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The next 
generation of 
astronomy 
depends on 
astronomers 
and artificial 
intelligences 
working together. 
BY ASHLEY SPINDLER

Astronomy’s
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MACHINE LEARNING (ML) is just one technique within 
the field of artificial intelligence, and within ML, there are 
many different approaches. For instance, deep learning 
algorithms process data using neural networks, which are 
loosely inspired by the human mind. Neural networks can 
be combined with several other frameworks to improve their 
performance.

In supervised learning, an algorithm learns by testing itself 
on a training dataset where the answers — like the type of gal-
axy classification — are already known. By contrast, in unsuper-
vised learning, an algorithm is left to discover patterns in data on 
its own, like clusters of stars or anomalies in light curves. Active 
learning is a form of semi-supervised learning in which a subset of 
the data is classified by humans to help the algorithm learn.

In reinforcement learning, an algorithm learns behaviors by receiving 
rewards when it performs as desired. This allows it to steadily improve at tasks like 
driving a car within the boundaries of a traffic lane, playing the board game Go, or writing human-
like sentences as a chatbot. In astronomy, reinforcement learning has been used in telescope oper-
ations to find the most efficient observing schedules and improve the performance of adaptive 
optics systems.

Neural networks can even be pitted against one another with one algorithm acting as a sparring 
partner, attempting to find flaws in the main algorithm’s output. This setup is called a generative 
adversarial network and can produce realistic-looking astroimages — or augment existing images 
with realistic details. — Mark Zastrow
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MACHINE 
LEARNING (ML)

a term used to describe any kind 
of computational behavior that 
mimics the way humans think 

and perform tasks. Machine 
learning (ML) is a little 

more specific: It’s a fam-
ily of technologies 

that learn to make 
predictions and 
decisions based on 
vast quantities of 
historical data. 
Crucially, ML 
creates models 
that exhibit behav-

ior that is not pre-
programmed, but is 

learned from the data 
used to train it.
The facial recognition 

in your smartphone, the spam 
filter in your emails, and the abil-
ity of digital assistants like Siri or 
Alexa to understand speech are 
all examples of ML being used in 
the real world. Many ML tech-
nologies are now being used by 
astronomers to investigate the 
mysteries of space and time. 
Astronomy and ML are a match 
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hroughout the his-
tory of astronomy, 
the development 

of new tools and techniques 
has always aimed at allow-
ing us to do more — observe 
more, analyze more, explore 
more. But as the next gener-
ation of astronomy becomes 

the current generation of astron-
omy, it has become increasingly 
clear that we might have bitten 
off more than we can chew.

The problem is data: moun-
tains of it, more data than you 
can imagine. Our telescopes have 
become so powerful, our detec-
tors so sophisticated, and our 
computers so complex that it is 
simply impossible to analyze all 
the data they generate and collect.

Not without help, that is. 
To solve astronomy’s big data 
challenges, teams of researchers 
around the world are turning 
to machine learning for answers.

When I started my Ph.D. eight 
years ago, “next-generation 
astronomy” referred to the time 
after the James Webb Space 
Telescope (JWST) would launch, 

the Vera C. Rubin Observatory 
would start taking nightly images 
of the sky, and the Euclid Space 
Telescope would begin peering 
into the depths of the universe. 
One of those things has already 
happened, and the other two 
aren’t far off. In that span of 
time, the number of articles 
posted to NASA’s Astrophysics 
Data System referencing machine 
learning has increased sixfold, 
and something that was once a 
curiosity is becoming a core part 
of the astronomer’s toolkit.

What remains to be seen is 
just how much machine learning 
can actually do for astronomers 
— and perhaps, more impor-
tantly, what it can’t do.

AI’s appetite 

for data

Chances are you’ve heard the 
terms artificial intelligence and 
machine learning thrown around 
recently, and while they are often 
used together, they actually refer 
to different things. Artificial 
intelligence 
(AI) is 

AI LINGO



made in the heavens because the 
one thing astronomers have too 
much of — data — is the thing that 
ML models can’t get enough of.

We’re familiar with gigabytes 
and terabytes of storage, but data 
at that scale is old news in astron-
omy. These days, we’re interested 
in petabytes: 1,000 TB, or 1 mil-
lion GB. It would take just 10 PB 
of storage to hold every single 
feature-length movie ever made, 
at 4K resolution; it would take 
over 100 years to watch them all.

The Vera C. Rubin Observatory, 
currently under construction in 
Chile, will be tasked with map-
ping the entire night sky in 
unprecedented detail, every single 
night. Over 10 years, Vera Rubin 
will produce about 60 PB of raw 
data, studying everything from 
asteroids in our solar system to 
galaxies in the distant universe.

