more precisely, the encounter with the immensity of time has provoked less resonance. This article analyzes the temporal dimension of the Age of Space in three steps. First, it juxtaposes various ways of conceptualizing the so-called Space Age as a significant period in human history. Second, it examines orders of time inherent in West-European space thought, in particular the widespread appeal of time dilatation as seen in Eugen Sänger's popular 1950s photon rocket scenario. Third, it charts the experience of time on board spaceships, as detailed in astronauts' autobiographies. This article argues that the appeal of the Space Age lay not only in the promise of continued physical expansion but also in the total control over the fourth dimension envisioned for the future.

L'astronautique nous fait prendre magistralement conscience de „l'espace-temps".
Albert Ducrocq, 1961^{1}

Am 26. Februar 1958 kamen in der niedersächsischen Provinz Wissenschaftler, Politiker und Diplomaten zusammen, um in der Evangelischen Akademie in Loccum vier Tage lang über ein aktuelles Thema von weltanschaulicher

[^0]wie geopolitischer Brisanz zu verhandeln. Zum »Platzen substanzreich" sei die Konferenz gewesen, befand das Sonntagsblatt später, obwohl sie einer Sache galt, die es noch nicht gab: den »Menschen im Weltraum«. Unter den etwa 130 Teilnehmerinnen und Teilnehmern fanden sich nicht nur Theologen, darunter der Hannoveraner Landesbischof Hanns Lilje (1899-1977), sondern auch führende Raketen- und Weltraumexperten aus dem In- und Ausland. Einer der Redner, Andrew G. Haley (1904-1966), war Präsident der International Astronautical Federation (IAF) und stand damit derjenigen Organisation vor, zu der sich Aktivisten und Enthusiasten der jungen Weltraumbewegung - die sogenannten space personae - auf Betreiben der verschiedenen nationalen Amateur- und Lobbygruppen zusammengeschlossen hatten. ${ }^{2}$ Fünf Monate zuvor, am 4. Oktober 1957, hatte die Sowjetunion den ersten künstlichen Satelliten, Sputnik 1, drei Monate lang im Erdorbit stationiert. Vier Monate später, am 31. Januar 1958, waren die Vereinigten Staaten mit Explorer I nachgezogen. Beide Großmächte hatten einen entsprechenden Start als Teil des Internationalen Geophysikalischen Jahres zuvor angekündigt. "Das planetarische Zeitalter hat begonnen«, verkündete die Frankfurter Allgemeine Zeitung, und auch Die Welt befand, dass durch den sowjetischen Erdsatelliten eine »neue Epoche der Menschheit« eingeleitet worden sei. ${ }^{3}$ Nur wenige Monate später setzte es sich die Loccumer Konferenz zum Ziel, die hereinbrechende Zeit in all ihren gesellschaftspolitischen Implikationen zu reflektieren. Im Vordergrund stehe nicht die neue Technik, sondern die »Frage nach dem Menschen", erklärte das Tagungsprogramm:

Der Flug in den Weltraum [wird] für alle Menschen auf der Erde eine tiefgreifende Veränderung bedeuten [...], auch wenn vielleicht nur wenige eine solche Reise mitmachen werden. Die Auseinandersetzung mit dem Problem ist notwendig, da diese Phase des technischen Zeitalters in ethische und religiöse Bereiche hineingreift. Die Möglichkeit eines Vordringens in den Weltraum kann den geistigen Standort des Menschen in erheblichem Maße verschieben. In dieser Richtung können die Veränderungen sogar größer sein als vom Sachlichen her. ${ }^{4}$

Offenkundig erwartete man, dass die kulturellen Rückwirkungen der Raumfahrt den Zuwachs an technisch-naturwissenschaftlichem Wissen bei weitem übersteigen würden.

Unter den zehn Vorträgen ragten zwei heraus und führten zu einem handfesten Streit. Dieser sorgte dafür, dass die Tagung in der umfangreichen Presse-

[^1]berichterstattung einhellig als "aufsehenerregend" beschrieben wurde. ${ }^{5}$ Der Ingenieur und führende Vertreter der westdeutschen Raumfahrt Eugen Sänger (1905-1964), zu diesem Zeitpunkt Direktor des Forschungsinstituts für Physik der Strahlantriebe in Stuttgart, pries die »Weltraumfahrt« als Schlüsseltechnologie der Zukunft, skizzierte, wie mit ihrer Hilfe der Krieg überwunden und der Weltfrieden gesichert werde, und kündigte für das Jahr 1980 die erste bemannte Raumstation im Erdorbit an. ${ }^{6}$ Solchen optimistischen Prognosen widersprach einer der anwesenden scientific celebrities, der Physiker, Nobelpreisträger und Mitunterzeichner der Göttinger Erklärung Max Born (1882-1970), mit einer derartigen Schärfe, dass er sich später zum Verfassen von Entschuldigungsschreiben veranlasst sah. Born warnte vehement vor einer »ungehemmten Fortschrittsjagd« und brandmarkte die Weltraumeroberung als »extravaganten Luxus«. Die Raumfahrt rechtfertige nicht die erforderlichen hohen Kosten: »Ich gehöre zu der Generation, die noch zwischen Verstand und Vernunft unterscheidet. Von diesem Standpunkt aus ist die Raumfahrt ein Triumph des Verstandes, aber ein tragisches Versagen der Vernunft«, lautete der noch Jahre später zitierte Kernsatz der »Raumfahrt und Zeitbegriff« betitelten Philippika Borns. ${ }^{7}$

5 Aus den etwa zwei Dutzend Tagungsberichten siehe nur: Adalbert Bärwolf, Was wollen wir eigentlich im Weltraum?, in: Die Welt, 4.3.1958, S. 3f.; Erste bemannte Raumstation 1980, in: FAZ, 1.3.1958, S. 4; Kurz vor oder kurz nach Zwölf?, in: Die Zeit, 6.3.1958, S. 3; Hermann Laupsien, Weltraumfahrt zwischen Tat und Furcht, in: Handelsblatt, 5.3.1958; Alexander von Cube, Versagt im Weltraum die Vernunft?, in: Vorwärts, 23.5.1958, S. 19; zahlreiche weitere Berichte in LkAH, E 46, Nr. 185. Im Juni 1959 organisierte die Loccumer Akademie eine Nachfolgetagung zum Thema "Mensch - Atom - Rakete«. Eine Auswahl überarbeiteter Vorträge erschien Ende 1959 unter dem Titel »Der Weltenraum in Menschenhand" (Stuttgart 1959) und wurde von dem langjährigen Akademieleiter Hans Bolewski (1912-2003) gemeinsam mit dem Ingenieur, Raketentechniker und Ex-»Peenemünder" Helmut Gröttrup (1916-1981) herausgegeben.
6 An anderer Stelle (etwa ders., Die Zukunft der Raumfahrt, in: FAZ, 24.11.1956, S. BuZ1) gab Sänger zu Protokoll, dass man bereits „kurz nach 1970« mit den ersten kleinen bemannten Raumstationen zu rechnen habe, was sich in der Rückschau bestätigt (Saljut 1, 19.4.-11.10.1971). Als Úberblick zur Raumfahrtwissenschaft in der BRD: Helmuth Trischler, Die bundesdeutsche Raumfahrt der 60er Jahre. Forschungs- und technologiepolitische Weichenstellungen, in: Johannes Weyer (Hg.), Technische Visionen - politische Kompromisse. Geschichte und Perspektiven der deutschen Raumfahrt, Berlin 1993, S. 59-72, hier S. 60 f., sowie Niklas Reinke, Geschichte der deutschen Raumfahrtpolitik. Konzepte, Einflußfaktoren und Interdependenzen, 1923-2002, München 2004, S. 48-54.
7 Max Born, Der Sinn der Weltraumfahrt, in: Physikalische Blätter 14. 1958, S. 238; LkAH, E 46, Nr. 185, Born an Bolewski, 5.3.1958: „Es tut mir leid, daß ich gezwungen war, so etwas wie ein Enfant terrible zu spielen und einen scharfen Ton in die Debatte zu bringen. Aber Sie werden verstanden haben, daß ich das nicht aus Bosheit tat, sondern von meinem Gewissen gestachelt [sic].« Ders., Ein Besuch bei den Raumfahrern und das Uhrenparadoxon, in: Physikalische Blätter 14. 1958, S. 207-212; ders., Vom Segen und Unsegen der Weltraumfahrt [Vortrag im Hessischen Rundfunk, 1960], in: ders., Von der Verantwortung des Naturwissenschaftlers. Gesammelte Vorträge, München 1965, S. 131-139, hier S. 134.

In einem Punkt waren sich die Antagonisten indes einig: ihrem Interesse an der Weltraumzeit, insbesondere dem sogenannten Uhren- oder Zwillingsparadoxon. Heute für gewöhnlich unter dem Begriff der »Zeitdilatation« diskutiert, besagt dieses zum ersten Mal 1905 in Einsteins spezieller Relativitätstheorie formulierte Paradoxon, dass die Zeit mit zunehmender Geschwindigkeit langsamer vergeht. So könnten noch viele Lichtjahre entfernte Sterne innerhalb der Lebenszeit eines Menschen erreicht werden, wenn sich das Raumschiff mit entsprechend hoher Geschwindigkeit bewegt. Da die Zeit an Bord im Verhältnis zur Zeit auf der Erde langsamer verstreicht, würden Weltraumreisende bei ihrer Rückkehr auf deutlich später Geborene stoßen. Diese „scheinbar verrückteste, schier unvorstellbare Konsequenz" der Relativitätstheorie, kommentierte der Spiegel nach der Loccumer Tagung verblüfft, würde es »der Menschheit gestatten, den anscheinend unabänderlichen ehernen Ablauf der Zeit zu durchbrechen ${ }^{8}{ }^{8}$
»Zeit«, „Zeitalter«, "Zukunft", "Zeitbegriff", »Zeitdilatation«: Unterschiedliche Begriffe, Formen und Vorstellungen von Temporalität spielten eine zentrale Rolle in der nicht erst Ende der 1950er Jahre, sondern bereits in der Zwischenkriegszeit einsetzenden, von Beginn an transnationalen und zusehends breitenwirksamer geführten Diskussion um die fortschreitende Erschließung des Weltraums und seiner imaginären Kolonialisierung in Science und Fiction. ${ }^{9} \mathrm{Zu}$ einem Zeitpunkt, an dem nach konventioneller Lesart das sogenannte Space Age gerade erst eingesetzt hatte, waren die Debatten um seine Deutung längst im Gange. ${ }^{10}$ Wie sich angesichts des bevorstehenden Ausgreifens in den

8 Albert Einstein, Zur Elektrodynamik bewegter Körper, in: Annalen der Physik 322. 1905, S. 891-921; Die letzte Reise, in: Der Spiegel 26.3.1958, S. 54-56, hier S. 54. Eine vom U.S. Naval Research Laboratory veröffentlichte Bibliographie listete 1959 bereits über 240 Veröffentlichungen ausschließlich zu diesem Problem; siehe Mildred Catherine Benton (Hg.), The Clock Problem (Clock Paradox) in Relativity. Theories, Both Pro and Con, Recorded in the Literature. An Annotated Bibliography, Washington, DC 1959. Mitunter wird das Uhrenparadoxon auch als "Zeitparadoxon" oder »space-time-dilemma" bezeichnet; Kenneth F. Gantz (Hg.), Man in Space. Principles and Practice of Space Flight as Developed by the United States Air Force, London 1959, S. 277.
9 Geppert, Space Personae; Michael J. Neufeld, Weimar Culture and Futuristic Technology. The Rocketry and Spaceflight Fad in Germany, 1923-1933, in: Technology and Culture 31. 1990, S. 725-752.

10 Etwa William E. Burrows, This New Ocean. The Story of the First Space Age, New York 1998. Selbst ein Produkt des Kalten Krieges, hat sich die sogenannte Space History erst in den letzten Jahren sozial- und kulturhistorischen Fragestellungen gegenüber geöffnet, dabei ihre stark bipolare Ausrichtung indes weitgehend beibehalten. Ein aktueller Forschungsbericht, der sowohl nicht-amerikanische als auch nicht-sowjetische Perspektiven berücksichtigen und systematisch die Bedeutung der Weltraumgeschichte für die Wissens-, Kul-tur- und Gesellschaftsgeschichte des 20. Jahrhundert herausarbeiten würde, existiert nicht; siehe aber Roger D. Launius, The Historical Dimension of Space Exploration. Reflections and Possibilities, in: Space Policy 16. 2000, S. 23-38, und Asif A. Siddiqi, American Space History. Legacies, Questions, and Opportunities for Future Research, in: Steven J. Dick u.

Weltraum Fragen nach Zeitlichkeit auf radikale Weise neu stellten, war ein entscheidendes Erkenntnisinteresse der Tagungsorganisatoren. Natürlich mache er sich Gedanken über die »Zukunft bezüglich der Erschließung des Weltraumes und die für uns Menschen auf unserer kleinen Erde entstehenden Konsequenzen«, hatte Mitinitiator Prinz Welf Heinrich von Hannover (1923-1997), promovierter Jurist und Enkel Wilhelms II., im Vorfeld formuliert. Zu erwarten stehe »die Außerkraftsetzung einer Fülle von Maßstäben und Grundlagen unseres menschlichen Daseins, unserer Rechtsbegriffe, unserer sittlichen Normen, nicht zuletzt auch unseres religiösen Glaubens" - und zu diesen Grundlagen zählte eben auch »die Frage der verschiedenen Zeiten von der Welt und in der Rakete". ${ }^{11}$

Aus der umgekehrten, nicht weltraum-, sondern zeithistorischen Perspektive führt der Versuch, „Raumfahrt und Zeitbegriff« zueinander in Beziehung zu setzen, direkt ins Zentrum einer bislang ungeschriebenen Zeit-Geschichte des 20. Jahrhunderts. Insbesondere Reinhart Koselleck hat immer wieder darauf hingewiesen, dass von der Zeit vornehmlich in Metaphern gesprochen wird, welche der räumlichen Vorstellung entlehnt sind. Das Vergehen der Zeit ist bekanntlich nicht direkt, sondern nur relational zu erfahren und kann lediglich an der Positionsveränderung eines sich im Raum bewegenden Gegenstandes abgelesen werden. ${ }^{12}$ Im Weltraumzeitalter verschränkten sich Raum- und Zeitdenken wie niemals zuvor, galt es doch, Entfernungen ganz neuen Ausmaßes und räumliche Ausdehnungen bislang unbekannter Dimensionen zu bedenken. Wenn das Argument zutrifft, dass irdische Raumvorstellungen vom imaginierten, aber auch faktisch erfolgten Ausgreifen in den die Welt umgebenden Raum

[^2]geprägt wurden - von Christoph Asendorf mit Carl Schmitt als »Raumrevolution« bezeichnet - liegt es nahe, nach solchen Querverbindungen, Rückbezügen und Wechselwirkungen zwischen Weltraum- und Zeitdenken zu fragen. Da die Rechnung, die jeder Kalender und jede Uhrzeit darstellt, auf der Beobachtung von regelmäßigen Bewegungen der Himmelskörper basiert, ist letztlich alle irdische Zeit ohnehin eine Art von »Weltraumzeit". ${ }^{13}$

