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WE HAVE THE POTENTIAL TO TRANSFORM OUR
UNDERSTANDING OF EARTH—IF WE CAN JUST FIGURE

OUT HOW TO HARNESS  EVER GROWING DATA STREAMS.

FOR THE 21ST CENTURY 

A GEODATA
FABRIC

By Jeff de La Beaujardière
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THE NATURE of scientific data 
has changed considerably since AGU was 
founded a century ago. Observations then 
were manual and laborious, data were 
recorded in paper notebooks and on photo-
graphic plates, and the most powerful 
“computer” was perhaps the Powers 
Accounting Machine, an electromechanical 
device for tabulating U.S. Census Bureau 
data recorded on punched cards. In 1919, the 
Eddington experiment provided the first 
observational confirmation of Einstein’s 
theory of general relativity by measuring the 
deflection of light from stars during a total 
solar eclipse; the entirety of the published 
data comprises 20 tables, 2 diagrams, and 
1  low-  resolution  black-  and-  white photo-
graph [Dyson et al., 1920].

As the digital age arrived and the technol-
ogy for recording observations progressed, 
the geosciences and other disciplines began 
to face the “big data” problem, often char-
acterized by four V words:

• Researchers generate enormous data 
volumes from new observing systems and 
from simulations run on supercomputers. 
The sheer size of contemporary data sets 
makes them expensive to store, difficult to 
access in more than small subsets, and 
nearly impossible to ship to all the institu-
tions that would like copies.

• The bewildering variety of data sets 
from sources that use different file formats 
and organizational systems is a barrier to 
performing interdisciplinary research and 

analyzing phenomena that have multiple 
signals observed by different platforms. In 
addition, there exist to this day myriad 
small, manually collected observational data 
sets that are difficult to integrate [Genova 
and Horstmann, 2016].

•  Real-  time data are being collected, pro-
cessed, and disseminated at  ever increasing 
velocities, particularly in emergency situa-
tions such as earthquakes, fires, and other 
disasters.

• Variability caused by surges in data 
arrival or user requests poses a challenge for 
facilities, which must have enough capacity 
to handle the highest loads yet may be idle 
during down times.

These issues have escalated into major 
challenges to performing scientific research 
and providing accessible, usable informa-
tion to decision-makers. In just 3 years, the 
 NASA–Indian Space Research Organisation 
Synthetic Aperture Radar (NISAR)  Earth- 
 observing satellite is expected to generate 
some 85 terabytes of data per day. Super-
computers in the “exascale” range, capable 
of performing at least 1018 operations per 
second, are under contract to be deployed 
by 2021 at Argonne and Oak Ridge national 
laboratories; these will be 1,000 times more 
powerful than the petascale machines of 
only a decade ago.

Unless geoscience research in the next 
century is to be hamstrung by the very data 
it is collecting, we’ll have to find the 
answers to two questions: How can we pro-
vide storage and access for big data? And 

One of the 20 tables needed in “A Determination of the Defl ection of Light by the Sun’s Gravitational Field, from 

Observations made at the Total Eclipse of May 29, 1919,” to confi rm Einstein’s theory of general relativity. Credit: 

Dyson, et al., 1920, https://doi.org/10.1098/rsta.1920.0009.



more important, how can we enable “sci-
ence at scale,” such that researchers and 
other users can work with large, multi-
source data sets without getting lost in a 
tangle of incompatible systems?

The Geoscience Advantage
Fortunately, we benefit from two crucial 
facts. First, the geosciences are not alone in 
facing the big-data problem. In astronomy, 
the Square Kilometre Array—an enormous 
radio telescope with installations in South 
Africa and Australia—is expected to gener-
ate 160 terabytes of raw data per second. 
The genomics community estimates a need 
for at least 2,000 petabytes of storage by 
2025. In the private sector, Facebook had 
already accumulated at least 300 petabytes 
of data as of 2014. Our community will 
therefore be able to leverage work by others 
in the same predicament.