No human being could ever 
hope to analyze all that data, and 
that’s from just one of the next-
generation observatories being 
built. So the race is on among 
astronomers in every field to 

find new ways to leverage the 
power of AI.

Taming the Zoo

One such astronomer is Mike 
Walmsley, a postdoctoral 
researcher at the University of 
Manchester in the U.K. and one 
of the leading AI researchers in 
astronomy. Walmsley is the brains 
behind integrating ML systems 
into Galaxy Zoo, a citizen sci-
ence project that has classified 
the morphologies of over a mil-
lion galaxies. In its original form, 
Galaxy Zoo’s citizen scientists 
tackled the mammoth task of 
visually inspecting galaxies from 
the Sloan Digital Sky Survey, 
which were so numerous that 
professional astronomers could 
not complete the task alone. But 
the increased scale of modern sky 

surveys has outpaced the rate at 
which Galaxy Zoo volunteers can 
classify galaxies. The project’s 
latest dataset includes 8.7 mil-
lion galaxies. “It would have 
taken about 200 years for Galaxy 
Zoo volunteers to measure these 
alone,” says Walmsley.

To solve this massive data 
problem, Walmsley enlisted 
machine learning to pick up the 
slack. He developed Zoobot, an 
AI model that is about as accurate 
at classifying galaxies as asking 
15 people.

“Adding AI is like giving vol-
unteers power tools,” he says. 
“Where one person alone might 
classify a few hundred galaxies, 
our AI can learn from them and 
together classify millions more.”

What’s unique about Walmsley’s 
work is that ML hasn’t been used 

The Vera C. Rubin 
Observatory’s survey 
of the southern sky 
will produce about 
20 terabytes of raw 
data every night. 
NOIRLAB/NSF/AURA
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Machine learning (ML) is a family of technologies 
that learn to make predictions and decisions 
based on vast quantities of historical data. 



like NASA’s Kepler telescope and 
the Transiting Exoplanet Survey 
Satellite.

Using the huge libraries of 
observed light curves, astrono-
mers have been able to develop 
ML-based models that can out-
perform humans in identifying 
possible exoplanets. But AI can 
do much more, such as help us 
identify which planets might be 
habitable. With next-generation 
observatories, such as the Nancy 
Grace Roman Telescope and 
JWST, astronomers hope to use 
ML algorithms to detect water, 
ice, and snow on rocky planets.

AI can even reveal new fun-
damental insights into math-
ematics and astronomy. In a 
paper published last May in 
Nature Astronomy, a team of 
researchers reported that ML 
algorithms helped them discover 
a more elegant understanding of 
exoplanet microlensing, unifying 
multiple interpretations of how 
an exoplanet’s configuration with 
its host star can vary. The report 
came just months after research-
ers at DeepMind in the U.K. 
reported in Nature new AI-aided 
fundamental insights into 
mathematics.

Galactic 

forgeries

While many ML models are 
trained to distinguish between 
different types of data, others are 
intended to produce new data. 
These generative models are 
a subset of AI techniques that 
create artificial data products, 
such as images, based on some 

underlying understanding of 
the data used to train it.

The series of 
DALL-E models 

developed by 

to entirely replace the role of pro-
fessional and amateur astrono-
mers, but rather to work together 
with human classifiers. The AI 
model used by Galaxy Zoo uti-
lizes a concept called active learn-
ing, where the model is able to 
send images that it isn’t certain 
about back to the citizen scientists 
to provide more information 
about what kind of galaxy is 
being inspected. By using this 
method, Walmsley and the 
Galaxy Zoo team were able to 
dramatically reduce the time 
it takes to classify hundreds of 
thousands of galaxies.

In fact, keeping human intel-
ligence in the loop is important 
for the future of astronomy 
research. “Unlike our volunteers, 
Zoobot only works well when 
classifying galaxies similar to 
those it has seen before,” says 
Walmsley. “And it lacks that 

uniquely human skill of noticing 
when something looks a little bit 
strange.”

Planet hunters

There are many ways to look for 
the signals of exoplanets, but the 
most prolific methods with cur-
rent technology involve studying 
the variation of a star’s brightness 
over time. If a star’s light curve 
shows a characteristic dimming, 
it could be a sign of a planet 
transiting in front of the host 
star. Conversely, a phenomenon 
called gravitational microlensing 
can cause a large spike in a star’s 
brightness, caused by the exo-
planet’s gravity acting as a lens 
that magnifies a more distant star 
along the line of sight. Detecting 
these dips and spikes means sift-
ing through thousands, or even 
millions, of light curves studious-
ly collected by space telescopes 

652
terabytes

1.6 petabytes
(1,600 TB)