Der vorliegende Aufsatz geht in drei, chronologisch aufeinanderfolgenden Schritten vor, um eine solche Problemstellung buchstäblich kosmischer Dimensionen operationalisierbar zu machen und Weltraum- in Zeit-Geschichte des 20. Jahrhunderts einzuschreiben. Die erste der gewählten Perspektiven ist ein klassisch begriffshistorischer Zugang, mit dem zugleich die Frage nach denkbaren Periodisierungen verbunden ist: Seit wann gibt es die Rede vom Space Age, wie wurde es charakterisiert und wann könnte ein solches Weltraumzeitalter stattgefunden haben? In einem zweiten Schritt gilt es, die dem westeuropäischen Weltraumdenken inhärenten Formen von Zeit, Zeitlichkeit und - vor allem - Zukunftsdenken nachzuzeichnen. Seit einigen Jahren wird dieser enge Konnex zwischen Weltraumbegeisterung und der weitverbreiteten Vorstellung einer bevorstehenden »Zukunft in den Sternen" unter dem assoziationsreichen Begriff »Astrofuturismus« diskutiert, indes nahezu ausschließlich auf die Vereinigten Staaten beschränkt. ${ }^{14}$ Drittens und letztens wird, komplementär dazu und im Sinne des eingangs zitierten französischen Wissenschaftspopularisators Albert Ducrocq (1921-2001), nach Rückwirkungen der Astronautik auf das westliche Zeitbewusstsein gefragt, insbesondere seit Beginn der bemannten Raumfahrt am 12. April 1961. Letzten Endes bestätigt sich hier eine Beobachtung Norbert Elias': Zeit ist ein vom Menschen geschaffenes Orientierungssystem irdischen Charakters. Dass dieses jenseits der Erdgrenzen nicht funktioniert und bereits auf dem Mond nicht mehr sinnvoll anzuwenden ist, stellt eine genuine Erfahrung des Weltraumzeitalters dar. »Ich habe gesehen, wie die Zeit auf der Erde verstrich", gab Apollo 17-Astronaut Eugene Cernan (1934-), der bis dato letzte Mensch auf dem Mond, nach seiner Rückkehr im Dezember 1972

13 Christoph Asendorf, Super Constellation - Flugzeug und Raumrevolution. Die Wirkung der Luftfahrt auf Kunst und Kultur in der Moderne, Wien 1997, S. 260; Carl Schmitt, Gespräch über den Neuen Raum [1955], in: ders., Gespräche über die Macht und den Zugang zum Machthaber, Berlin 1994, etwa S. 59: „Heute öffnen sich uns die unendlichen Räume des ganzen Kosmos."
14 Dieser Begriff ist nicht der Quellensprache entnommen, sondern wurde von dem Literaturwissenschaftler De Witt Douglas Kilgore Ende der 1990er Jahre in die Debatte eingeführt; siehe ders., Engineers' Dreams. Wernher von Braun, Willy Ley, and Astrofuturism in the 1950s, in: Canadian Review of American Studies 27. 1997, S. 103-131, sowie ders., Astrofuturism. Science, Race, and Visions of Utopia in Space, Philadelphia 2003. Zuvor hatten schon andere auf den engen Konnex von Weltraum- und Zukunftsdenken auch jenseits der Science Fiction aufmerksam gemacht, etwa Brian Horrigan, Popular Culture and Visions of the Future in Space, 1901-2001, in: Bruce Sinclair (Hg.), New Perspectives on Technology and American Culture, Philadelphia 1986, S. 49-67.
zu Protokoll: »Doch so, wie wir sie verstehen, hat Zeit uns auf dem Mond überhaupt nicht berührt." ${ }^{15}$

I. Wann war das Space Age?

Obwohl das Ein- und Unterteilen vergangener Zeit in unterschiedliche Phasen kürzerer oder längerer Dauer ein Standardverfahren jedweden historischen Arbeitens darstellt, werden Sinn und Nutzen des Periodisierens selten metahistorisch reflektiert. Jürgen Osterhammel hat Periodisierung als eine »ungeliebte Notwendigkeit« bezeichnet und ihre Geringschätzung auf ein unter Historikern nur wenig verbreitetem Interesse an der Zeit zurückgeführt. ${ }^{16}$ Über das Ordnen vergangener Zeit hinaus bieten Periodisierungsfragen indes die Chance historischen Erkenntnisgewinns. Jeder Periodisierungsentscheidung liegt die Annahme zugrunde, dass der als »Phase«, "Periode«, „Epoche" oder gar »Zeitalter« bezeichnete Zeitabschnitt durchgängig von einem gemeinsamen Strukturmerkmal charakterisiert wird, welches ihn von anderen Einteilungsmöglichkeiten abhebt und die zusammengefasste Zeit zu einer Sinneinheit macht. Verdichtende Zuschreibungen dieser Art können sowohl historisch-prospektiv als auch historiographisch-retrospektiv erfolgen. Der Umgang mit der ersten Kategorie von Periodisierungen - denjenigen »in der Zeit« beziehungsweise innerhalb des zusammenzufassenden Zeitraums und damit noch vor dessen Ende entworfenen - stellt eine besondere Herausforderung dar, sind solchen historischen Gegenwartsdiagnosen doch stets Annahmen über zukünftig zu erwartende Entwicklungen inhärent, welche sich in der Rückschau vollständig anders ausnehmen mögen.

Der Begriff des »Weltraumzeitalters« beziehungsweise des »Space Age« stellt einen solchen, zeitgenössisch geprägten Neologismus mit einem besonders groBen Anteil prospektiver Annahmen dar. Seinem analytisch-gegenwartsdiagnostischen Nutzen stehen beträchtliche prognostisch-politische Bedeutungsanteile gegenüber. Für eine Geschichte des Weltraumdenkens ist der Begriff allen ideologischen Komplikationen zum Trotz indes unverzichtbar. Einmal

15 Elias, Uber die Zeit, hier S. XXI u. S. 34; Cernan zitiert nach Frank White, The Overview Effect. Space Exploration and Human Evolution, Boston 1987, S. 21 f. (dt.: Der Overview Effekt. Die erste interdisziplinäre Auswertung von 20 Jahren Weltraumfahrt, Bern 1989, S. 42 f.). Kritisch zum religiös-kolonialistischen Impetus dieses weltraumhistorischen Klassikers Thore Bjørnvig, Outer Space Religion and the Overview Effect. A Critical Inquiry into a Classic of the Pro-Space Movement, in: Astropolitics 11. 2013, S. 4-24.
16 Jürgen Osterhammel, Öber die Periodisierung der neueren Geschichte, in: Berichte und Abhandlungen der Berlin-Brandenburgischen Akademie der Wissenschaften 10. 2002, S. 45-64, hier S. 45-48 u. S. 50. Siehe aber Hans Blumenberg, Die Legitimität der Neuzeit [1966], Frankfurt 1988^{2}, S. 531-557, demzufolge die Neuzeit das erste und einzige Zeitalter war, das sich selbst als eine eigene Epoche begriff und zur Abgrenzung dementsprechend andere Epochen erfand. Ausführlicher dazu die Einleitung zum vorliegenden Band.
handelt es sich um den weltraumhistorischen Oberbegriff schlechthin. Auf vage, aber wirkmächtige Art und Weise bündelte er die gesamte Programmatik, die Mitte des 20. Jahrhunderts der unmittelbar bevorstehenden „Eroberung" des Weltraums und seiner unendlichen Weiten zugeschrieben wurden, inklusive technizistischer Zukunftsversprechungen, fantastischen Expansionsszenarien und transzendenten Heilserwartungen. Zum anderen dient er zur präziseren Einordnung der Geschichte des Weltraums in den größeren zeithistorischen Kontext des 20. Jahrhunderts, ähnlich dem »Atomzeitalter«, das sich ebenso wenig wie das Space Age auf ein Unterkapitel des Kalten Krieges beschränkt. ${ }^{17}$ Gleichwohl ist der Begriff alles andere als unproblematisch. Trotz seiner unverkennbaren Zeitgebundenheit wird er weiterhin verwendet, nicht nur in der Öffentlichkeit, sondern ebenfalls von Fachwissenschaftlerinnen und -wissenschaftlern, ohne dass seine analytische Eignung jemals diskutiert oder eine Verständigung über seine gegenwartsbezogenen, politischen und technoszientistischen Implikationen erzielt worden wäre. ${ }^{18}$

Was war also dieses Space Age, wann setzte es ein und wie lange dauerte es an? Als am 4. Oktober 1957 der erste künstliche, zunächst noch namenlose Satellit die Erde umkreiste, wurde dies gemeinhin als der Moment gewertet, an dem das ebenso lang erwartete wie häufig prognostizierte Weltraumzeitalter begann. „Space Age is Here" titelte der Londoner Daily Express, die New York Times erklärte das Space Age für »eröffnet", und auch der Figaro feierte das neue "l'âge de l'astronautique«, welches das "l'âge de l'aviation" abgelöst habe und "la première station du voyage interplanétaire" darstelle. ${ }^{19}$ "Es ist von entscheidender Wichtigkeit,", kommentierte die Frankfurter Allgemeine Zeitung den Beginn des neuen Zeitalters,

17 Dazu essayistisch Harald Bluhm, Das Atomzeitalter. Varianten einer Epochenbestimmung, in: Karsten Fischer (Hg.), Neustart des Weltlaufs? Fiktion und Faszination der Zeitwende, Frankfurt 1999, S. 203-224; Trischler, Bundesdeutsche Raumfahrt, S. 62.
18 Aus der politik- oder geschichtswissenschaftlichen Forschung zum Space Age im engeren Sinne: Walter A. McDougall, Technocracy and Statecraft in the Space Age. Toward the History of a Saltation, in: American Historical Review 87. 1982, S. 1010-1040; ders., ...the Heavens and the Earth. A Political History of the Space Age, New York 1985; David Lavery, Late for the Sky. The Mentality of the Space Age, Carbondale 1992; Burrows, New Ocean; Svetlana Boym, Kosmos. Remembrances of the Future, in: Adam Bartos u. dies., Kosmos. A Portrait of the Russian Space Age, New York 2001, S. 83-99; Roger D. Launius, Historical Dimensions of the Space Age, in: Eligar Sadeh (Hg.), Space Politics and Policy. An Evolutionary Perspective, Dordrecht 2002, S. 3-25; Marina Benjamin, Rocket Dreams. How the Space Age Shaped Our Vision of a World Beyond, New York 2003; Steven J. Dick (Hg.), Remembering the Space Age, Washington, DC 2008 (insb. der Beitrag der früheren NASAChefhistorikerin Sylvia Kraemer, Has There Been a Space Age?, ebd., S. 405-407); sowie Alexander C.T. Geppert, Rethinking the Space Age. Astroculture and Technoscience, in: History and Technology 28. 2012, S. 219-223.
19 Space Age is Here, in: Daily Express, 5.10.1957, S. 1; I.M. Levitt, Now the Space Age Opens, in: New York Times Magazine, 13.10.1957, S. 19 u. S. 82-84, hier S. 19; André George, Une date, in: Le Figaro, 7.10.1957, S. 1; Pierre de Latil, L'ère de l'astronautique a commencé, in: ebd. 5./6.10.1957, S. 4.
daß das Gefühl, dabeigewesen zu sein, als aus dem vertrauten Rundfunkkasten in unserer vertrauten Wohnung plötzlich ein summender Laut erklang, ein Zeichen aus dem Weltraum - daß dieses Gefühl, Augen- und Ohrenzeugen eines weltgeschichtlichen Wendepunktes zu sein, uns in träumerische Meditation versetze, uns den Atem stocken mache. Die Perspektiven dessen, was auf diesen ersten Satelliten nun alles folgen wird, sind ungeheuer. Da wir seit Jahrzehnten mit technischen Wundern vertrauten alltäglichen Umgang haben, ist anzunehmen, daß wir bald gedankenlos in den Sog dessen, was nun Schlag auf Schlag folgen muß, gerissen werden. ${ }^{20}$

An der Zwangsläufigkeit, Folgerichtigkeit und Unabwendbarkeit der nach einem solchen »weltgeschichtlichen Wendepunkt« nunmehr »Schlag auf Schlag« einsetzenden Entwicklung hegte Herausgeber Karl Korn keinen Zweifel, wohl aber an der moralischen Reife einer Menschheit, die trunken vom »Rausch ihrer Größe" nun in den Weltraum aufzubrechen ansetze. ${ }^{21}$

Indes war der mitunter so bezeichnete "Tag Null der Weltraumfahrt" kein solcher. Genau wie der lange zuvor angekündigte und nun endlich vollzogene "Drang in den Raum" weder eine komplette Überraschung darstellte noch im Westen einen »Schock« auslöste, standen die entsprechenden Worte längst bereit, um diese »neue Epoche der Weltgeschichte" zu diskutieren. ${ }^{22}$ Der Luft-fahrt-Journalist Harry Harper (1880-1960) hatte den Begriff "Space Age" am 19. Januar 1946 in der Überschrift zu einem Artikel in der britischen Boulevardzeitschrift Everybody's Weekly eingeführt. Detaillierter noch arbeitete er die Konturen des nun einsetzenden Abschnittes der Menschheitsgeschichte in einem im selben Jahr erschienenen Band»The Dawn of the Space Age«heraus. Harper zufolge müsse die historische Genese des neuen Zeitalters direkt aus den bislang erzielten Fortschritten von Wissenschaft und Technik abgeleitet werden, die sich in der Zukunft noch exponentiell fortsetzen und im interplanetarischen Reisen, zwischen den Planeten, kulminieren würden: „We have had an age of steam-power, an age of electricity and of the petrol engine, and an age of the air«, stellte Harper fest, »and now with the coming of atomic power the world should, in due course, find itself in the space age. And this should be the greatest age of all. ${ }^{23}$ Bemerkenswert an dieser sich als Gegenwartsdiagnose

20 Karl Korn, Wir sind dabei gewesen, in: FAZ, 7.10.1957, S. 1; siehe auch Heinz Gartmann, Und morgen - die Sterne?, in: ebd., 28.12.1957, S. BuZI.
21 Korn, Wir sind dabei gewesen.
22 Ebd.; Heinz Gartmann, Sonst stünde die Welt still. Das große Ringen um das Neue, Düsseldorf 1957, S. 344. Detaillierter zum Mythos des weit überschätzten »Sputnikschocku; Alexander C.T. Geppert, Anfang - oder Ende des planetarischen Zeitalters? Der Sputnikschock als Realitätseffekt, 1945-1957, in: Igor J. Polianski u. Matthias Schwartz (Hg.), Die Spur des Sputnik. Kulturhistorische Expeditionen ins kosmische Zeitalter, Frankfurt 2009, S. 74-94.