Second, the very fact that we do geosci-
ence provides a useful organizing frame-

work: Much of our data are, 
by definition, based on a 
time and a place. Every 
Earth observation, every 
numerical simulation grid 
point, has an associated 
temporal range, a position 
or region on the planet, and 

possibly an elevation or 
depth range. Instead of 
individual files and 
collections, we could 
organize these data 
within a multidimen-

sional “Geodata Fab-
ric.” A good analogy is Google 

Maps, which integrates detailed 
road, transit, boundary, river, 
and hiking trail data from multi-
ple sources, along with satellite 
imagery, elevation data (terrain 
layer), in situ data (photos and 
Street View), ancillary informa-
tion (businesses and facilities), 
crowd sourced content (reviews of 

businesses and places), personal 
annotations (favorite places),  real- 
 time information (traffic), and 

even basic computation (driving 
directions). Can we do the same 

for Earth science?
Creation of a Geo-

data Fabric requires 
the geosciences to 
take a huge leap from 
where we are now, 
barely past the stage 

of paper maps and guidebooks, with dis-
jointed web servers each providing only a 
tiny portion of the vast body of environ-
mental data. We need a more unified 
approach such that each data provider—
whether in the atmosphere, land surface, 
seismology, hydrology, oceanography, or 
cryosphere domain—can contribute to a 
shared and commonly accessible frame-
work. The same concept could be extended 
to domains with differing coordinate sys-
tems such as other planets or interplanetary 
space. Some work that clearly demonstrates 
the usefulness of the approach has already 
been done along these lines—notably , the 
Open Data Cube project in Australia—but 
the concept must be extended to the entire 
planet and include more than just satellite 
imagery.

Elements of the Solution
If we want to create this Geodata Fabric, 
we’ll need to rely on automation and stan-
dardization at every step as we acquire data; 
perform initial processing; move them; 
store them; and enable discovery, access, 
and  analysis. Let’s walk through how we 
might approach four of those steps.

1. A New Type of Storage for Big Data
If you were to log on to any computer stor-
ing scientific data today, the organization of 
the information would typically look a lot 
like that on your personal computer, with a 
hierarchy of folders and files. However, 
these systems become sluggish when they 
contain billions of files. A better solution, 
known as object storage, has been adopted 
by most private companies with huge data 
needs such as Facebook, YouTube, Netflix, 
Google, and Amazon.

Object storage uses standard disk drives. 
Instead of a folder hierarchy, however, it 
simply has a pool of capacity that can be 
expanded as needed, has customizable 
metadata for each object, does not need to 
actively monitor all the files in the system, 
and recovers much more easily from the 
failure of individual drives. Because of this, 
it is simpler to maintain and better suited 
for large data volumes.

Each item saved in object storage has a 
unique ID and a  user-  defined name, either 
of which can be used to retrieve the object. 
For example, an early draft of this article 
was backed up on Google Drive with the ID 
“1_8Q2pMN6BHI2N8F5qCaVO5ASdGuGGSOy” 
and the name “MyDrive/work/AGU/Eos 
_ article.docx.” Although it appears to be in a 
folder hierarchy for my personal conve-
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The Powers Accounting Machine. 

Credit: Mahlum/Wikimedia Commons
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nience, it is merely a blob of data in a huge 
storage pool.

Lawrence Berkeley National Laboratory in 
California is among those institutions rec-
ommending the use of object storage for big 
data [Lockwood et al., 2017]. To make the 
switch, developers will need to slightly 
modify software that assumes that data are 
in a traditional file system.

Object storage can be located at the data 
collector’s facility or in the cloud. We use 
the cloud daily in our personal lives for such 
data as email, calendars, documents, and 
photos, but most geoscience institutions 
still rely primarily on storage hosted 
on-site. Cloud storage offers three key 
advantages: The maintenance of the hard-
ware is outsourced to professionals, the 
amount of available storage is essentially 
unlimited, and public access can be easily 
granted.

Whether on-site or in the cloud, object 
storage will be necessary to accommodate 
vast volumes of information in the Geodata 
Fabric.