Square Kilometer Array
High-priority programs

Planned 2028–2043

Sloan Digital Sky Survey
2000–2021; released 2021

PanSTARRS
2010–2014; released 2019

Vera C. Rubin Observatory
Planned 2024–2034

DATA DELUGE

The Square Kilometre 
Array is envisioned to 
eventually consist of 
some 2,000 radio 
dishes across Africa 
(pictured here as a 
photoillustration) and 
up to 1 million antennas 
in Australia. Even in its 
smaller initial form 
(which is currently 
under construction) of 
roughly one-tenth that 
size, it will generate up 
to 1 terabyte of data per 
second. SPDO/TDP/DRAO/

SWINBURNE ASTRONOMY 

PRODUCTIONS/CC BY 3.0

The amount of data from astronomical surveys is set to 
skyrocket. Current surveys are on the scale of roughly a 
petabyte, but the catalogs that upcoming facilities produce will 
increase that by orders of magnitude. The catalog volumes shown 
above are the finished data products. But the volume of raw data that 
must be processed to produce these catalogs is even larger. The Square 
Kilometer Array will produce roughly 5 zettabytes of raw data per year — 
more than the current total traffic of the internet. ASTRONOMY: ROEN KELLY
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8.5 exabytes
(8,500,000 TB)

Continues for 525 feet (160 meters)

20 PB
(20,000 TB)

OUR FAKE COSMOS: QUESTION

Generative 
algorithms are 
so good that 
even professional 
astronomers 
can struggle to 
distinguish 
between the 
real and the fake. 
This mosaic 
features dozens 
of synthetically 
generated 
images of 
objects in the 
night sky — and 
just one real 
image. Can you 
spot it? The 
answer is on the 
next page. 

M. J. SMITH ET AL. (U. HERTFORDSHIRE), DOI:10.1093/MNRAS/STAC130
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the research company OpenAI 
have pushed this concept into the 
public eye. These models generate 
an image from any written 
prompt and have set the internet 
alight with their uncanny ability 
to construct images of, for 
instance, Garfield inserted into 
episodes of Seinfeld.

You might think that astrono-
mers would be wary of any kind 
of fake imagery, but in recent 
years, researchers have turned to 

generative models in order to 
create galactic forgeries. A paper 
published last January in Monthly 
Notices of the Royal Astronomical 
Society describes using the 
method to produce incredibly 
detailed images of fake galaxies, 
which can be used to test predic-
tions from enormous simulations 
of the universe. They can also 
help develop and refine the data-
processing pipelines for next-
generation surveys.

Next-generation 

astronomers

In the summer of 2022, Walmsley, 
a few other astronomers, and I 
organized a special session on 
AI in astronomy at the Royal 
Astronomical Society’s National 
Astronomy Meeting, held at the 
University of Warwick. Among 
all the amazing science being pre-
sented, perhaps the most exciting 
thing for me wasn’t the research 
itself, but the people doing it. 
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Overwhelmingly, ML research 
in astrophysics and astronomy 
is being driven by early-career 
researchers, particularly doctoral 
students, who are bringing new, 
unique perspectives to the field.

For instance, Emily Hunt is a 
Ph.D. student at the University 
of Heidelberg in Germany and 
works with data from the 
European Space Agency’s Gaia 

satellite. Gaia observes the stars 
in our own galaxy and beyond, 
and its catalog contains precise 
positions for over 1 billion stars. 
With data of this scale, using AI 
isn’t just a choice for astrono-
mers, it’s a necessity.

“Searching through Gaia data 
by hand to look for open clusters 
would be like looking for thou-
sands of needles in a galaxy-sized 

haystack,” says Hunt. “Put simply, 
our science is not only greatly 
improved with ML, it would be 
pretty much impossible without 
ML.”

Unlike a lot of ML research, 
Hunt’s work doesn’t rely on deep 
neural networks, the workhorses 
of AI whose function is inspired 
by the human mind.

Instead, Hunt has explored the 
effectiveness of using different 
kinds of clustering models. As 
the name suggests, this family of 
algorithms identifies groups of 
nearby points in a dataset — for 
example, clusters of stars in a cat-
alog. According to Hunt, with 
this method it “takes seconds to 
find a cluster that a human might 
need hours to find.” Using ML, 
Hunt is hoping to publish the 
largest-ever catalog of open star 
clusters — just one example of 
how this next generation of 
astronomers will revolutionize 
the field.

Searching for 

serendipity

AI is also primed to make dis-
coveries that we cannot predict. 
There’s a long history of discover-
ies in astronomy that happened 
because someone was in the right 
place at the right time. Uranus 
was discovered by chance when 

OUR FAKE COSMOS: ANSWER

This 
image of 
the Crab 
Nebula 
(M1) is the 
only real 
image 
in the 
mosaic 
on     
page 41.