23 Harry Harper, The Space Age, in: Everybody's Weekly, 19.1.1946, S. 1 u. S. 8 f.; ders., Dawn of the Space Age, London 1946, hier S. 5. Siehe auch Art. Space Age, in: Oxford English Dictionary, Bd. 16, Oxford 1989 , S. 90. In anderen einschlägigen Texten aus der Frühphase des Weltraumdenkens vor und nach dem Zweiten Weltkrieg ist der Begriff „Space Age« nicht nachzuweisen; siehe etwa Hermann Oberth, Die Rakete zu den Planetenräumen,
gerierenden Zukunftsprognose war nicht nur ihre britische - und eben nicht nordamerikanische - Provenienz, sondern vor allem der frühe Zeitpunkt mehr als elf Jahre vor Sputnik. Bereits bei der allerersten Begriffsverwendung wurde ein kausaler Zusammenhang zwischen dem Weltraum- und dem Atomzeitalter hergestellt, selbst Inbegriff der Fortschrittsmoderne. Unmittelbar nach Kriegsende geprägt, ist der Signifikant »Space Age" über eine Dekade älter als sein Signifikat und stellt keinen begrifflichen Niederschlag, sondern eine terminologische Vorbedingung dessen Eintretens dar.

Durch Harpers Band in die USA exportiert, entwickelte sich der Terminus "Space Age" ab den frühen 1950er Jahren zu einem populären zeitdiagnostischen Schlagwort mit deutlich normativ-prognostischen Komponenten. ${ }^{24}$ Es stand für eine spezifische Version technoszientistischer Modernität, deren erste Vorboten man in der Gegenwart auszumachen glaubte und die durch den Glauben an größtmögliche Kontrollier- und Beherrschbarkeit des die Erde umgebenden Raumes charakterisiert war. Dass sich im Deutschen nicht ein einzelnes Hauptbegriffspendant durchsetzen konnte - zusäzzlich zur »interplanetarischen Ära« finden sich unter anderem »Weltraumzeitalter", „Raumfahrtzeitalter", "Raketenzeitalter", "kosmisches Zeitalter" und "Epoche der Raumfahrt« - tat der Popularität einer Zeitdiagnose keinen Abbruch, welche das für die Zukunft erwartete Ausgreifen in den Raum zum Signum der Gegenwart erhob. ${ }^{25}$

In seinen im Herbst 1952 abgeschlossenen Erinnerungen an die Entwicklung von A4/V-2-Raketen in Peenemünde versuchte Walter R. Dornberger (1895-1980),

[^3]ehemaliger Generalmajor der Wehrmacht und Kommandeur der dortigen Heeresversuchsanstalt, die Verbindung von Signifikant und Signifikat um zehn Jahre rückzudatieren und seine »Mittäterschaft« an der aufscheinenden neuen Epoche der Menschheitsgeschichte auch begrifflich zu sichern. Als am 3. Oktober 1942 eine der ersten A4/V-2-Raketen die Höhe von 84,5 Kilometern erreichte und damit als erstes Artefakt an die 100 -Kilometer-Grenze zum Weltraum stieß, so Dornberger 1952 in seiner Autobiographie »V-2: Der Schuß ins Weltall«, hätten die anderen Peenemünder und er selbst diesen historischen Moment als den »ersten Tag eines Zeitalters neuer Verkehrstechnik, dem der Raumschiffahrt" gefeiert (Abb. 1). In der zwei Jahre später erschienenen englischen Übersetzung wurde daraus: »a new era [...], that of space travel...... ${ }^{26}$

Damit stehen bereits drei mögliche Anfangsdaten des Weltraumzeitalters zur Debatte: der 3. Oktober 1942 mit dem ersten Überschreiten der Grenze zum Weltraum durch ein menschengemachtes Objekt, der 19. Januar 1946 als Datum der Begriffsprägung und der 4. Oktober 1957 als Tag der Stationierung des ersten künstlichen Satelliten im Erdorbit. Abhängig von den angelegten Kriterien sind freilich andere, sowohl deutlich frühere als auch deutlich spätere Zeitpunkte vorstellbar. ${ }^{27}$ Als im weiteren Verlauf in schneller Abfolge immer neue

26 Walter Dornberger, V2 - Der Schuß ins Weltall, Esslingen 1952 (engl.: V-2, New York 1954, S. 17), S. 23: „Neben Erde, Wasser und Luft wird nunmehr auch der unendliche leere Raum Schauplatz kommenden, kontinentenverbindenden Verkehrs werden und als solcher politische Bedeutung erlangen können. Dieser 3. Oktober 1942 ist der erste Tag eines Zeitalters neuer Verkehrstechnik, dem der Raumschiffahrt!..." In dem dieser Rede vermutlich zugrunde liegenden Vortragsmanuskript vom 6. Juni 1942 findet sich das entsprechende historische Verlaufsargument (n Auf dem dermaleinst mit unbedingter Sicherheit kommenden Raumschiff ist die Peenemünder Entwicklung ein erster Schritt.«), nicht aber der Begriff selbst; siehe Vortrag des Abteilungschefs Wa Prüf 11 [Waffenamt Prüfwesen, Abteilung 11 „Sondergeräte«] gelegentlich des ersten Versuchsschiessens mit A 4 am 12. Juni 1942 in Peenemünde (Dornberger), Smithsonian National Air and Space Museum Archives, Washington, DC [im Folgenden NASM], Captured German Documents (World War II), Fort Eustis (FE) Files 358, hier S. 1 f. Siehe auch Michael J. Neufeld, The Rocket and the Reich. Peenemünde and the Coming of the Ballistic Missile Era, Cambridge, MA 1995, S. 164 f. u. S. 315.

27 Etwa Rüdiger Proske, Zum Mond und weiter, Bergisch Gladbach 1966, S. 80; Ulrich Doerfel, Die Landung im Mondstaub. Geschichte, Theorie und Zukunft der bemannten Raumfahrt, Zürich 1969, S. 41-44. Zu den möglichen Endzeitpunkten des Weltraumzeitalters zählen u.a. der 20.7.1969 (erstmaliges Betreten eines fremden Himmelskörpers durch einen Menschen und damit Erreichen des Höhepunktes), der 14.12.1972 (bislang letztmaliges Betreten und damit Abschluss des „First" oder "Classical Space Age«) sowie, insbesondere aus amerikanischer Perspektive, der 28.1.1986 (Challenger-Unglück). In einem brillanten, bereits Ende der 1980er Jahre veröffentlichten Aufsatz hat etwa der Militärhistoriker Alex Roland diese dritte Möglichkeit stark gemacht; ders., Barnstorming in Space. The Rise and Fall of the Romantic Era of Spaceflight, 1957-1986, in: Radford Byerly Jr. (Hg.), Space Policy Reconsidered, Boulder 1989, S. 33-52, hier S. 33-38. Auf die Erfolge der unbemannten Raumfahrt verweisend, halten Vertreterinnen und Vertreter einer vierten, "open end"-Position dem entgegen,

Zwischenziele erreicht wurden, wurde das menschliche Ausgreifen in den - im Übrigen nur im Deutschen so bezeichneten - »Weltraum« zusehends zur alltäglichen Realität. Sogenannte space firsts - das erste Lebewesen (3. November 1957) und der erste Mensch im Erdorbit (12. April 1961), der erste Ausstieg außerhalb der schützenden Kapsel (28. März 1965), das erste Andockmanöver (16. März 1966), die erste Mondumkreisung (24. Dezember 1968) und der erste Mensch auf der Mondoberfläche (20. Juli 1969) - schienen retrospektiv sowohl die Validität früherer Voraussagen zu bestätigen als auch die unentrinnbare Logik der für das Space Race prognostizierten zukünftigen Entwicklung zu belegen. „Satelliten, Weltraumstationen, Flug nach dem Mond - das sind die aktuellen, jetzt schon fast offiziellen، Schritte zur Weltraumfahrt«, beschrieb Heinz Gartmann (1917-1960), der produktivste westdeutsche Weltraumpopularisator der Nachkriegszeit, diese Art in die Zukunft projizierter Pfadabhängigkeit, während das Technikmagazin Hobby den peu à peu umgesetzten »Weltraumfahrplan« als »Abenteuer nach Kursbuch« pries. ${ }^{28}$ Der engen Abfolge von Ereignissen entsprach die Wahrnehmung einer ungeheuer beschleunigten Entwicklung, vergingen doch vom Sputnikstart bis zur ersten Mondlandung nicht einmal zwölf Jahre.

Im Space Age wurde die Raum- zur Zeitdiagnose. Der Weltraum wurde zum Hauptmerkmal eines Zeitalters erklärt, der Glaube an seine unmittelbar bevorstehende „Eroberung« zum Definiens einer Gegenwart, deren Zukunft unweigerlich im räumlichen Jenseits stattfinden werde. Weil die Zukunft schon heute, im Jetzt, begann, stand die Gegenwart vollständig im Modus des Zukünftigen, in dessen "Sog" sie bald gezogen werden würde. Der Weltraum galt als das Signum eines auf Unendlichkeit angelegten, vom Vertrauen auf die fortschreitende Beschleunigung aller Innovationsprozesse gekennzeichneten und von der Plan- wie Realisierbarkeit solcher Großunternehmungen zutiefst überzeugten Zeitalters. Grundlage der interstellaren Expansionsfantasien und kosmischen Kolonialisierungsträume der Nachkriegszeit waren die beiden wichtigsten technischen Innovationen, die während des Zweiten Weltkriegs entwickelt worden waren, die Atombombe und die Rakete. Beide, das Atom- wie das Weltraumzeitalter, speisten sich aus demselben militärischen Entstehungszusammenhang, lösten sich jedoch zusehends voneinander ab, insbesondere hinsichtlich der jeweils assoziierten Zukunftsvorstellungen. Erlösungshoffnungen und Heilserwartungen

[^4]

Abb. 1: Start einer A4/V-2-Rakete vom Prüfstand VII in Peenemünde am 3. Oktober 1942.
Quelle: Smithsonian National Air and Space Museum, Washington, DC, NASM 83-13847.
wurden im unendlichen Weltraum platziert, während die ursprünglich ebenfalls utopistische Atomenergie schon bald für Angst, Schrecken und Zerstörung stand, in der Öffentlichkeit deutlich früher als unter den Experten. ${ }^{29}$

29 Claus Koch, Kritik der Futurologie, in: Kursbuch 14. 1968, S. 1-17, hier S. 13. Siehe Peggy Renger-Berka, Atome spalten. Transzendenz und Gemeinsinn im Diskurs um die Kernspaltung in Deutschland in Theologie und Politik in den 1950er Jahren, in: Katharina Neumeister u.a. (Hg.), Technik und Transzendenz. Zum Verhältnis von Technik, Religion und Gesellschaft, Stuttgart 2012, S. 129-145, hier S. 129, sowie die Beiträge in Dick van Lente (Hg.), The Nuclear Age in Popular Media. A Transnational History, 1945-1965, Basingstoke 2012, und Jonathan Hogg u. Christoph Laucht (Hg.), British Nuclear Culture, Cambridge 2012 (= British Journal for the History of Science, Special Issue 4). Zu den »atomic crossroads« ausführlich: Robert Poole, The Myth of Progress. 2001: A Space Odyssey, in: Geppert, Limiting Outer Space.

II. Die Zukunft in den Sternen

Mit Beginn des Weltraumzeitalters schienen sich die Visionen einer Zukunft in den Sternen zu bestätigen, die die etwa einhundert space personae und WeltraumExperten um Willy Ley, Arthur C. Clarke, Wernher von Braun und andere auf Grundlage älterer, utopisch-literarischer Szenarien seit den späten 1920er Jahren im transnationalen Austausch entwickelt, mediengerecht aufbereitet und international propagiert hatten. ${ }^{30}$ In ungebrochener, doch nur selten ausgesprochener Kontinuität zu den großen imperialen Expansionsprojekten des 19. Jahrhunderts hielten sie es für ausgemacht, dass der die Welt umgebende Raum in naher Zukunft »erobert« und bald die Kolonialisierung des Sonnensystems einsetzen werde. Glaubte man den Experten, werde die Zukunft nicht nur im Weltraum stattfinden, sondern auch dort entschieden werden. Für etwa ein halbes Jahrhundert, bis in die frühen 1970er Jahre, der sogenannten Post-Apollo-Ära, avancierte der Weltraum zum Fluchtpunkt des Zukunftsdenkens und zum utopischen Sehnsuchtsort schlechthin - und das, obwohl ein Raum bekanntlich keinen Ort darstellt, sondern erst durch Bewegung entsteht, und der Begriff „Utopia« lange genau dadurch charakterisiert war, keine existierende Örtlichkeit, sondern ein dezidiert unlokalisiertes Irgendwo zu bezeichnen, ein unspezifiziertes »Woanders« des gesellschaftlichen Idealzustandes.

Als sich jetzt, nach Ende des Zweiten Weltkriegs, der Kalte Krieg auch als Krieg um die Zukunft erwies, fanden solche Fantasien räumlicher Expansion den Weg in die breite Öffentlichkeit. ${ }^{31}$ Im Verlauf dieses Prozesses entstand der Weltraum als gedachter Raum. Von einer reinen Projektionsfläche und einem ursprünglich toten Ort - dem religiös konnotierten Jenseits - entwickelte er sich zu einem tiefgestaffelten, die Erde umgebenden räumlichen Gebilde inklusive spezifischer Ortsmarkierungen. Indem der Mensch in den Weltraum ausgriff, eignete er sich seine Um-Welt an und gestaltete sie kurzerhand neu. Mit imperialer Rhetorik vorgetragene Zukunftsversprechungen menschlichen Lebens jenseits der Erde stießen auf breite Resonanz in einer Öffentlichkeit, die im Krieg die Leistungsfähigkeit neuer Großtechnologien hatte erfahren müssen und für die jetzt, nach Kriegsende, eine Neujustierung der künftigen gesellschaftlichen Entwicklungen überlebensnotwendig war. Die Parallelität ihrer Konjunkturen darf indes nicht dazu verleiten, die Popularität des Weltraumdenkens lediglich als Funk-

[^5]tion einer zukunftsschwangeren Nachkriegszeit zu begreifen. Raumfahrtenthusiasmus und Zukunftsoptimismus gingen nicht ineinander auf, sondern bedingten und stimulierten sich gegenseitig. Die von Hermann Lübbe so bezeichnete "Zukunftsexpansion" des 20. Jahrhunderts korrelierte mit einer Raumausdehnung, in deren Verlauf die Utopie so radikal verräumlicht wurde wie nie zuvor. ${ }^{32}$