2. Move the Data Once Or Never
We cannot create a Geodata Fabric if each 
swath of data is isolated. Instead, we need 
to perform initial raw data processing at 
the source and then consolidate the usable 
information. However, moving huge data 
sets across the Internet is a slow endeavor. 
Even with such resources as the  high- 
 bandwidth Internet2 connecting some 
research institutions, overall performance 
is no better than the slowest link in the 
path. Traditionally, subsetting services 
have allowed people to “clip and ship” only 
what they need, but this doesn’t enable 
 large-  scale science on multiple large data 
sets.

Some companies now offer bulk data 
transfer appliances—literally, disks packed 
in crates—that can be transported as 
freight. In 2018, a U.S. Geological Survey 
facility on the Big Island of Hawaii, threat-
ened by possible lava flow from Kīlauea vol-
cano, used an Amazon Web Services (AWS) 
Snowball physical transport device to 
quickly copy critical data to the mainland for 
safekeeping. In 2017, the commercial satel-
lite company DigitalGlobe was the first to 
use an even larger AWS capability called 
Snowmobile. The company copied the con-
tents of 8,700 tapes—nearly 100 petabytes 
of data—into a  16-  meter, fully powered 
shipping container for transfer to the cloud 
in a matter of months by truck instead of 
years via the Internet.

Once the data are consolidated, we can 
bring the computing to the data such that 
only the output of the  analysis software 
need be sent to the user.

3. The Cloud Advantage
Traditionally, science facilities provide 
 public-  facing web interfaces for preconfig-
ured types of analyses, and perhaps allow 
authorized users to log in directly and run 
whatever  analysis code they prefer. This 
type of access does not support customized 
 analysis by unknown external users.

The cloud provides several important 
advantages. Users can operate directly on 
the data using whatever software they 
choose. Processing power can be scaled up 
or down as needed to accommodate large 
analyses or spikes in demand. Institutions 
can focus on science instead of operating 
hardware and can even take advantage of 
“managed services” ranging from databases 
to text, image, and video analyzers and, as 
of earlier this year, entire satellite ground 
stations. 

A potentially revolutionary concept is 
known as “serverless computing”: Instead 
of keeping a server running (and paid for) 
constantly to handle only occasional 
requests, the cloud vendor runs a shared 
pool of servers on which you can perform 
brief computations on data as needed, pay-
ing only for the amount of time and mem-
ory your function uses. This temporary 
usage is analogous to renting a Zipcar for an

The Apple II personal 

 computer. Credit: FozzTexx/

Wikimedia Commons
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hour instead of owning a vehicle that 
spends most of its time in the garage. For 
organizations that manage large data col-
lections, there are clear benefits to out-
sourcing infrastructure and focusing only 
on data stewardship, access, and  analysis.

NASA has been a leader in this area, 
using commercial cloud servers to store, 
archive, process, distribute, and manage 
large volumes of  Earth-  observing mission 
data—predicted to be over 45 petabytes per 
year by 2022 and over 245 petabytes total 
volume by 2025. The agency’s Common 
Metadata Repository and Earthdata Search 
services are now running on AWS, with 
more to come. Kathleen Baynes, NASA sys-
tem architect, told me, “Beyond consoli-
dating software systems and streamlining 
processes, we anticipate this effort will 
provide exciting opportunities to further 
expand the impact of NASA’s Earth Science 
holdings: introducing new paradigms for 
interacting with data, improving interop-
erability, facilitating innovative research, 
and helping to drive from data toward 
knowledge.”

There are some disadvantages to using 
cloud computing for  analysis. Chief among 
these is the  pay-  as-  you-  go model, with 
costs not fully known in advance. This is a 

hurdle in particular for government agen-
cies because of legislation that forbids 
spending more funds than were allocated by 
Congress, but it can be reduced or elimi-
nated by prepayment, monitoring, throt-
tling usage if necessary, and efficient 
system design. Storage costs can be mini-
mized by moving infrequently used data to 
less expensive tiers of storage or even by 
discarding unimportant data. Egress costs 
can be minimized by enabling and encour-
aging users to compute directly on the data. 
Computing costs can be minimized through 
more efficient code, using discounted com-
puting time when the vendor has periods of 
low demand, and using managed services 
and serverless functions.