Galaxy Zoo’s AI model 
was able to classify the 
galaxies at right as 
ellipticals. The galaxies 
at left are examples that 
the model was unsure 
of how to classify. In 
active learning, such 
images are sent back 
to humans, who can 
provide the model with 
additional feedback and 
training. MIKE WALMSLEY

NASA, ESA, J. HESTER AND A. LOLL (ARIZONA STATE UNIVERSITY)
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William Herschel was scanning 
the night sky for faint stars. Vesto 
Slipher measured the speed of 
spiral arms in what he thought 
were protoplanetary disks, even-
tually leading to the discovery 
of the expanding universe. And 
Jocelyn Bell Burnell’s famous 
detection of pulsars happened 
while she was analyzing measure-
ments of quasars.

But the next generation of 
astronomy, with its petabytes 
of raw data, poses a significant 
barrier to the possibility of seren-
dipitous discovery. With so much 
data on hand — and limited 
resources to follow up every 
potential discovery — how might 
we find the weird and unex-
plained phenomena that we don’t 
even know we’re looking for?

AI could hold the answer with 
a field of techniques called anom-
aly detection. These algorithms 
are specifically trained to sift 
through mountains of images, 
light curves, and spectra, looking 
for samples that don’t look like 
anything we’ve seen before. One 
example could be so-called jack-
pot gravitational lenses, a rare 
alignment of galaxies resulting in 
two or more magnified images 
around a single nearby galaxy.

Perhaps soon, an AI could join 
the ranks of astronomy’s greatest 
discoverers.

The future of 

astronomy and AI

You are probably wondering at 
this point: Will AI put astrono-
mers out of a job? Probably 
not, though there’s no doubt 
that the way we do our jobs has 
already changed, as AI and ML 
are quickly becoming core tools 
for astronomers.

But astronomy also has a lot to 
offer researchers working on the 
cutting edge of machine intelli-
gence. From studying the evolu-
tion of galaxies, to hunting for 
alien worlds, and even tracing the 
origins of martian meteorites, 
astronomy offers vast quantities 
of research data from a variety of 

A NEURAL NETWORK is 
a sequence of computations 
arranged like a network of neu-
rons, where values are stored 
and manipulated as they prop-
agate through the network.

For example, take a simple 
neural network designed to 
classify a galaxy in a 8x8-pixel 
monochrome image as either 
spiral or elliptical. The bright-
ness value of each pixel is fed 
to a node in the input layer, 91 
in all in our case. If that value 
exceeds a certain threshold, 
that neuron “fires” and feeds 
its value to neurons in the next 
layer, the first of multiple so-
called hidden layers.

Each neuron in that layer 
performs a computation on the 
values it is fed: First, the values 
are multiplied by a number 
specific to the connection from 
which they came, called a 
weight. Then they are summed 
and added to another number 
specific to that node, called a 
bias. Weights effectively act as 
a measure of the strength of 
that connection in the network, 
and the biases indicate how 
sensitive the neuron is to firing.

The strength of a neuron’s 
signal is determined by the 
weights, biases, and the signal 
received — modified by a math-
ematical function called an 
activation function — which is 
then sent to the neurons in the 
next hidden layer. This process 
repeats, triggering patterns of 
neurons, until the values arrive 
at the final layer, the output 
layer. The output neurons are 
like options on a multiple-
choice question: one for an 
elliptical galaxy and one for a 
spiral galaxy. The neuron with 
the highest value is the net-
work’s choice for that image.

In the beginning, the weights 

and biases for each connection 
and neuron are set to random 
values, and the network’s 
choice is no better than a 
random guess. To train the 
network, the actual galaxy 
type — elliptical or spiral, as 
determined by a human — is 
propagated backward through 
the network, and the weights 
and biases are adjusted to 
improve the algorithm’s perfor-
mance. This process can be 

repeated thousands or millions 
of times. In more complex neu-
ral networks, additional mathe-
matical operations can be 
performed at the nodes of each 
layer; this may allow the net-
work to learn to detect edges or 
textures in the image. The result 
is a network of nodes with 
weights and biases tuned to act 
on fresh input data and make 
the decision it was intended to 
make. — Mark Zastrow

HOW A NEURAL NETWORK WORKS

sources that most fields can only 
dream about.

This is one of the most excit-
ing parts of this intersection of 
fields — both AI researchers and 
astronomers can push each other 
forward. And in the next genera-
tion of astronomy, with its pet-
abytes of raw data from facilities 
like the Vera Rubin and JWST, 

we can’t possibly imagine what 
these algorithms might find. 

The strengths (or weights) of the connections between neurons and the 
sensitivity (bias) of the neurons themselves are depicted here with 
varying line widths. Note that only some connections and neurons are 
shown, for legibility. ASTRONOMY: ROEN KELLY
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