Dass die prognostizierten Zukunftsentwicklungen für realistisch gehalten wurden und die propagierten Expansionsszenarien als plausibel galten, lässt sich an Meinungsumfragen ablesen. Ging im Juli 1950 noch ein Viertel der Befragten in der Bundesrepublik davon aus, dass die Menschen spätestens um die Jahrtausendwende »andere Sterne oder den Mond besuchen" könnten, rechneten im August 1955 bereits 39 Prozent, im Mai 1964 sogar 58 Prozent mit einer solchen Entwicklung. Nachdem Ende der 1950er Jahre die sowjetischen und amerikanischen Raumfahrtprogramme eingesetzt hatten, verdoppelte sich die Anzahl derjenigen, die die »immer größeren Erfolge im Weltraum" als „Fortschritt der Technik« begrüßten, von 34 Prozent (Januar 1963) auf 66 Prozent (Januar 1969). Dass sich interplanetarische Reisen im Jahr 2000 bereits so weit demokratisiert hätten, dass jeder, der dazu Lust habe, eine Reise zum Mond unternehmen könne, nahm Anfang 1969 indes nur ein Zehntel der Befragten an. Auch wenn bereits nach der ersten der insgesamt sechs Mondlandungen die öffentliche Begeisterung rapide zurückging, erhöhte alleine der Nachweis technischer Machbarkeit die Plausibilität des Gesamtunterfangens »Eroberung des Weltraums« und validierte die damit verbundenen Zukunftsversprechungen. ${ }^{33}$

Wie aber sahen diese Zukünfte aus, und welche Rolle spielten Zeit und Zeitlichkeit im Weltraumdenken des 20. Jahrhunderts? Nirgends sonst lassen sich die Erwartungen, aber auch die Erfahrungshaushalte des Weltraumzeitalters so gut studieren wie an der Vielzahl der propagierten Expansionsszenarien, ihrer konjunkturellen Verläufe und der entsprechenden Zukunftstechniken. Seit den frühen 1950er Jahren basierten viele dieser Projekte auf der Annahme, dass das Raumschiff der Zukunft nicht länger chemisch, sondern nuklear angetrieben

[^6]sein werde und so größere Distanzen, etwa zum Jupiter, innerhalb einer vertretbaren Zeit überwunden werden könnten. ${ }^{34}$ In Expertenzirkeln wie in der Öffentlichkeit wurde immer wieder betont, dass es sich bei der Vielzahl der propagierten, bemannten wie unbemannten Satellitensysteme, Weltraumspiegel, Raumstationen und Mondkolonien nicht um Science Fiction, sondern lediglich um das Einsetzen der Zukunft in der Gegenwart handele. Dass, wenn überhaupt, sich letztlich nur ein Bruchteil der Versprechungen als einlösbar erwies, tat der weitverbreiteten Begeisterung über den beginnenden Aufbruch in die interplanetare Unendlichkeit in den 1950er und 1960er Jahren keinen Abbruch.

Unter den Expansionsvisionen der Prä-Sputnik-Dekade, des »Golden Age of Space Travel«, ragt Eugen Sängers fantastisch-realistisches Projekt einer Photonenrakete heraus. ${ }^{35}$ Diese sollte die technische Grundlage jedweder interstellaren Raumfahrt darstellen und ein Vordringen in den intergalaktischen Raum ermöglichen. In Fachkreisen wie der Gesellschaft für Weltraumforschung und der British Interplanetary Society bereits seit Anfang der 1950er Jahre intensiv diskutiert, wurde dieses Projekt Gegenstand einer erbitterten, national wie international geführten Auseinandersetzung. Im Vergleich zum amerikanischen Project Orion (1957-1965) oder dem britischen Project Daedalus (1973-1978) wurde Sängers Photonenrakete nicht nur deutlich früher, sondern auch gesellschaftlich breiter debattiert und erwies sich damit als ungleich wirkmächtiger. ${ }^{36}$

Während zu diesem Zeitpunkt manche Ingenieure bemannten Raumflug noch immer grundsätzlich für unmöglich hielten, arbeitete Sänger an seiner Lieblingsidee einer »relativistischen Raketenmechanik" und propagierte sie über einen Zeitraum von knapp 14 Jahren, vom Sommer 1950 bis zu seinem plötzlichen Tod im Februar 1964. Im Herbst 1950 publizierte er eine erste, dreiseitige Skizze in der kurzlebigen französischen Zeitschrift L'Astronef, deren

34 Arthur C. Clarke, Interplanetary Flight. An Introduction to Astronautics, London 1950, hier S. 76 f. u. S. 91 f., sowie ders., About Time, in: ders., Profiles of the Future. An Enquiry into the Limits of the Possible, London 1962, S. 123-140 (dt.: Einiges über die Zeit, in: ders., Im höchsten Grade phantastisch. Ausblicke in die Zukunft der Technik, Düsseldorf 1967, S. 187-212).

35 Frederick I. Ordway III. u. Randy Liebermann (Hg.), Blueprint for Space. Science Fiction to Science Fact, Washington, DC 1992, hier S. 12. Zu Sänger vor allem: Johannes Weyer, Akteurstrategien und strukturelle Eigendynamiken. Raumfahrt in Westdeutschland 19451965, Göttingen 1993, S. 86-100, hier S. 86-89.
36 Eugen Sänger, Was kostet Weltraumfahrt?, in: Weltraumfahrt 2. 1951, S. 49-55; Clarke, Exploration of Space, S. 174-182; ders., Challenge of the Spaceship [1961], S. 62; Leslie R. Shepherd, Interstellar Flight, in: Journal of the British Interplanetary Society 11. 1952, S. 149-167, insb. S. 157-163. Project Orion hatte die Entwicklung eines interplanetarischen, durch Atombombenexplosionen angetriebenen Raumschiffes zum Ziel, während Project Daedalus die Planung eines unbemannten Raumschiffes vorsah, welches innerhalb der Lebenszeit eines Menschen den 5,9 Lichtjahre entfernten Barnards Stern erreichen könnte. Alle drei Großtechnologieprojekte wurden nicht realisiert. Siehe George Dyson, Project Orion. The Atomic Spaceship 1957-1965, London 2002; Alan Bond (Hg.), Project Daedalus. The Final Report on the BIS Starship Study (= Journal of the British Interplanetary Society: Supplement), London 1978.

Herausgeber Alexandre Ananoff (1910-1992) er im Jahr zuvor in Paris getroffen hatte, und präsentierte eine erweiterte Fassung einem größeren Expertenkreis auf dem IV. Internationalen Astronautischen Kongreß im August 1953 in Zürich. ${ }^{37}$ Als »Bombe mit Zeitzünder", die erst langsam ihren Weg in eine breitere Öffentlichkeit fand, entpuppte sich schließlich eine nochmals überarbeitete Version, die er wiederum zweieinhalb Jahre später, am 8. Februar 1956, auf einer Konferenz in Freudenstadt vorstellte. ${ }^{38}$ Zeitgleich erschien in der eher abgelegenen Mitteilungsreihe seines Institutes unter dem alles andere als effekthascherischen Titel »Zur Mechanik der Photonen-Strahlantriebe«Sängers erste Hauptveröffentlichung zum Thema. Aufgrund ihres zugleich grundlegenden wie weit ausgreifenden Charakters verglichen seine Kritiker die nicht einmal hundert Seiten umfassende Schrift mit dem raumfahrttechnischen Klassiker schlechthin, Hermann Oberths schmalem Bändchen »Die Rakete zu den Planetenräumen" von 1923, das ebenfalls im Münchener Oldenbourg-Verlag erschienen war. ${ }^{39}$ Ähnlich wie Oberths Buch schien Sängers Schrift auf den ersten Blick kein revolutionäres Programm zu formulieren, zumal es die Vielzahl an Berechnungen, Formeln und Diagrammen zur weder massentauglichen noch konsumentenfreundlichen Lektüre machten. Bevor die »Bombe« in der Öffentlichkeit platzen konnte, waren zunächst umfangreiche journalistische Übersetzungsarbeiten durch Wissenschaftsvermittler, Popularisierer und Übersetzer

[^7]wie Ley, Clarke und Gartmann erforderlich, die sich seit den späten 1920er Jahren als die Hauptpublizisten des Space Age verstanden. ${ }^{40}$

Hinter Sängers sperriger „Mechanik der Photonen-Strahlantriebe« verbarg sich das unkonventionelle, indes kühl durchgerechnete Projekt einer nuklearen Raketentechnik der Zukunft. Hatte Oberth »nur" die grundsätzliche Möglichkeit des Ausgreifens in die »Planetenräume« nachzuweisen versucht, postulierte Sänger gleich die Erreichbarkeit mehrerer Lichtjahre entfernter Sterne. Um die Jahrtausendwende, so Sänger, würden riesige Raumschiffe von zwischenzeitlich im Erdorbit errichteten Raumstationen abheben, um sich von dort den Weg durch das Universum zu bahnen. Ähnlich einer Wasserstoffbombe, deren Explosion in Zeitlupentempo verläuft, werde ihr Antrieb auf dem Rückstoß von Photonen basieren, dem sogenannten Lichtdruck, der durch Zerstrahlung des an Bord mitgeführten Uranplasmas erzeugt werde. Auf diese Weise ließen sich außergewöhnlich hohe Reisegeschwindigkeiten von knapp 300.000 Kilometern in der Sekunde, das heißt annähernder Lichtgeschwindigkeit erzielen. ${ }^{41}$

Zumindest in der zeitgenössischen Selbstwahrnehmung der historischen Akteure in den 1950er Jahren bestätigt sich hier das Beschleunigungsparadigma, unter dem jüngere soziologische Arbeiten den Zeit-Wandel des 20. Jahrhunderts zusammengefasst wissen wollen. Weltraumexperten wie Sänger abstrahierten von der "atemberaubenden Geschwindigkeitsentwicklung", die sie während ihrer eigenen Lebenszeit erfahren hatten, und erklärten diese zur Folge der deterministischen Eigendynamik jeder Technik. Wenn die Raumfahrt der Gegenwart die logische Konsequenz der Luftfahrt darstellte, würden in Zu kunft chemische Raketentriebwerkssysteme zunächst von thermischen Atomraketen, dann von elektrostatischen Ionenraketen und elektromagnetischen Plasmaraketen und schließlich von photonischen Atomraketen abgelöst. Weltgeschichte war über die erzielten Geschwindigkeiten zu definieren, die unaufhörlich zunehmende Beschleunigung der Vergangenheit werde sich in der Zukunft fortsetzen und im Space Age ihren Höhepunkt finden (Abb. 2 und 3).42

Der eigentliche Clou dieses Beschleunigungs-Expansions-Szenarios bestand indes darin, dass Sänger die Verkehrstechnik der Zukunft mit der speziellen

40 Zusätzlich zu den angeführten Publikationen und Radiosendungen siehe auch Gartmanns 1956 und 1957 in der FAZ und in Christ und Welt erschienene Artikel, in denen er immer wieder aufs Neue erläuterte, wie Sängers relativistische Flugmechanik an die mletzten Dinge der Raumfahrt und der Menschheit« rührte. Siehe Heinz Gartmann, Vom Staustrahl zur Photonenrakete, in: FAZ, 14.2.1956, S. 8; ders., Der Flug durch Einsteins Wunderland, in: ebd., 24.2.1956, S. 12.; ders., Und morgen - die Sterne?; ders., Der Sprung aus unserer Weit, in: Christ und Welt, 16.2.1956, S. 2; sowie ders., Kühnes Spiel mit Raum und Zeit, in: ebd., 8.3.1956, S. 9.
41 Eugen Sänger, Raumfahrt - technische Überwindung des Krieges. Aktuelle Aspekte der Oberschall-Luftfahrt und Raumfahrt, Reinbek 1958, insb. S. 15-17 u. S. 31.
42 Ebd., S. 24; ders., Vorwort zu Werner Wehr [Pseud. Heinz Gartmann], Ich lebte im Jahr 3000. Roman einer möglichen Reise, Stuttgart 1959, S. 5; Raumfahrt mit 100000 km Geschwindigkeit, in: FAZ, 6.11.1957, S. 4; John William Klotz, The Challenge of the Space Age, Saint Louis 1961, S. 87 f. Siehe auch Weyer, Akteurstrategien, S. 89 f., sowie zur Genese, Reichweite und Kritik des Beschleunigungstheorems die Einleitung zum vorliegenden Band.


```
HEFT3 JUNI195T
FRANKFURTAMMAIN
```


Was kostet Weltraumfahrt?
 (Vgl, den Beitrag von Dr. Sänger auf Seite 49)

Abb. 2: Für diese im Sommer 1951 als Titelbild der Zeitschrift Weltraumfahrt veröffentlichten Grafik wurden die kollektiv geleistete Arbeitszeit (links unten) und die erreichten Geschwindigkeiten (rechts unten) logarithmisch zueinander in Bezug gesetzt und mit den Kosten für den Bau eines Flugzeugträgers, des amerikanischen Verteidigungshaushalts und des Zweiten Weltkrieges verglichen (links oben). Die in Zukunft erreichten Geschwindigkeiten würden exponentiell zunehmen, was sich in der Entwicklung des Antipoden-Flugzeuges, einer bemannten Raumstation, Mondraketen und der ersten Marsumfahrung niederschlagen werde (oben rechts). Die hier noch nicht verzeichnete interstellare Raumfahrt galt als der letzte Schritt in dieser naturgesetzlichen Abfolge technischer Entwicklungen.
Quelle: Eugen Sänger, Was kostet Weltraumfahrt?, in: Weltraumfahrt 2. 1951, H. 3, Titelbild.