Cloud computing is quickly becoming a 
viable approach for most science being done 
today and will be essential for moving data 
out of institutional silos and into a Geodata 
Fabric.

4. The Need for Simplicity
Naturally, researchers tend to store the data 
they collect in ways that make the most 
sense for their projects. But if we want to 
establish an easily accessible and broadly 
usable Geodata Fabric, we must improve 
standardization and enable a higher level of 
abstraction. A user should be able simply to 
ask for—or directly visualize—a desired 
data set, time range, and area of interest 
while software behind the scenes automati-
cally provides what was requested.

The National Science  Foundation–  funded 
Pangeo project, for example, is “a commu-
nity promoting open, reproducible, and 
scalable science.” Pangeo allows users to 
combine a variety of  open-  source tools such 
as the Zarr format to break multidimen-
sional data into chunks, the Dask library to 
read many chunks simultaneously, the 
 Xarray package to address data at an 
abstract level, and Jupyter Notebook for 
customizable  web-  based  analysis work-
flows. The goal is to enable users to explore 
data interactively without worrying about 
storage details and to efficiently perform 
computations over large data sets.

Elizabeth Maroon, a project scientist at 
the National Center for Atmospheric 
Research, told me that “for  cutting-  edge 
climate science, we need to use large 
ensembles and explore increasing resolu-
tion, and that makes our data sets huge. We 
are using the Pangeo tools to calculate ocean 
circulation metrics in our new  high- 
 resolution climate model simulations. 
Without the parallel computation made rel-

The Square Kilometer Array (artist’s impression). 

Credit: Mathieu Isidro (SKA)
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atively easy by the Dask package, these 
metrics would take prohibitively long to cal-
culate.”

As data volumes grow, it is becoming 
increasingly difficult to have knowledgeable 
people inspect all the data for interesting 
phenomena. We need machine learning— 
large-  scale, automated  analysis of big 
data—to become commonplace, which can 
happen only once we standardize and con-
solidate data storage and access.

Planetary scientists have demonstrated 
the ability of machine learning to find 
novel features in multispectral images 
from NASA’s Mars Curiosity rover [Kerner 
et al., 2019]. Furthermore, some data are of 
little  long-  term value, such as long periods 
of undersea video showing only murky sea-
bed punctuated by the occasional arrival of 
an interesting creature. Machine learning 
may prove useful in isolating the most rel-
evant subsets of the data and allowing 
humans to decide whether to discard the 
rest.

The Future of Geodata
Our capabilities to collect and store data 
have evolved greatly in the past century, 
from penciling observations into paper 
notebooks in the field to using automated 
sensors injecting information directly into 
databases. The cost to store a given amount 
of digital data has decreased thanks to the 
increasing density with which we can store 
it, from the $50,000  5-  megabyte IBM 
RAMAC 350 in 1956 to $50 for a  1-terabyte 
 consumer-  level hard drive today. Unfortu-
nately, that rate of storage density is flat-
tening while data volumes continue to grow, 
but new storage technologies will doubtless 
emerge over the next century. For example, 
the University of Southampton in the 
United Kingdom is working on “memory 
crystals” that could potentially store hun-
dreds of terabytes of information by etching 
 nanoscale-  sized structures in quartz 
[Kazansky et al., 2016].

Whatever the future holds, it is clear that 
our geoscience data centers must evolve 
away from traditional silos of  in-  house sys-
tems  offering access only to their own data. 
We must enable science on  high-  volume, 
 high-  variety,  high-  velocity, and  high- 
 variability data by uniting them from multi-
ple sources, standardizing at a higher level 
of abstraction, and moving the computation 
to the data. Embracing a concept like the 
Geodata Fabric would enable researchers to 
focus more on the science and less on the 
plumbing.

We are in dire need of better understand-
ing our constantly changing planet, and that 
requires that we establish better pathways 
to information.
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ON THE SCIENCE 
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