Relativitätstheorie verknüpfte. Einstein zufolge sind Zeit, Länge und Masse keine absoluten Größen, sondern vom jeweiligen Bezugssystem abhängig. Anfang des 20. Jahrhunderts zum ersten Mal formuliert, war dieses Theorem Mitte der 1950er Jahre in der Physik lange bekannt. Weil an Bord eines derartig schnellen Raumschiffes eine andere, technisch induzierte »Eigenzeit« als auf der Erde herrscht, altern die Raumfahrer langsamer als ihre zurückgebliebenen Zeitgenossen. Da sich dieser Zeitdilatationseffekt mit zunehmender Ge schwindigkeit potenziert, werde es die Photonenrakete ermöglichen, innerhalb der Lebensdauer eines einzelnen Menschen »jede beliebige astronomische Distanz im Kosmos zurückzulegen«. Innerhalb von nur elf Lebensjahren, rechnete Sänger vor, ließen sich alle der Erde am nächsten gelegenen Sterne bereisen, innerhalb eines einzigen Lebensalters sogar das gesamte Universum. Sollten die Raumfahrer allerdings eines Tages, von Sehnsucht übermannt, zu ihrem Heimatplaneten zurückkehren wollen, würden die kosmischen "Spätheimkehrer" dort nicht auf ihre ursprünglichen Zeitgenossen, sondern auf viele Jahre später geborene Generationen stoßen. Nach 26,4 Jahren an Bord - einmal mit »lichtnaher Geschwindigkeit« durch das Universum und retour - wären auf der Erde etwa zwei Jahrtausende vergangen, und die zurückgekehrten Raumfahrer fänden sich in eine andere Zeit versetzt. Kurzum: Die Beschleunigung der technischen Entwicklung auf der Erde führte aufgrund der dortigen Geschwindigkeiten letztlich zu einer Ausdehnung der Zeit im Weltraum - und zwar umso ausgeprägter, je genauer die Annäherung an die Lichtgeschwindigkeit gelänge. ${ }^{43}$

Die physikalisch nachgewiesene Möglichkeit der prinzipiellen Befahrbarkeit des gesamten Universums zusammen mit der Vorstellung eines fast nach Belieben stauch- oder dehnbaren Ablaufs der Zeit jenseits der Erdgrenzen riefen Empörung und scharfen Widerspruch hervor, da sie nur schwer mit dem alltäglichen Zeitwissen in Übereinstimmung zu bringen waren. Einmal in der Öffentlichkeit angekommen, sorgte die »zeitliche und räumliche Verzerrung des Kosmos" im Frühjahr und Sommer 1956 für großes Aufsehen. Sängers »mit Überzeugungskraft vorgetragene Thesen über Photonenrakete und stechnische Überwindung des Krieges، durch die Raumfahrt [fanden] beim breiten Publikum [...] großen Widerhall«, bemerkte der Journalist Werner Büdeler (1928-2004), "während sie in den Fachkreisen zu heftigen Debatten führten." Während der Spiegel von einem »erbitterten Disput« schrieb, „wie ihn die Geschichte der Wissenschaft seit Jahrzehnten nicht mehr registriert hat", beklagten Pädagogen die durch die Relativierung von Zeitvorstellungen eingetretene „Verwirrung der Öffentlichkeit« und befürchteten eine »Erschütterung des Vertrauens der Schul-

43 Sänger, Raumfahrt - technische Überwindung, S. 16 u. S. 115-118; Berkefeld, Zeit ist nicht leer; Levitt, Now the Space Age Opens, S. 84. Für den Begriff der »Eigenzeit" siehe Helga Nowotny, Eigenzeit. Entstehung und Strukturierung eines Zeitgefühls, Frankfurt 1989, hier S. 13f. u. S. 37-45; für eine umfassende Geschichte des Zeitreisens siehe Paul J. Nahin, Time Machines. Time Travel in Physics, Metaphysics, and Science Fiction, New York 1999², hier S. 423-428; zur Zeitdilatation: Penelope J. Corfield, Time and the Shape of History, New Haven 2007, S. 19-25, insb. S. 24 f. Siehe auch ihren Beitrag im vorliegenden Band.

Abb. 4: Mit dieser Abbildung vermittelte das Hamburger Abendblatt 1958 die zukünftigen Möglichkeiten interstellarer Raumfahrt. Eine mit annähernder Lichtgeschwindigkeit fliegende Photonenrakete hat das Sonnensystem hinter sich gelassen und durchpflügt die Milchstraße auf dem Weg zu einem unbestimmten Stern. Dabei stößt sie einen mehr als 5.000 Kilometer langen Feuerstrahl aus. „Die Strecke von zehn Trillionen Kilometer [sic] zwischen der Erde und dem Stern X weit draußen in der Milchstraße soll die Photonenrakete der Zukunft in elf Jahren zurücklegen«, hieß es in der Bildunterschrift: „Sie kann jeden beliebigen Stern am Himmel umfliegen, und ihre Besatzung wird, wie Professor Sänger behauptet, noch zu Lebzeiten zurückkehren." Quelle: Herbert L. Schrader, Ausflug in die Milchstraße, in: Hamburger Abendblatt, 12.2.1958, S. 9.
jugend in die Ergebnisse der physikalischen Forschung«. ${ }^{44}$ Radiosender wie der Norddeutsche und der Hessische Rundfunk, aber auch die Frankfurter Allgemeine Zeitung reagierten auf die in zahlreichen Zuschriften geäußerten Vorwürfe mit Aufklärungssendungen, Interviews und Artikeln, in denen Gartmann und andere Sängers Überlegungen einer relativistischen Zeit- und Längenverkürzung immer wieder aufs Neue allgemeinverständlich darlegten. Alleine in der Frankfurter Allgemeinen Zeitung erschien 1956 etwa ein halbes Dutzend Artikel zum Thema, und auch die New York Times versuchte ihrer Leserschaft die »slowing

44 Gartmann, Flug durch Einsteins Wunderland; Werner Büdeler, Professor Eugen Sänger ein Lebensbild, in: Weltraumfahrt 15. 1964, S. 36 f.; Die letzte Reise, S. 55; DM, NL 230, vorl. Nr. 1740, Photonenraketen, Norddeutscher Rundfunk, 17.4.1956, 17:05-17:25 Uhr; ebd., NL 230, vorl. Nr. 1068/1, Heinz Gartmann an Eugen Sänger, 8.4.1956; Ad Astra oder das Uhrenparadoxon, in: Physikalische Blätter 14. 1958, S. 192. Zu den Protesten siehe Notiz der FAZRedaktion, FAZ, 11.7.1956, S. 5. Gartmann selbst verarbeitete seine Erfahrungen in einem unter Pseudonym veröffentlichten Roman zur interstellaren Raumfahrt der Zukunft, zu dem Sänger ein Vorwort beisteuerte. »Raketen von Stern zu Stern sind ein Wunschtraum unserer Zeit«, hieß es lapidar auf dem Klappentext, „der morgen Tatsache sein wird«; siehe Wehr, Ich lebte im Jahr 3000.
of time theory« nahezubringen. ${ }^{45}$ Ein kurz vor der Loccumer Tagung im Februar 1958 veröffentlichter und nur in der Überschrift ironischer Artikel im Hamburger Abendblatt schlug einen Ausflug in die Milchstraße als »Verjüngungsrezept" vor, hielt sich indes ansonsten streng an das immer wieder propagierte Szenario (Abb. 4). Mit der Zukunftsrakete bis in die fernsten Winkel des Weltalls zu reisen sei die letzte Konsequenz der bemannten Raumfahrt und werde den »Erdenmenschen neue Siedlungsmöglichkeiten« jenseits ihres Heimatplaneten erschließen: „Der Kolumbus der Zukunft wird statt neuer Erdteile neue Sterne für die Menschheit entdecken.« Mit dem Start des ersten Menschen an Bord einer Weltraumrakete werde eine solche Entwicklung binnen kurzem einsetzen. Die totale Schrumpfung des Raumes und die Verzerrung der Zeit galten als verbürgtes Faktum der Welt von morgen, was die Photonenrakete zu weit mehr als einem sorgfältig durchgerechneten und auf Realisierbarkeit geprüften Gedankenexperiment machte, das es zugleich ins Feuilleton und auf den Boulevard geschafft hatte. ${ }^{46}$

Für Sänger selbst waren die zu erwartenden soziokulturellen Auswirkungen zwingender und begrüßenswerter als für seine ungläubigen Kritiker. Für den Einsatz bei irdischen Konflikten würden die neu entwickelten Raketensysteme schlicht zu schnell und zu kostspielig sein, sodass die Raumfahrt zur technischen Überwindung des Krieges und zur Errichtung eines Weltstaates führen werde, was wiederum die Einigung der Menschheit zur Folge haben müsse. „Weltfriede durch Weltraumfahrt" lautete die vielfach kolportierte Formel. Darüber hinaus stellten die mit der Technik der Zukunft erzielten Geschwindigkeiten den Schlüssel zum Erreichen der »letzten und äußersten Welten« in den Tiefen der Galaxis bereit, wo es »mit endlicher Wahrscheinlichkeit zur Begegnung mit außerirdischen Intelligenzwesen" kommen werde. Das Space Age war für Sänger das heilbringende Endzeitalter einer »raumreifen Menschheit", die erst und nur in den Sternen Erlösung und göttliche Unsterblichkeit finden werde. ${ }^{47}$

Vielen erschloss sich indes die Logik dieses Arguments nicht, und ähnlich finden sich bei Sänger keinerlei Überlegungen zur lebensweltlichen Situation an Bord der Rakete oder zu den persönlichen wie gesellschaftlichen Auswirkungen zweitausend Jahre währender Abwesenheit auf existierende Sozialbeziehungen

[^8]und Familienstrukturen angestellt. Kritiker wie Born bezeichneten Sängers Vision entsprechend als »Märchen« und wandten zu Recht ein, dass es keinen Grund gebe, warum die Existenz der neuen Photonenraketen zwingend zur Abschaffung älterer, deutlich langsamerer Waffensysteme führen müsse. Zudem werde die staatliche Investitionsbereitschaft schlagartig zurückgehen, wenn konventionelle Raketen als Waffenträger ausfielen und Raumfahrt nicht länger von militärischem Interesse sei. ${ }^{48}$

Bis in die frühen 1960er Jahre, als die Aufmerksamkeit sowohl der internationalen Medienöffentlichkeit als auch der transnational agierenden Weltraumexperten zusehends auf das von Präsident John F. Kennedy im Mai 1961 noch für dasselbe Jahrzehnt - „before this decade is out" - angekündigte Apollo-Mondlandungsprogramm fokussierte, wurde diese, in keinem Schulkurrikulum vorgesehene "Überwindung von Raum und Zeit" immer wieder diskutiert. Zusehends mehrten sich jedoch Stimmen, die die technische Machbarkeit des Unterfangens grundsätzlich infrage stellten. ${ }^{49}$ Sängers kurz vor seinem Tod im Februar 1964 erschienenes Hauptwerk „Raumfahrt: heute - morgen - übermorgen" gab der Debatte kurzfristig noch einmal neuen Schub. Die große Resonanz des Buches über fünfzig Besprechungen in überregionalen Zeitungen - konnte indes nicht darüber hinwegtäuschen, dass die Photonenrakete als friedensbringendes Movens der Zukunft ihre prägende Zeit hinter sich hatte. ${ }^{50}$ Als sich die NASA 1962 mit der lunar-orbit rendezvous-Methode (LOR) für den direkten Weg zum Mond entschied, welcher die zuvor lange geplante Errichtung einer Außenstation im Erdorbit nicht länger zur Grundvoraussetzung hatte, fiel damit eines der zentralen Infrastrukturprojekte weg, ohne das an einen Start von Photonenraketen nicht zu denken war. Physiker kamen gleichzeitig zu dem Schluss, dass die von Sänger errechneten Geschwindigkeiten niemals zu erreichen wären, weder mit chemischen Raketentreibstoffen noch mit nuklearen Antrieben. Ein vielbeachteter Vortrag auf der 11. Jahrestagung der Deutschen Raketengesellschaft in Koblenz im Herbst 1962 deklassierte das Sängersche Projekt dann auch als »prak-

48 So der Titel seines im Herbst 1958 in »Rowohlts Deutscher Enzyklopädie" erschienenen Buches; siehe Sänger, Raumfahrt - technische Überwindung des Krieges, hier S. 24. Kurz vor oder kurz nach Zwölf?; Sängers »Märchen«, in: Rheinischer Merkur, 28.3.1958. Weyer, Akteurstrategien, S. 91-96.
49 DM, NL 230, vorl. Nr. 0589, Heinz Gartmann, Überwindung von Raum und Zeit. Galaxis und Kalender - manipuliert, Hessischer Rundfunk, 26.3.1959. President John F. Kennedy, Special Message to the Congress on Urgent National Needs, Washington, DC, 25.5.1961, http://nasa.gov/vision/space/features/jfk_speech_text.html: »I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him safely to the earth." Dazu John M. Logsdon, John F. Kennedy and the Race to the Moon, Basingstoke 2010, S. 245, Anm. 1.
50 Eugen Sänger, Raumfahrt. Heute - morgen - übermorgen, Düsseldorf 1963, hier S. 343-417. Unter den Besprechungen siehe nur Richard Kaufmann, Die Pyramiden des 20. Jahrhunderts, in: Christ und Welt, 25.10.1963, S. 24; Deutsche Kolonien auf fremden Sternen?, in: TV Hören und Sehen, 21.3.1964, S. 6 u. S. 9; zahlreiche weitere in DM, NL 230, vorl. Nr. 0864.
tisch undurchführbar«und wies auf die Ironie hin, dass es nicht zwingend zum Weltfrieden führen müsse, von der Lagerung des labilen Uranplasmas wohl aber eine Todesgefahr für die gesamte Menschheit ausgehen würde. ${ }^{51}$

Ob realisierbar, fantastisch oder überhaupt wünschenswert, Weltraumfahrt war hier »Zeitraumfahrt«. Die Raumfahrttechnik der Zukunft werde »unserer heutigen Erkenntnis undenkbare Wege zur Überwindung von Gravitation, Raum und Zeit" eröffnen, lautete das Versprechen. Über die zumindest theoretische Möglichkeit der Zeitdilatation wurde der relativistische Charakter der Zeit in die Offentlichkeit getragen und dort kontrovers diskutiert. »Damit wird der Begriff der absoluten Zeit‘, die für das ganze Weltall ohne Rücksicht auf den Bewegungszustand des Beobachters gilt, unbrauchbar«, stellte etwa der Physiker und Sachbuchautor Werner Braunbek (1901-1977) fest. Was die einen schmerzhaft an Freuds »kosmologische Kränkung" erinnerte, war für die anderen ein weiterer Beleg für den Unsinn jedweden Geozentrismus. ${ }^{52}$

Die Popularität solcher Großprojekte verdeutlicht den zutiefst imperialen Charakter des auf unbegrenzte räumliche Expansion angelegten Space Age. Wie die Raumschiffe der Zukunft immer höhere Geschwindigkeiten erreichten und immer mehr Starts in immer kürzerer Zeit erfolgten, sollte das Ausgreifen in den unendlichen Raum nicht nur das langfristige Überleben der Menschheit zur Folge haben, sondern auch, fast im Vorübergehen, zur Kontrolle über die Zeit führen. Zeitdehnung war ebenso Voraussetzung wie Ergebnis der Raumverkürzung im Weltraumzeitalter. Zeitliche Unendlichkeit erwies sich als Nebenprodukt der räumlichen; war der Weltraum erobert, würde die Zeit beherrscht. Dass an Bord alles möglich werden sollte, machte das hyperbeschleunigte Raumschiff zum utopischen Ort par excellence und zum Signum einer technoszientistisch geprägten Fortschrittsmoderne auf ihrem Höhepunkt. Es war dieses, lange zuvor versprochene und immer wieder erneuerte »Schema des Weltraumfahrt-Traumes", das Versprechen eines schrittweisen, letztlich als unausweichlich verstandenen Ausgreifens in die raumzeitliche Unendlichkeit, auf das Neil Armstrong im Juli 1969 beim Ausstieg aus der Mondlandefähre Eagle so elegant, wenngleich nicht ganz so spontan anspielte, wie es viele gerne gehabt

51 Alfred Schack, Weltraumfahrt und Zeitdilatation, in: Physikalische Blätter 15. 1959, S. 131135; Werner Braunbek, Kommt die Reaktor-Rakete?, in: Kosmos 56. 1960, S. 549-552; Kurt Rudzinski, Atomenergie und Weltraumfahrt, in: FAZ, 2.5.1961, S. 11; ders., Still zu Grabe getragen, in: ebd., 12.2.1963, S. 9. Zur Diskussion innerhalb der NASA und zum Ende des sogenannten »von Braun-Paradigma« Michael J. Neufeld, Von Braun and the Lunar-Orbit Rendezvous Decision. Finding a Way to Go to the Moon, in: Acta Astronautica 63. 2008, S. 540-550.

52 Gerd Heinz-Mohr, Der Wind voller Weltraum. Bemerkungen zum Wandel dichterischen Weltbewußtseins, in: Bolewski, Weltenraum in Menschenhand, S. 194-207, hier S. 207; Sänger, Mechanik der Photonen-Strahlantriebe, S. 8; ders., Forschung zwischen Luftfahrt und Raumfahrt, in: Weltraumfahrt 6. 1955, S. 12-21, hier S. 21; Werner Braunbek, Bleibe jung durch Weltraumreisen, in: Kosmos 54. 1958, S. 194; Sigmund Freud, Eine Schwierigkeit der Psychoanalyse [1917], in: ders., Gesammelte Werke, Bd. 12, Frankfurt 1999, S. 3-26, hier S. 7.
hätten. ${ }^{53}$ »Mitten in einem Jahrhundert hat ein neues Jahrtausend begonnen", kommentierte die Bild-Zeitung diese »Sternstunde«der Menschheit und lieferte so ihren eigenen Beitrag zur Periodisierung des Weltraumzeitalters. ${ }^{54}$

III. Raumschiffzeit

Es gehört zu den wenigen Standardargumenten innerhalb des wenig etablierten Forschungsfeldes Space History, dass nicht das menschliche Ausgreifen in zuvor unbekannte Räume als das Hauptergebnis der bemannten Raumfahrt anzusehen sei. Vielmehr habe der Blick zurück zu einer Art globaler Neuerfindung des Heimatplaneten geführt, möglicherweise der größtmöglichen imagined community (Benedict Anderson) schlechthin. Die Ansicht der Erde aus einer kosmischen Perspektive, deren Vorbedingung die nie zuvor (und seitdem nicht wieder) erreichte räumliche Distanz darstellte, so das Argument, hatte eine Rückbesinnung und Re-Fokussierung auf die Erde zur Folge, welche entscheidend zur Genese der Ökologie- und Umweltbewegung in den frühen 1970er Jahren beitrugen. Als Gewährsmann für dieses Argument wird im deutschsprachigen Raum für gewöhnlich der österreichische Philosoph Günther Anders (1902-1992) angeführt. Anders zufolge habe die Erde durch den Blick vom Mond zum ersten Mal die Chance bekommen, „sich selbst zu sehen, sich selbst zu begegnen, wie sich bisher nur der im Spiegel sich reflektierende Mensch hatte begegnen können". ${ }^{55}$ Metonymisch für die (Wieder-)Entdeckung der Erde, des „blauen Planeten", stehen gemeinhin die beiden Fotografien Earthrise, am Heiligen Abend 1968 von Apollo 8-Astronaut Bill Anders aufgenommen, und Blue Marble, welche sein Apollo 17-Kollege Harrison Schmitt während der letzten Mondmission am 7. Dezember 1972 machte. Fast genau im Abstand von vier Jahren fotografiert,

53 Joseph Meurers, Das Universum und das Problem des Menschen, in: Bolewski, Weltenraum in Menschenhand, S. 55-71, hier S. 70. Apollo 11 Mission Logs, Washington, DC 20.7.1969, 109:24:48 (Ground Elapsed Time)/22:56 (Eastern Standard Time): "That's one small step for [a] man; one giant leap for mankind." Zur Frage der Spontaneität von Armstrongs berühmt gewordener Äußerung und des offenkundig verschluckten indefiniten Artikels James R. Hansen, First Man. The Life of Neil A. Armstrong, New York 2005, S. 493-496; siehe auch Roland, Barnstorming in Space, hier S. 40. Für eine Ubersicht über die bei der NASA gebräuchlichen Datums- und Zeitangaben am Beispiel von Apollo 11 siehe http://history.nasa. gov/apl1-35ann/apllevents.html.
54 Peter Boenisch, Ein neues Jahrtausend, in: Bild, 21.7.1969, S. 1; National Archives, College Park, MD, Record Group 0306: U.S. Information Agency 1958-1972, 21, INF 7-6 Apollo 11 Space Reports, Foreign Media Reaction: Apollo 11, 21.7.1969, S. 6.
55 Günther Anders, Der Blick vom Mond. Reflexionen über Weltraumflüge [1970], München 1994, S. 12. Das wohl einflussreichere amerikanische Äquivalent ist ein kurzer Kommentar, den der Schriftsteller Archibald MacLeish (1892-1982) am Weihnachtstag 1968 in der New York Times veröffentlichte; ders., A Reflection. Riders on Earth Together, Brothers in Eternal Cold, in: New York Times, 25.12.1968, S. 1.
rahmen Earthrise und Blue Marble nicht nur die neun Missionen des amerikanischen Apollo-Programms ein und stellen vielleicht dessen eigentliches Vermächtnis dar, sondern haben selbst längst ikonischen Status erreicht. Im Vergleich zu den Originalaufnahmen überarbeitete und an irdische Seherwartungen angepasste Versionen dieser Fotografien gehören heute zu den am häufigsten reproduzierten Abbildungen überhaupt. ${ }^{56}$

Ob dieses genuin globalisierende, durch stetes Wiederholen mitunter etwas abgestandene (und darin dem sogenannten Sputnikschock nicht unähnliche) one worldism-Argument auch dann noch Gültigkeit besäße, wenn man es aus globalgeschichtlicher Perspektive einer sorgfältigen Rezeptionsanalyse und weltweiten Wirkungsprüfung unterzöge, ist durchaus ungewiss. Argumentiert man jedoch, dass der die Erde umgebende Raum, der Welt-Raum, im Laufe des 20. Jahrhunderts zusehends plastischer gedacht wurde, liegt es nahe, in einem dritten und letzten Schritt nicht nach Annahmen über Zeitlichkeit innerhalb des Weltraumdenkens, sondern umgekehrt nach Auswirkungen der Weltraumerschließung auf das individuelle wie das kollektive Zeitdenken zu fragen. Neu ist diese Frage nicht. Bereits Ende der 1940er Jahre hatten sich Philosophen und Science-Fiction-Autoren Gedanken über Rückwirkungen der Raumfahrt auf zukünftiges Zeitdenken gemacht. In einem berühmt gewordenen Vortrag vor der British Interplanetary Society in London 1948 argumentierte der von der BBC als »historian of the future« bezeichnete Schriftsteller Olaf Stapledon (1886-1950) etwa, dass sich das gegenwärtig vorherrschende Verständnis von Zeit angesichts der für die Zukunft zu erwartenden Veränderungen als »sehr inkohärent und oberflächlich« erweisen werde. ${ }^{57}$

Wie aber ist die erwartete »Weltraum-Zeit« beschrieben worden, nachdem sie einmal erlebt worden war? Seit dem Beginn der bemannten Raumfahrt am 12. April 1961 haben sich knapp 550 Menschen mehr als 100 Kilometer von der

56 Aus der umfangreichen Literatur zur Vorgeschichte, Genese und Wirkung von Earthrise (Apollo 8, 24.12.1968, NASA AS8-14-2383HR) und Blue Marble (Apollo 1972, 7.12.1972, NASA AS17-148-22727; beide unter http://visibleearth.nasa.gov) siehe nur: Denis Cosgrove, Contested Global Visions. One-World, Whole-Earth, and the Apollo Space Photographs, in: Annals of the Association of American Geographers 84. 1994, S. 270-294; Wolfgang Sachs, Satellitenblick. Die Ikone vom blauen Planeten und ihre Folgen für die Wissenschaft, in: Ingo Braun u. Bernward Joerges (Hg.), Technik ohne Grenzen, Frankfurt 1994, S. 305-346; Robert Poole, Earthrise. How Man First Saw the Earth, New Haven 2008; Benjamin Lazier, Earthrise. Or, the Globalization of the World Picture, in: American Historical Review 116. 2011, S. 602-630; Horst Bredekamp, Blue Marble. Der Blaue Planet, in: Christoph Markschies u.a. (Hg.), Atlas der Weltbilder, Berlin 2011, S. 367-375.
57 Olaf Stapledon, Interplanetary Man, hier S. 231; ders., The Re-Making of Man, in: The Listener, 8.4.1931, S. 575. „Man and the Planets" und »New Worlds to Conquer?» standen als alternative Titel für Stapledons auch international breit diskutierten und schnell einschlägig gewordenen Aufsatz zur Wahl; vgl., University of Liverpool Library, Special Collections and Archives, Olaf Stapledon Collection [im Folgenden OS], H6/A1-16, Randnotiz auf einem Schreiben des Sekretärs der BIS, Leonard J. Carter, 16.4.1948 bzw. ebd., 19: Press Cuttings (1929-1973), für eine Vielzahl an in- und ausländischen Reaktionen.

Erdoberfläche entfernt und damit die - willkürlich definierte und völkerrechtlich nicht bindende - Grenze zum Weltraum überschritten. Lediglich 24 Astronauten haben den Low Earth Orbit (LEO) in Höhe von 200 bis 2.000 Kilometern hinter sich gelassen. Von diesen haben wiederum nur zwölf Menschen einen fremden Himmelskörper betreten, und dies ausschließlich zwischen dem 20. Juli 1969 und dem 14. Dezember 1972. Alleine innerhalb dieser elf Jahre, von 1961 bis 1972, hat sich die im Weltraum verbrachte Zeit von 1 Stunde, 48 Mi nuten (Wostok 1) auf über 300 Stunden (Apollo 17) vervielfacht. ${ }^{58}$ In einer unüberschaubaren Plethora von Vorträgen und Interviews haben sich nahezu alle Raumfahrerinnen und Raumfahrer zu ihren während des Fluges gemachten Erfahrungen geäußert. Mindestens fünfzig haben entsprechende Ego-Dokumente, zumeist Autobiographien verfasst, nicht alle ohne fremde Hilfe, manche dafür gleich mehrfach und in unterschiedlichen Versionen. ${ }^{59}$

Der Faktor »Zeit" spielt in nahezu allen untersuchten Raumfahrertexten eine zentrale Rolle. ${ }^{60}$ Juri Gagarin (1934-1968) räsonierte bereits über die veränderte Zeitwahrnehmung und den Verlust jedweden »Zeitgefühls«. Ohne einen »Zeitgeber" sei keine Orientierung möglich, und so fielen, ähnlich den irdischen Zeitzonen, an Bord seines Raumschiffes gleich zwei unterschiedliche Zeitordnungen zusammen, Bord- und Erdzeit. Alan Shepard (1923-1998) zufolge be-

58 Astronaut/Cosmonaut Statistics, http://worldspaceflight.com/bios/stats.php (Stand: 22.7.2015); Richard W. Orloff, Apollo by the Numbers. A Statistical Reference, Washington, DC 2000, S. 264.

59 Für eine umfangreiche Liste von Raumfahrerautobiographien siehe Astronaut Biographies, http://hq.nasa.gov/office/hqlibrary/pathfinders/astrobio.htm. Es versteht sich von selbst, dass der Autorenstatus bei manchen dieser Texte unklar ist und es sich bei Autobiographien um keine unproblematische Quellengattung handelt. Mit Fokus auf Überlebensstrategien in »extreme environments« scheinen sich bislang lediglich Psychologen und Anthropologen mit diesen Texten beschäftigt zu haben, nicht aber Literaturwissenschaftler oder Historiker. Für eine kursorische Inhaltsanalyse von vier »frühen" Astronautenautobiographien (John Glenn, Gordon Cooper, Edwin »Buzz" Aldrin, Michael Collins) siehe Peter Suedfeld u. Tara Weiszbeck, The Impact of Outer Space on Inner Space, in: Aviation, Space, and Environmental Medicine 75. 2004, S. C6-C9; für ein close reading des Tagebuchs, das Kosmonaut Walentin Lebedew 1982 während seines 211-tägigen Aufenthaltes an Bord der sowjetischen Raumstation Salyut 7 verfasst hat (ders., Moë izmerenie, Moskau 1994 [engl.: Diary of a Cosmonaut. 211 Days in Space, College Station 1988]) siehe Debbora Battaglia, Coming in at an Unusual Angle. Exo-Surprise and the Fieldworking Cosmonaut, in: Anthropological Quarterly 85. 2012, S. 1089-1106. Nach der Wahrnehmung und Bedeutung von Zeit wird in beiden Fällen nicht gefragt.
60 Diese Analyse basiert auf der Auswertung von zwei Dutzend zwischen April 1962 und Mai 1991 veröffentlichten Autobiographien von Raumfahrerinnen und Raumfahrern. Dazu zählen u. a. Juri Gagarin, Alan Shepard, John Glenn, Alexei Leonow, Edwin Aldrin, Eugene Cernan, Neil Armstrong, David Scott, Michael Collins, Harrison Schmitt, Sigmund Jähn, Walentin Lebedew, Jean-Loup Chrétien, Ulf Merbold und Helen Sharman. Stichprobenartig wurden zusätzlich die Mission Transcripts der amerikanischen Apollo-Missionen 8-17 durchgesehen; siehe Communications Transcripts. Mercury Through Apollo, http:// jsc.nasa.gov/history/mission_trans/mission_transcripts.htm.
zeichneten die Mercury-Astronauten nur letztere als »echte Zeit". ${ }^{61}$ John Glenn (1921-) schilderte hingegen, wie im Februar 1962 an Bord seiner »Friendship 7«-Raumkapsel gleich sechs unterschiedliche Instrumente mehr als vier verschiedene Zeiten anzeigten: Greenwich Mean Time (GMT) zur Kommunikation mit den über die Erde verteilten Kontrollstationen; die seit dem Start in Cape Canaveral vergangene Zeit (Ground Elapsed Time, GET); die noch bis zur Landung verbleibende Zeit (Remaining Operating Time, ROT); die bis zur Zündung der Bremsstoßraketen vergehende Zeit (Time to Retrofire, TR); zudem eine Stopp- und zusätzlich seine berühmte Heuer-Armbanduhr. „Wir sind", kommentierte Glenn diese Polychronie auf eng begrenztem Raumschiffraum, "außerordentlich zeitbewußt während unserer Fahrt«. Ähnlich berichtete der erste deutsche Raumfahrer Sigmund Jähn (1937-), während seines Fluges im August 1978 jedwedes »Zeitempfinden" verloren zu haben und vollständig auf die Borduhr mit ihrem 24-Stunden-Zifferblatt angewiesen gewesen zu sein; in einem speziellen Zeitexperiment wurde eigens die Veränderung des Zeitgefühls in der Schwerelosigkeit untersucht. ${ }^{62}$ Auch Space Shuttle-Astronaut und Weltraumspaziergänger Jeffrey A. Hoffman (1944-) blendete die Erdzeit vollständig aus, fokussierte auf die Bordzeit und orientierte sich dazu an den regelmäßigen, jeweils etwa neunzig Minuten dauernden Erdumrundungen der Raumfähre:

I quickly stopped carrying any ground clock in my mind. It became irrelevant. [...] Everything went by our orbit clock, Mission Elapsed Time, because all our activities were scheduled in its terms. For my internal planning activities, I tended to use the orbit as the basic unit of time. ${ }^{63}$

Diese erste technisch-praktische Antinomie Erdzeit vs. Bordzeit ist ein gängiger Topos in Astronauten- und Kosmonautenautobiographien. Sie bezeichnet zwei kontrastierende Zeitordnungen, die jeweils örtlich induziert sind.

61 Juri A. Gagarin, Ich war der erste Mensch im Weltall. Psychologie und Kosmos, München 1970, S. 188 u. S. 190 (russ.: Psichologija i kosmos, Moskau 1968). M. Scott Carpenter u. a., We Seven. By the Astronauts Themselves. New York, 1962, S. 264 (dt.: Das Astronautenbuch. Sieben amerikanische Weltraumfahrer berichten, Berlin 1962, hier S. 302).
62 Ebd., S. 106 (dt.: S. 128); Clocks in Orbit. Astronauts to Use 3 Kinds of Time, in: Washington Star, 29.5.1965; Sigmund Jähn, Erlebnis im Weltraum, Berlin (Ost) 1983, S. 193 u. S. 241. Als Ko-Autor einer der ersten naturwissenschaftlichen Studien zur Wahrnehmung von Zeit und Raum fungierte 1968 der Kosmonaut Alexei Leonow (1934-), der drei Jahre zuvor als erster Mensch die schützende Raumkapsel verlassen und einen sogenannten Weltraumspaziergang unternommen hatte. Siehe Alexei A. Leonow u. Wladimir I. Lebedew, Wosprijatie prostranstwa i wremeni w kosmos, Moskau 1968 (engl.: Perception of Space and Time in Outer Space, Washington, DC 1969; dt.: Der Mensch im Weltall. Die Wahrnehmung von Raum und Zeit im Kosmos. Leipzig 1969) sowie seine Autobiographie: ders., Spaziergänger im All. Erinnerungen, Stuttgart 1971.
63 Hoffman zitiert nach White, Overview Effect, S. 21 f. Bis zum vorzeitigen Ende des ApolloProgramms 1972 hielt die NASA die Unterscheidung zwischen GMT und GET aufrecht. Um Verwechselungen zu vermeiden, wurde mit dem ersten Launch eines Space Shuttle im April 1981 GET durch MET (Mission Elapsed Time) ersetzt; Orloff, Apollo by the Numbers, S. IV.

Die individuelle Zeitwahrnehmung von Raumfahrern ist zweitens durch die Diskrepanz zwischen enormem Zeitdruck einerseits, drohendem Zeitverlust an Bord des Raumschiffs andererseits gekennzeichnet. »Während ich durch den Weltraum flog", beschrieb etwa Mercury-Astronaut Scott Carpenter (1925-2013) sein Zeitempfinden 1962,
empfand ich eine seltsame Zusammendrängung der Zeit. Es war, als ob die Geschwindigkeit, mit der ich flog, eine Wirkung auf die Dauer der Augenblicke hätte, die ich dort verbrachte, und sie, einen nach dem anderen, zusammenraffte. Ich schien immer in einer ungeheuren Eile zu sein, von einem Ereignis zum nächsten zu kommen, weil jeder neue Vorgang so plötzlich auftauchte wie Enten auf einem Schießstand. [...] Ich hatte die ganze Zeit immer irgend etwas zu tun. ${ }^{64}$

Leonow sah sich während seines 12 -minütigen Ausstieges aus der schützenden Kapsel drei Jahre später mit demselben Problem konfrontiert. Durch den »höchst gedrängten Zeitplan" fühlte er sich solchem Druck ausgesetzt, dass die Zeit stillzustehen schien. In seiner Autobiographie "Spaziergänger im All" (1971) heißt es:

In jenen Augenblicken, da ich im Weltraum schwebte, war mir der Begriff der Zeit, dieser Eindruck eines Flusses, der unbeirrbar und unwiederbringlich seiner Mündung entgegenfließt, fremd. Ich spürte nicht Sekunde um Sekunde mit jener Schicksalshaftigkeit verstreichen, die uns manchmal das Herz zusammenschnürt. Ich war vollkommen damit beschäftigt, meine Aufgaben zu erfüllen. [...] Ich war ein Spaziergänger im All, aber keineswegs ein Müßiggänger. ${ }^{65}$

Zur Beschreibung der ähnlich dicht getakteten Beschäftigungsroutinen während seines 211 -tägigen Aufenthaltes an Bord von Saljut 7 wählte Kosmonaut Walentin Lebedew (1972-) in seinem Tagebucheintrag vom 29. Mai 1982 ein ungewöhnliches Wort: den deutschen Begriff „Zeitnot". ${ }^{66}$ Andererseits klagten Gemini 5-Astronauten Gordon Cooper (1927-2004) und Charles »Pete" Conrad (1930-1999) während ihres achttägigen Aufenthaltes 1965 über die Stille an Bord des Raumschiffs und verlangten, dass ihre Kollegen zukünftig Musik mitnehmen dürften, um Langeweile und Sprachlosigkeit zu vertreiben. »Kinda boring«, beschrieb Conrad seinen dreitägigen Hinweg zum Mond im November 1969 als Apollo 12-Astronaut: »Everything was automated until we got to the Moon, so there wasn't a lot to do other than shave and brush your teeth.« Zeit ist hier nicht örtlich induziert, sondern wird von der das Überleben sichernden Maschine bestimmt. Die vorgegebene Taktung zu übernehmen und die geforderten Routinen durchzuführen, wird zur individuellen Herausforderung des

66 Lebedew, Moe izmerenie, Eintrag vom 29. Mai 1982, 15:41 Uhr. In der englischen Ubersetzung (Diary of a Cosmonaut, S. 67) ist der Begriff ausgelassen worden.

Raumfahrers, der persönliche Zeitbedürfnisse zurückzustellen und der Raumschiffzeit unterzuordnen hat, um den Erfolg der Mission nicht zu gefährden. ${ }^{67}$

Während von entsprechenden Konflikten und Erfahrungen im Umgang mit Zeit auch auf abgeschiedenen Forschungsstationen am Meeresboden, auf hoher See oder in den Polarregionen berichtet wird und diese beiden Zeit-Antinomien - Erdzeit vs. Bordzeit und Zeitdruck vs. Zeitverlust - auch unter anderen extremen Umweltbedingungen beschrieben worden sind, ist eine dritte und letzte Antinomie weltraumspezifisch. Eigenzeit vs. Weltraumzeit bezeichnet den kaum zu begreifenden und noch schwieriger zu formulierenden Bedeutungsverlust jeder irdischen Zeitordnung angesichts tiefer, schwarzer Grenzenlosigkeit und kosmischer Stille. »Time is a dimension measured only within the mind", wird Apollo 15-Astronaut Deke Slayton (1924-1993) zitiert. ${ }^{68}$ Ähnlich sah sich Eugene Cernan während seiner Apollo 10-Mission im Mai 1969 mit raumzeitlicher Unendlichkeit konfrontiert:

Out where I was dashing through space, I was wrapped in infinity. Even the word ,infinity lost meaning, because I couldn't measure it, and without sunsets and sunrises, time meant nothing more than performing some checklist function at a specific point in the mission. [...] There is no end. [...] I have been out there and I have seen the endlessness of space and time with my own eyes. ${ }^{69}$

Cernans Eindruck unbegreiflicher Unermesslichkeit bestätigte sich noch, als er als Apollo 17-Kommandant dreieinhalb Jahre später den Mond betrat und feststellen musste, dass mit jeder auf der Oberfläche verbrachten Stunde »the sense of absolute nothingness" wuchs. ${ }^{70}$ Einerseits erweist sich die mithilfe unterschiedlicher technischer Systeme hergestellte und durch Kommunikation mit den Bodenstationen aufrecht erhaltene irdische Zeitordnung an Bord des Raumschiffes von zentraler psychologischer Bedeutung, als eines der wenigen verbleibenden Bezugssysteme zum Heimatplaneten und bedeutsamer Anker angesichts drohenden Zeit- und Orientierungsverlustes. Dazu dient ebenfalls der »wakeup call«, ein täglich variierter Musikgruß, der im amerikanischen Raumfahrtprogramm seit Apollo 10 üblich ist, um allmorgendlich die Crew zu wecken und so Erd- und Bordzeit auch individualpsychologisch zu synchroni-

67 L. Gordon Cooper Ir., Leap of Faith. An Astronaut's Journey into the Unknown, New York 2000, S. 120; Nancy Conrad u. Howard A. Klausner, Rocketman. Astronaut Pete Conrad's Incredible Ride to the Moon and Beyond, New York 2005, S. 170. Siehe auch Gagarin, Ich war der erste Mensch, S. 209 f . Zur Mensch-Maschine-Interaktion an Bord der ApolloRaumschiffe David A. Mindell, Digital Apollo. Human and Machine in Spaceflight, Cambridge, MA 2008, hier S. 91-94 u. 158-160.
68 Alan Shepard u. Deke Slayton, Moon Shot. The Inside Story of America's Race to the Moon, Atlanta 1994, S. 364.
69 Eugene Cernan u. Don Davis, The Last Man on the Moon. Astronaut Eugene Cernan and America's Race in Space, New York 1999, S. 208f. (Herv. i. O.).
70 Ebd., S. 330.
sieren. ${ }^{71}$ Andererseits zeigt sich, wie irdisch geprägt, kaum sinnvoll anzuwenden und alles andere als »universell« das gedachte Ordnungssystem Zeit ist. Jenseits seiner terrestrischen Grenzen ist Sprachlosigkeit die einzig mögliche Reaktion auf die dort vorherrschende Bedeutungslosigkeit der Zeit.

IV. Astronautik und Zeitbewusstsein

Das Auseinanderklaffen von Weltraum und Weltzeit findet in der globalen Ausdehnung der Gegenwart über den irdischen Raum seine Entsprechung. Zu Beginn des 21. Jahrhunderts ermöglichen satellitengestützte Navigations- und Kommunikationssysteme ein nie zuvor gesehenes Ausmaß an Gleichzeitigkeit und erlauben zum ersten Mal eine permanente Selbst- und Fremdverortung im Raum. Die Orientierung zu verlieren oder gänzlich verloren zu gehen, wird zur vielbeachteten Ausnahme. ${ }^{72}$ Dass es einen historischen Zusammenhang zwischen Weltraumerschließung, Zeitverständnis und denjenigen internationalen Verflechtungs- und Vernetzungsprozessen geben könnte, die gemeinhin als »Globalisierung« bezeichnet werden, scheint indes nur selten beobachtet worden zu sein, trotz Albert Ducroqs eingangs zitiertem Diktum, demzufolge die Astronautik unserem Bewusstsein die überragende Bedeutung der WeltraumZeit aufgedrängt habe. Auch wenn unterschiedliche Konfigurationen von »Zeit" Kernbestandteil der bemannten Raumfahrt als einem technoszientistischen Schlüsselprojekt des 20. Jahrhunderts und der damit verbundenen weitreichenden Versprechungen waren, haben sich diese nicht als zentral für dessen soziokulturelle Rückwirkungen erwiesen und so im Zeitalltag nur mittelbar zur Genese der imagined community des Planeten Erde beigetragen.

Als einer von wenigen hat der französische Philosoph Paul Virilio über mögliche kulturelle Rückwirkungen des Ausgreifens in den Weltraum für das irdische Zeitverständnis nachgedacht. Gegen das one worldism-Argument will er in »La vitesse de libération" (1995) zeigen, dass mit voranschreitender ErschlieBung des extra-terrestrischen Raumes die Bedeutung der Erde nicht etwa zu-, sondern abgenommen habe. Der Raum sei verschwunden und auf Zeit reduziert worden. "enseits der Erdanziehung gibt es keinen Raum mehr, der diesen Namen verdient, sondern nur noch Zeit! Eine Zeit, die ganz allein die kosmische Realität ausmacht", heißt es dort. Als Gewährsmann fungiert Apollo 11-Astronaut Buzz Aldrin (1930-), der in seiner Autobiographie »Men from Earth« ähnlich wie Cernan die auf dem Mond vorherrschende Zeitlosigkeit kommentiert hat.

[^9]Für Virilio hat die weiteste jemals von einem Menschen überwundene Distanz nicht zur Wiederentdeckung der Erde geführt, sondern die Unermesslichkeit der Zeit aufgedeckt. ${ }^{73}$ Während seine Verwunderung zu teilen ist, dass eine solche Beobachtung nicht mehr zeitgenössische Kommentatorinnen und Kommentatoren auf den Plan gerufen hat, verfehlt er dennoch den entscheidenden Punkt. Zeit mag unermesslich sein, zunächst einmal ist sie jedoch ebenso menschlich wie irdisch - und damit weder universell noch unendlich. Jenseits der Erde bestätigt sich Elias' Einsicht, dass ihre Existenz von der des Menschen abhängt: »In einer Welt ohne Menschen oder ohne Lebewesen ähnlicher Art gäbe es auch keine Zeit.« Anthropo- und Geozentrismus sind dem historischen Denken ebenso tief eingeschrieben wie dieses einem kaum irritablen linearen wie durch und durch irdischen Zeitverständnis unterliegt. ${ }^{74}$

Letztlich lässt sich die Zeit des Weltraumzeitalters ungewöhnlich genau bestimmen. Als sich in der Post-Apollo-Ära der 1970er Jahre zeitgleich mit der Re-Fokussierung auf den Heimatplaneten der lange gepriesene „Weltraumfahrplan" als nicht realisierbar erwies und dafür die Grenzen des »Schemas des Weltraumfahrt-Traumes" in den Vordergrund traten, wurde auch das Gesamtversprechen eines schrittweisen Ausgreifens in die raumzeitliche Unendlichkeit unglaubwürdig. Sobald die Zukunft nicht länger zwingend in den Sternen stattfand, war nicht die Zeit der Raumfahrt, wohl aber die des Weltraumzeitalters vorüber. Dessen Zeitraum kann somit präzise datiert werden: Es dauerte drei Jahrzehnte an und reichte vom 3. Oktober 1942, 15:58 Uhr (MEZ), bis zum 14. Dezember 1972, 21:54 Uhr (GMT), vom ersten Artefakt, das die Grenze zum Weltraum überschritt, bis zu dem Moment, als der letzte Mensch den Mond verließ. ${ }^{75}$

[^10]
[^0]: * Dank gebührt den Mitgliedern der von der Deutschen Forschungsgemeinschaft geförderten Emmy Noether-Forschergruppe »Die Zukunft in den Sternen: Europäischer Astrofuturismus und außerirdisches Leben im 20. Jahrhundert" am Friedrich-Meinecke-Institut der Freien Universität Berlin: Daniel Brandau, Jana Bruggmann, Ruth Haake, Tom Reichard, Tilmann Siebeneichner, Magdalena Stotter sowie - und in diesem Fall ganz besonders - Katja Rippert. Für Kritik und Kommentare bin ich zudem Thore Bjørnvig, Ralf Bülow, Paul E.Ceruzzi, Colin A. Fries, Till Kössler, Michael J. Neufeld und Anna Kathryn Kendrick zu Dank verpflichtet. Der Aufsatz wurde während eines einjährigen Forschungsaufenthaltes als Alfred V. Verville Fellow am Smithsonian National Air and Space Museum in Washington, DC abgeschlossen und ist Teil einer größeren Studie zur Kulturgeschichte des westeuropäischen Space Age.
 1 Albert Ducrocq, L'homme dans l'espace. Les engins spatiaux de seconde génération, Paris 1961, S. 254 (dt.: Der Mensch im Weltall. Die zweite Entwicklungsstufe der Raumflugkörper, Reinbek 1963, S. 209:»Die Astronautik drängt unserem [...] Bewußtsein die überragende Bedeutung der ,Weltraum-Zeit، auf.«).

[^1]: 2 Wolfgang Berkefeld, Die Zeit ist nicht leer, in: Sonntagsblatt, 9.3.1958, S. 7. Zum Begriff: Alexander C.T. Geppert, Space Personae. Cosmopolitan Networks of Peripheral Knowledge, 1927-1957, in: Journal of Modern European History 6. 2008, S. 262-286, hier S. 281 f.
 3 Das planetarische Zeitalter hat begonnen, in: Frankfurter Allgemeine Zeitung [im Folgenden FAZ], 7.10.1957, S. 1; Der Erdsatellit erregt die Welt, in: Die Welt, 7.10.1957, S. 1.
 4 Landeskirchliches Archiv Hannover [im Folgenden LkAH], E 46, Nr. 185; Tagungsprogramm zitiert nach Werner Schulz, Der Mensch im Weltraum. Bericht über eine Tagung der Evangelischen Akademie Loccum, in: Zeitschrift für Flugwissenschaften 6. 1958, S. 117-123, hier S. 117.

[^2]: Roger D. Launius (Hg.), Critical Issues in the History of Spaceflight, Washington, DC 2006, S. 433-480. Historiographisch-theoretisch am avanciertesten innerhalb dieses Feldes sind die Arbeiten von Martin Collins, etwa ders., Afterword. Community and Explanation in Space History (?) [sic], in: Dick, Critical Issues, S. 603-613; ders., Production and Culture Together. Space History and the Problem of Periodization in the Postwar Era, in: Steven J. Dick u. Roger D. Launius (Hg.), Societal Impact of Spaceflight, Washington, DC 2007, S. 615-629; sowie ders., The 1970s. Spaceflight and Historically Interpreting the In-between Decade, in: Alexander C.T. Geppert (Hg.), Limiting Outer Space. Astroculture After Apollo, London [2016]. Jüngst Peter Dickens u. James S. Ormrod, The Production of Outer Space, in: dies. (Hg.), The Palgrave Handbook of Society, Culture and Outer Space, London [2016]. Siehe auch Alexander C.T. Geppert, European Astrofuturism, Cosmic Provincialism. Historicizing the Space Age, in: ders. (Hg.), Imagining Outer Space. European Astroculture in the Twentieth Century, Basingstoke 2012, S. 3-24.
 11 LkAH, E 46, Nr. 185, Prinz Welf Heinrich von Hannover an Uta von Kardoff, 5.7.1957. Welf Heinrich hatte 1953 mit einer "Luftrecht und Weltraum« betitelten Arbeit an der Georg-August-Universität in Göttingen zum Dr. jur. promoviert, der weltweiten ersten Dissertation zum Weltraumrecht überhaupt.
 12 Etwa Reinhart Koselleck, Zeitschichten. Studien zur Historik, Frankfurt 2000, S. 9; Norbert Elias, Über die Zeit, Frankfurt 1984, S. 12 u. S. 74. Siehe auch Peter Hüttenberger, Zeit als Kategorie historischen Denkens und der historischen Darstellung, in: Bernd Mütter u. Siegfried Quandt (Hg.), Historie - Didaktik - Kommunikation. Wissenschaftsgeschichte und aktuelle Herausforderungen, Marburg 1988, S. 81-96, hier S. 87.

[^3]: München 1923; David Lasser, The Conquest of Space, New York 1931; Philip Ellaby Cleator, Rockets Through Space. The Dawn of Interplanetary Travel, London 1936; Willy Ley, Rockets, Missiles, and Space Travel [1944], New York 1952^{4} und öfter; Arthur C. Clarke, The Challenge of the Spaceship. Astronautics and its Impact upon Human Society, in: Journal of the British Interplanetary Society 6. 1946, S. 66-81; ders., The Exploration of Space, New York 1951. Sowohl Ley als auch der zeitgenössisch schon als "Prophet of the Space Age" titulierte Clarke scheinen sich den Begriff relativ spät angeeignet, ihm dann aber zu großer Popularität verholfen zu haben; siehe ders., The Challenge of the Spaceship, New York 1961, S. 7, bzw. ders. (Hg.), The Coming of the Space Age. Famous Accounts of Man's Probing of the Universe, New York 1967. John Reddy, Arthur Clarke. Prophet of the Space Age, in: Reader's Digest, November 1969, S. 74-78.
 24 Ein kurzer Hinweis auf Harpers Band stellt die erste Verwendung des Begriffs in der New York Times dar; siehe Other Books of the Week, in: ebd., 30.7.1950, S. BR8. Die zweite Verwendung ist ein Zitat Wernher von Brauns, der 1955 Eisenhowers Entscheidung, im Rahmen des Internationalen Geophysikalischen Jahres einen Satelliten im Weltraum zu platzieren, als »introducing mankind to the space age« lobte; ders., Man to Fly Space, Scientists Expects, in: ebd., 6.8.1955, S. 32.
 25 Ähnlich wie diese Begriffe im Deutschen miteinander konkurrieren, finden sich im Französischen neben ml'âge de l'astronautique« auch m'âge du cosmos«, ,l'ère spatiale«, „l'ère astronautique" oder 川'ère interplanétaire" gleichermaßen verwendet; siehe Louis Guilbert, Le vocabulaire de l'astronautique. Enquête linguistique à travers la presse d'information à l'occasion de cinq exploits de cosmonautes, Paris 1967, S. 48, S. 64 u. S. 217.

[^4]: dass das Zeitalter der Raumfahrt bislang überhaupt zu keinem Ende gekommen sei, sondern den technischen Alltag der Gegenwart längst mit einer solchen Selbstverständlichkeit dominiere, dass das Bewusstsein dafür verloren gegangen sei. Siehe in diesem Kontext Roger D. Launius, What Are Turning Points in History, and What Were They for the Space Age?, in: Dick u. Launius, Societal Impact of Spaceflight, S. 19-39, sowie Abschnitt IV.
 28 Heinz Gartmann, Dr. Sängers Flugmechanik der Photonenstrahlantriebe. Betrachtungen zu einem aktuellen Thema, in: Weltraumfahrt 7. 1956, H. 3, S. 76-78, hier S. 76; Abenteuer nach Kursbuch. Der Weltraumfahrplan, in: Hobby 10. 1963, S. 56-61; NASM, Willy Ley Collection 01/05, Willy Ley, Time Table for Space Conquest, ca. 1955.

[^5]: 30 Diese Schätzung bei William Sims Bainbridge, The Spaceflight Revolution. A Sociological Study, New York 1976, S. 36.
 31 David C. Engerman, Histories of the Future and the Futures of History, in: American Historical Review 117. 2012, S. 1402-1410, hier S. 1407. Nicht viel später begannen Historiker sich ebenfalls für die Zukunft zu interessieren; siehe Robert L. Heilbroner, The Future as History, New York 1959 bzw. die Vorträge auf dem 25. Deutschen Historikertag 1962 in Duisburg zum Thema „Zukunftu, insb. von Karl Dietrich Erdmann, Die Zukunft als Kategorie der Geschichte, in: Historische Zeitschrift 198. 1964, S. 44-61 und Reinhart Wittram, Zukunft in der Geschichte. Zu Grenzfragen zwischen Geschichtswissenschaft und Theologie, Göttingen 1966.

[^6]: 32 „Verzeitlichung der Utopie" ist Reinhart Kosellecks Begriff, "Zukunftsexpansion" von Hermann Lübbe geprägt. Siehe Reinhart Koselleck, Die Verzeitlichung der Utopie, in: Wilhelm Voßkamp (Hg.), Utopieforschung. Interdisziplinäre Studien zur neuzeitlichen Utopie, Bd. 3, Stuttgart 1982, S. 1-14 bzw. Hermann Lübbe, Zeit-Erfahrungen. Sieben Begriffe zur Beschreibung moderner Zivilisationsdynamik, Stuttgart 1996, hier S. 16-19.
 33 Institut für Demoskopie Allensbach (Hg.) [im Folgenden IDA], Jahrbuch der öffentlichen Meinung, Bd. 4, 1965-1967, Allensbach 1967, S. 487 u. S. 489; IDA, Der Blick in die Zukunft, Allensbach 1967, S. 4; IDA, Allensbacher Berichte. Die Deutschen und der Mond, Allensbach 1969, S. 2. Das Bielefelder Meinungsforschungsinstitut EMNID kam im Januar 1958 zu ähnlichen Ergebnissen: 64% der Befragten gingen davon aus, dass der Mond in absehbarer Zeit erreicht werde. Siehe Archiv des Deutschen Museums München [im Folgenden DM], NL 185, vorl. Nr. 034, Einstellung zur Problematik der Weltraumfahrt. Eine Befragungsreihe innerhalb des Bundesgebietes, Bielefeld 1958, S. 1; Karl-Georg von Stackelberg, Weltraumfahrt, Atom und öffentliche Meinung, in: Bolewski, Weltenraum in Menschenhand, S. 153-160, hier S. 155. Für die USA siehe Roger D. Launius, Public Opinion Polls and Perceptions of US Human Spaceflight, in: Space Policy 19. 2003, S. 163-175.

[^7]: 37 Rudolf H. Reichel, Die heutigen Grenzen des Raketenantriebes und ihre Bedeutung für den Raumfahrtgedanken, in: Zeitschrift des Vereines deutscher Ingenieure 92. 1950, S. 873882, hier S. 882; Eugen Sänger, A propos des limites de l'astronautique, in: L'Astronef 1. 1950, S. 8-10; Photon-Rakete, in: FAZ, 6.8.1953, S. 10. Zu Ananoff: Pierre-François Mouriaux u. Philippe Varnoteaux, Alexandre Ananoff (1910-1992). 30 Years to Promote Astronautics before Sputnik, in: Acta Astronautica 93. 2013, S. 266-278. Den internationalen Verflechtungen und Resonanzen dieser futuristischen Technikkonzepte kann hier nur bedingt nachgegangen werden; siehe aber Olaf Stapledon, Interplanetary Man?, in: Journal of the British Interplanetary Society 7. 1948, S. 213-233; Arthur C. Clarke, The Planets Are Not Enough, in: Saturday Review of Literature, 26.11.1955, S. 11 f. u. S. 34-36; Levitt, Now the Space Age Opens, S. 84; sowie Eugen Sänger u. William R. Brewster Jr., Time and the Space Traveler, in: Atlantic Monthly 200. 1957, S. 153-158. Sängers Konzept war zudem Teil eines umfangreichen Berichts, der 1959 dem amerikanischen Kongress vorlag; siehe ders., The Future of Space Flight, in: Select Committee on Astronautics and Space Exploration (Hg.), The Next Ten Years in Space, 1959-1969, Washington, DC 1959, S. 158-172.
 38 Alle drei Vortragsmanuskripte finden sich in Sängers Nachlass im Archiv des Deutschen Museums in München; siehe DM, NL 230, vorl. Nr. 1205, Eugen Sänger, Zur Theorie der Photonenrakete; ebd., NL 230/0797, Sänger, Zur Flugmechanik der Photonenraketen; sowie ebd., NL 230/0720 und NL 230/0795, Sänger, Die Erreichbarkeit der Fixsterne. Vortrag auf dem VII. Internationalen Astronautischen Kongreß in Rom, September 1956. Die ausführlichsten Darstellungen des "Streits um die Sterne" finden sich bei Gartmann, Sonst stünde die Welt still, S. 379-402, hier S. 391, und Josef Pointner, Das 1×1 der Weltraumfahrt, Düsseldorf 1966, S. 418-430.
 39 Eugen Sänger, Zur Mechanik der Photonen-Strahlantriebe, München 1956; Oberth, Rakete zu den Planetenräumen. Siehe auch Wilfried Berger, Photonenraketen im relativistischen Weltraum, in: Naturwissenschaftliche Rundschau 1956, S. 223-227.

[^8]: 45 Gartmann, Vom Staustrahl zur Photonenrakete; ders., Flug durch Einsteins Wunderland; Wilfried Berger, Können Menschen dem Ablauf der Zeit entrinnen?, in: FAZ, 11.7.1956, S. 5; Sänger, Zukunft der Raumfahrt; Heinrich Faust, Künstliche Satelliten und Weltraumfahrt, in: FAZ, 27.11.1956, S. 10; Jutta Schulze, Friedliche Eroberung des Weltalls, in: ebd., 7.12.1956, S. 2. Slow Time Called Space-Travel Key, in: New York Times, 9.3.1958, S. 45.

 46 Herbert L. Schrader, Ausflug in die Milchstraße, in: Hamburger Abendblatt, 12.2.1958, S. 9; ders., In 2 Stunden um die Erde, in: ebd., 8./9.2.1958, S. 14; Jünger durch Weltraumfahrt, in: ebd., 12.4.1958, S. 40. Exemplarisch: Robert Gerwin, Menschen - schneller als das Licht, in: Hobby 5. 1956, S. 9-15 u. S. 140-142.
 47 Eugen Sänger, Die Raumfahrt und die Erschließung fremder Welten, in: Universitas 12. 1957, S. 967-976, hier S. 969; ders., Mechanik der Photonen-Strahlantriebe, S. 4 u. S. 8.

[^9]: 71 Für eine akribische Auflistung aller jemals gespielten Musikstücke siehe Colin A. Fries, Chronology of Wakeup Calls, NASA History Division, Washington, DC, http://history. nasa.gov/wakeup.htm.
 72 Fraser MacDonald, Anti-Astropolitik. Outer Space and the Orbit of Geography, in: Progress in Human Geography 31. 2007, S. 592-615, hier S. 602.

[^10]: 73 Paul Virilio, La vitesse de libération. Essai, Paris 1995, S. 13, S. 57 und S. 149 (dt.: Fluchtgeschwindigkeit. Essay, Frankfurt 2001, S. 12, S. 63 f. u. S. 167 f.) (Herv. i. O.); siehe aber Hans Blumenberg, Lebenszeit und Weltzeit, Frankfurt 1986. Buzz Aldrin, Men from Earth, New York 1989, S. 238 u. S. 243.
 74 Virilio, Vitesse, S. 163 (dt.: Fluchtgeschwindigkeit, S. 184); Elias, Uber die Zeit, S. XX.
 75 Dieser Moment wurde von einer auf dem Mond zurückgelassenen Filmkamera aufgezeichnet; siehe Apollo 17 Lunar Liftoff, 14.12.1972, https://youtu.be/g9Zys0Bs4UU.

